Прерывистое отопление. Способы удаления воздуха из систем отопления

Ответ: достаточно существенные перетопы в осенний и весенний периоды (а для теплых климатических зон – практически весь отопительный сезон) присущи как раз зависимой схеме присоединения. Если схема независимая, то тепловая энергия передается через теплообменник и соответствующая автоматика должна регулировать величину потребления (соблюдение температурного графика, исключающего перетопы).

В отдельных случаях, когда теплоснабжающая организация ведет себя некорректно и с ней трудно найти общий язык – регулятор может помочь избежать излишнего навязываемого объема потребления и при независимой схеме, но это - «экзотика».

Ответ: известно несколько схем, позволяющих регулировать потребление тепловой энергии зданием на нужды отопления. Наиболее часто применяется насосная схема, которая позволяет плавно регулировать потребление тепловой энергии зданием. Но внедрение такой схемы требует затрат на покупку насоса и соответствующего клапана, что при малом потреблении (соответственно и сравнительно небольших объемах экономии) будет окупаться достаточно продолжительное время. Специально для таких потребителей и был разработан наш Регулятор, который показал на практике окупаемость 1-2 месяца. Для зданий с потреблением больше 0,2 Гкал/ч традиционная насосная схема окупается в приемлемые сроки.

Ответ: установку Регулятора нужно согласовывать с теплоснабжающей организацией. Хотя прямых указаний на необходимость согласования в нормативных документах нет, большинство теплоснабжающих организаций придерживаются мнения, что любые узлы регулирования у потребителей влияют на гидравлику всей сети и поэтому требуют согласования. Справедливости ради, надо сказать, что процедура получения техусловий и согласования формальны и не требуют, как правило, много времени и сил.

Ответ: при потреблении зданием до 0,2 Гкал (и менее) расход теплоносителя составляет около 2 л/с (при скорости теплоносителя в трубе порядка 1 м/с), при таких расходах возникновение гидроудара не возможно. Если используется соленоидный клапан, регулирующий расход, то при его закрытии/открытии (где-то 2 раза в полчаса) слышен характерный щелчок. В офисных зданиях его, конечно, не слышно. Если рядом жилые помещения, то лучше использовать клапан шаровой с сервоприводом, он работает бесшумно, но его стоимость несколько выше.

Ответ: нет. Клапан будет регулировать подачу тепловой энергии кратковременным перекрыванием подающего трубопровода. Обратный трубопровод ничем не перекрывается. Именно давлением в обратном трубопроводе теплосети обеспечивает нормальную работу зависимых систем потребителей без завоздушивания.

Ответ: На каждое здание нужно ставить свой Регулятор, поскольку он рассчитывает индивидуальное потребление зданием тепловой энергии. Если подключить несколько зданий, то из-за индивидуальных особенностей одни из них будут перегреваться, а другие недогреваться. При индивидуальной установке регулятора он будет учитывать особенности конкретного здания и обеспечивать ему необходимое количество тепловой энергии для поддержания комфортной температуры в помещении.

Ответ: Регулятор настраивается очень просто: ему задается температурный график тепловой сети и температура, которую необходимо поддерживать в помещениях здания. Остальное он вычислит сам. Кроме того, если здание офисное или промышленное, можно указывать периоды, когда температура в помещениях может быть пониженной (выходные дни и ночные часы). В этом случае экономия будет еще больше. Если Регулятор подключен к сети Интернет, то настройка может быть осуществлена с любого компьютера (по логину и паролю).

Ответ: Монтаж сводится к установке клапана (на резьбовом или фланцевом соединении - операция доступная любому слесарю). Операция требующая сварки – установка гильзы в трубопровод для датчика температуры. Крепление второго датчика температуры (воздуха) на северный (желательно) фасад здания – не представляет сложности. Сам Регулятор монтируется на стену (можно в шкафчик). Если подключение к интернету через мобильную связь, то возможно потребуется вывести антенку на фасад здания.

Ответ: В качестве примера приведем данные работы регулятора в здании офиса теплоснабжающей компании в Москве. На рис. 1 виден исполнительный механизм (шаровой клапан с сервоприводом), установленный после теплосчетчика (по ходу теплоносителя). На рис. 2 представлен график температуры в подающем и обратном трубопроводе системы отопления, которые фиксировал теплосчетчик. На рис. 3. график потребления тепловой энергии зданием (данные теплосчетчика). На рис. 2 и 3 примеры работы системы диспетчеризации и учета данных, которые доступны при подключении этой услуги.

Рисунок 1. Исполнительный механизм регулятора отопления.

Рисунок 2. График температур в офисном здании после установки регулятора (по данным теплосчетчика)

Рисунок 3. Потребление тепловой энергии зданием после установки регулятора отопления (данные теплосчетчика)

Тепловая эффективность отопительного устройства в помещении и выбор установочной тепловой мощности системы отопления.

Отопительный прибор должен компенсировать дефицит теплоты в помещении. Использование приборов той или иной конструкции и их установка в различных местах поме­щения не должны приводить к заметному перерасходу теп­лоты. Показателем, оценивающим эти свойства, является отопительный эффект прибора, который показывает отно­шение количества затрачиваемой прибором теплоты для создания в помещении заданных тепловых условий к рас­четным потерям теплоты помещением.

Считается, что наилучшим отопительным эффектом об­ладают панельно-лучистые приборы, установленные в верх­ней зоне помещения или встроенные в конструкцию потолка. Отопительный эффект таких приборов равен 0,9-0,95, т. е. теплоотдача потолочных панелей-излучателей может быть даже несколько ниже расчетных теплопотерь помеще­ния без ухудшения комфортности внутренних условий. Отопительный эффект панели, расположенной в конструк­ции пола, около 1,0.

Наиболее распространенные приборы - радиаторы обыч­но устанавливают в нишах или около поверхности наруж­ной стены. Заприборная поверхность перегревается и через эту часть наружной стены бесполезно теряется некоторое количество теплоты. В результате отопительный эффект радиаторов оценивают величиной 1,04-1,06. В этом отно­шении более эффективными оказываются конвекторы, рас­полагаемые вдоль наружной стены. Отопительный эффект, например, плинтусного конвектора около 1,03.

Подоконная панель, встроенная в конструкцию наруж­ной стены, может иметь заметные бесполезные потери теп­лоты и ее отопительный эффект снижается до 1,1.

Отопительные приборы обычно имеют определенный шаг принятого номенклатурного ряда, который в СНиП выражают теплоотдачей, кВт, отдельного элемента прибора этого ряда. В результате в помещении устанавливают число элементов прибора, округленное в большую сторону сверх расчетной величины. Связанное с этим увеличение теплово­го потока от приборов рекомендуют учитывать коэффи­циентом β 1 , который изменяется от 1,02 до 1,13 в зависимо­сти от изменения теплоотдачи отдельного элемента прибора от 0,12 до 0,3 кВт.

Дополнительные потери теплоты отопительным прибо­ром, установленным у наружного ограждения, учитывают коэффициентом β 2 . Его значение в зависимости от вида при­бора и способа его установки у наружного ограждения изменяется от 1,02 до 1,1.

Кроме потерь, связанных с размещением нагреватель­ных приборов, в системе отопления возникают бесполезные потери теплоты трубами, встроенными в конструкции на­ружных ограждений, а также в тепловом пункте и других элементах системы. Определяют также дополнительные теплопотери Q тр трубами в неотапливаемых помещениях, связанные с охлаждением теплоносителя.

Величина суммарных дополнительных потерь (заприборными участками наружных ограждений и теплопроводами в неотапливаемых помещениях) должна быть по СНиП не более 7% тепловой мощности системы отопления.

Удельная тепловая характеристика здания и расчет потребности в теплоте на отопление по укрупненным измерителям

Для теплотехнической оценки объемно-планировочных и конструктивных решений и для ориентировочного рас­чета теплопотерь здания пользуются показателем - удель­ная тепловая характеристика здания q, которая при изве­стных теплопотерях здания равна:

q = Q зд ∕

где Q зд - расчетные теплопотери через наружные ограждения всеми помещениями здания, Вт; V - объем отапливаемого здания по внешнему обмеру, м 3 , (t в – t н)- расчетная разность температуры для основных помещений здания.

Величина q , Вт/(м 3 °С), определяет средние теплопотери 1 м 3 здания, отнесенные к расчетной разности температуры 1°. Ее можно определить заранее

q = q 0 β t

где q 0 - эталонная удельная тепловая характеристика, соответст­вующая разности температур ∆t 0 =18 - (- 30)= 48 °С; β t - темпе­ратурный коэффициент, учитывающий отклонение фактической рас­четной разности температур от ∆t 0

Эталонная удельная тепловая характеристика может быть определена с учетом требований СНиП.

Экономические показатели систем отопления

Экономичность системы отопления обусловлена стои­мостью материалов и оборудования, изготовления и сбор­ки, а также эксплуатации. Показателями экономичности являются технологичность конструкции, масса элементов, затраты труда и сроки изготовления и монтажа, расходы на наладку, управление и ремонт.

Технологичность конструкции включает такие реаль­ные мероприятия, как упрощение схемы, унификация и уменьшение числа деталей, применение нормалей, удоб­ство сборки, которые обеспечивают изготовление и монтаж с минимальными затратами времени, средств и труда.

Экономический эффект выявляется при проведении технико-экономического сравнения различных проектных решений. Сравнение позволяет выбрать систему отопления, наиболее экономичную в данных конкретных условиях.

При экономическом сравнении вариантов применяют следующие показатели: капитальные вложения К, экс­плуатационные затраты И, продолжительность монтаж­ных работ и эксплуатации системы отопления. Обычно ис­пользуют часть этих показателей. Самым простым является сравнение систем отопления с различными приборами, но с одним видом теплоносителя и с одной схемой, так как оно делается только по капитальным вложениям. Чаще всего сопоставляют системы по капитальным вложениям и экс­плуатационным затратам. Реже учитывают еще сроки мон­тажа и службы систем, наличие трудовых резервов.

Наиболее экономичен вариант, имеющий минимальные суммарные капитальные вложения и эксплуатационные затраты. Обычно приходится сравнивать два варианта, один из которых имеет меньшие капитальные вложения, другой - меньшие эксплуатационные затраты. Так, при уменьшении диаметра труб насосной водяной системы отоп­ления капитальные вложения уменьшаются, но увеличи­вается расход электроэнергии; автоматизация системы увеличивает капитальные вложения, но уменьшает экс­плуатационные затраты. Экономически более эффективный вариант выявляют в подобных случаях в зависимости от срока z, лет, окупаемости дополнительных капитальных вложений.

Z = (К 1 – К 2)∕ (И 1 – И 2)

Если этот срок z < z н - нормативного срока окупае­мости дополнительных капитальных вложений за счет сни­жения эксплуатационных затрат, то целесообразно осущест­вить вариант с большими капитальными вложениями K 1 и меньшими средними годовыми эксплуатационными затра­тами И 1 . Если z > z н, то целесообразен вариант с меньшими капитальными вложениями К 2 и большей средней стои­мостью эксплуатации И 2 в течение года. Нормативный срок z н окупаемости вложений в систему отопления принят рав­ным 8,33 года (12,5 года для новой техники и энергосбере­гающих мероприятий) независимо от вида здания.

При экономическом сопоставлении нескольких систем или вариантов системы для каждого из них находят при­веденные затраты

3= (К ∕z н) +И,

и, более эффективным считают вариант, имеющий наимень­шие приведенные затраты за нормативный срок окупае­мости.

Капитальные вложения в систему отопления осуществ­ляются, как правило, в течение одного года. Эксплуата­ционные затраты ежегодно изменяются; кроме того, они зависят от срока службы как системы, так и отдельных ее элементов.

Годовые эксплуатационные затраты состоят из прямых расходов на обслуживание системы отопления и амортиза­ционных расходов

И =И пр +А

где И пр - прямые эксплуатационные расходы, складывающиеся из годовых затрат на получаемую тепловую энергию (топливо), электроэнергию, заработную плату обслуживающего персонала, управление системой и текущий ремонт; А - амортизационные расходы, включающие годовые затраты на капитальный ремонт системы и отчисления на полное восстановление капитальных вложений.

Отчисления на восстановление капитальных вложений связаны с нормативным сроком службы системы, опреде­ляемым исходя из сроков физического износа ее элементов: радиаторов (40 лет), водоводов (30 лет), паропроводов, центробежных насосов, клапанов (10 лет), вентиляторов, калориферов, отопительных агрегатов (8 лет), фильтров (6 лет), конденсатопроводов (4 года).

Срок службы определяется не только физическим, но и моральным износом системы отопления, причем моральным износом считают потерю способности поддерживать темпе­ратуру во всех обслуживаемых помещениях на требуемом уровне. Нормативный срок службы распространенных сис­тем водяного отопления в настоящее время принимается равным 30 - 35 годам (меньший срок для конвекторов).

При сопоставлении различных систем отопления со­блюдают равные или хотя бы близкие эксплуатационные показатели для всех вариантов: системы должны обеспечи­вать выполнение санитарно-гигиенических, противопожар­ных и противовзрывных требований, а также должны обла­дать равноценной эффективностью.

Срок службы систем водяного отопления, как уже из­вестно, наибольший. Благодаря уменьшению амортиза­ционных расходов при этом, экономии электрической и тепловой энергии сокращаются стоимость эксплуатации, а, следовательно, и приведенные затраты. Поэтому система водяного отопления обычно становится экономически более эффективной, чем система парового отопления.

Различие в тепловом комфорте, создаваемом в помеще­ниях при сравниваемых системах отопления, учитывают изменением срока службы и степени использования площа­ди помещений. Для системы, обеспечивающей более ком­фортные условия, увеличивают расчетный срок службы на 5-10 лет (считаясь с меньшим моральным износом). Кроме того, учитывают использование рабочей площади помещений в холодное время года (за счет изменения раз­меров зоны дискомфорта), добавляя часть затрат на строи­тельные работы по обесцененной площади к сметной стои­мости другой системы.

Все же главным показателем экономичности системы отопления являются теплозатраты в процессе ее эксплуата­ции. Известно, что только годовые затраты на эксплуата­цию превышают половину стоимости устройства системы. И основная часть затрат приходится на оплату расходуемой теплоты. Теплозатраты на отопление при паровой или центральной воздушной системе превышают расход теп­лоты в системе водяного отопления вследствие возрастания попутных теплопотерь через стенки паропроводов и возду­ховодов, бесполезных для обогрева рабочих помещений.

Комбинированное отопление

Комбинированными принято называть системы цент­рального отопления с двумя теплоносителями, когда пер­вичный теплоноситель (вода, пар) используют для нагрева­ния вторичного (воды, воздуха). В связи с широким рас­пространением в нашей стране централизованного водяного теплоснабжения большинство систем центрального отоп­ления фактически стали комбинированными - водо-водяными или водо-воздушными.

В настоящее время под комбинированным отоплением стали понимать сочетание двух режимов работы системы или двух систем для отопления одного и того же помещения с переменным тепловым режимом. Проводится также совершенствование работы и устройства систем отоп­ления для улучшения теплового режима помещений и со­кращения теплозатрат на отопление зданий. Конструктив­но похожее решение встречалось и ранее, когда для отоп­ления, периодически используемого производственного по­мещения предусматривались две системы отопления раз­личной мощности: одна для рабочего периода времени, другая (дежурная) - для нерабочего.

Различают комбинированное отопление двухрежимное, двухкомпонентное, с прерывистым режимом.

Двухрежимным называют отопление, работающее при различной температуре одного и того же теплоносителя в разное время суток. Двухрежимной является система во­дяного отопления, в которой в рабочий период времени циркулирует вода при пониженной температуре (для по­лезного использования внутренних тепловыделений), а в нерабочий период - при повышенной (или наоборот). Для понижения температуры включают смесительный насос, для повышения - применяют прямоточную подачу тепло­носителя из наружного теплопровода без подмешивания охлажденной воды.

Двухрежимной может быть также система воздушного отопления, совмещенная с приточной вентиляцией в рабо­чий период времени, и рециркуляционная в нерабочий период. Температура подаваемого воздуха в первый пери­од ниже, чем во второй.

Двухкомпонентным считают отопление двумя систе­мами, дополняющими одна другую для обеспечения необ­ходимой теплоподачи в помещения. Первую систему, обыч­но водяного отопления, называемую фоновой или базисной, устраивают пониженной мощности (например, 30% расчет­ной теплопотребности рядовых помещений) для постоянного нерегулируемого действия в течение всего отопительного сезона. Задача этой системы - выравнивать дефицит теплоты, приходящейся на единицу площади или объема ря­довых и угловых, нижних и верхних однотипных помещений здания (искусственно создавать одинаковые удельные теп­ловые характеристики основных помещений).

Вторую систему водяного, воздушного, газового или электрического отопления, называемую догревающей, пре­дусматривают дополнительной мощности для поддержания необходимой температуры воздуха, как в рабочий, так и не­рабочий периоды времени. Действие догревающей системы автоматизируют для работы по заданной программе.

Комбинированное отопление может действовать с пере­рывами, и тогда тепловой режим помещений характеризует­ся тремя состояниями: постоянства температуры в течение рабочего времени, свободного понижения температуры при выключенной догревающей системе и натопа помещений перед началом работы или в праздничные дни (о преры­вистом отоплении). Возможны также различные сочетания перечисленных видов комбинированного отоп­ления, когда предусматривают двухрежимную работу од­ной или обеих систем двухкомпонентного отопления.

Повышение эффективности отопления здания

Заключительным этапом алгоритма разработки здания с эффективным использованием энергии является оценка эффективности принятого способа отопления как составной части СКМ здания. На это направлены рассмотренные в данном разделе инженерные приемы.

Комплексное свойство СКМ здания эффективно выпол­нять свои функции является обычно вероятностной харак­теристикой. Эффективность системы отопления определяется тремя основными свойствами: надежностью, управляемостью (или устойчивостью) при функционировании, обеспеченностью.

Надежность - вероятностное обеспечение безотказной работы механической части системы отопления, ее конструк­тивных узлов и элементов при эксплуатации в пределах расчетных сроков и условий.

Управляемость - вероятностное выдерживание задан­ных отклонений в работе отдельных частей и зон системы отопления в процессе управления и при эксплуатации в те­чение отопительного сезона.

Обеспеченность - принятое в проекте выдерживание с допустимой вероятностью отклонений расчетных внут­ренних условий в здании.

Регулирование системы отопления

Под регулированием системы отопления понимают комп­лекс мероприятий, направленных на максимальное при­ближение теплоотдачи ее элементов к текущей переменной теплопотребности отапливаемых помещений в течение ото­пительного сезона для выдерживания расчетной температу­ры помещений.

Различают пусковое и эксплуатационное регулирование системы. Эти виды регулирования имеют свои особенности для водяной, воздушной и паровой систем отопления.

При пуске системы отопления группы зданий, присо­единенной к теплопроводам централизованного теплоснаб­жения, обеспечивают распределение теплоносителя по от­дельным зданиям пропорционально их расчетной теплопотребности. Обычно такое регулирование проводят в центральных тепловых пунктах (ЦТП) и во внутриквартальных тепловых сетях. Способы регулирования, как при зависимом, так и при независимом присоединении системы отопления к теплопроводам, рассматриваются в дисциплине «Теплоснабжение».

Пусковое регулирование элементов и узлов системы отопления связано с обеспечением в них расчетного расхода теплоносителя.

Эксплуатационное регулирование системы отопления проводят с целью обеспечения теплоподачи в отапливаемые помещения соответствующей текущей теплопотребности. Способы регулирования различаются также в зависимости от применяемого в системе теплоносителя. В зависимости от места проведения регулирования в системе теплоснаб­жения различают центральное, групповое, местное и инди­видуальное регулирование.

В системе водяного теплоснабжения центральное регу­лирование осуществляют на тепловой станции (ТЭЦ, ко­тельной) по так называемому отопительному графику, устанавливающему связь между параметрами теплоноси­теля (температура при качественном или расход при коли­чественном регулировании) и температурой наружного воздуха как основного фактора, определяющего перемен­ный характер составляющих теплового баланса здания в те­чение отопительного сезона

Центральное регулирование на тепловой станции при теплоснабжении различных по назначению зданий (жилые, общественные, производственные и др.) и режиму теплопотребления их инженерных систем (отопление, горячее водоснабжение, вентиляция и др.) не может обеспечить ус­тойчивой работы систем отопления.

Устойчивость работы повышается при приближении места проведения регулирования к теплопотребителю за счет более полного учета различных факторов, определяю­щих теплопотребность помещений отапливаемых зданий. Так, при групповом регулировании в ЦТП появляется возможность распределять теплоту по уточненным темпе­ратурным графикам, что способствует повышению эконо­мичности отопления каждого здания. При местном регули­ровании в тепловом пункте здания учитывают особенности режима его эксплуатации, ориентацию по сторонам гори­зонта, действие ветра и солнечной радиации.

2014-01-15

Вопрос экономии энергии, потребляемой для поддержания комфортного микроклимата в отапливаемых помещениях, становится все актуальнее. Снижение температуры воздуха в период отсутствия людей или остановки технологического оборудования дает возможность уменьшить потребление энергоресурсов.





По результатам численного моделирования выполнен расчет экономии тепловой энергии при прерывистом отоплении в условиях применения четырех видов отопительных приборов. Установлено, что наибольшая экономия теплоты наблюдается при использовании конвектора или радиатора, поскольку они обеспечивают самый быстрый темп разогрева.

Панельные отопительные приборы непригодны для прерывистого отопления, так как характеризуются значительной тепловой инерцией. Вопрос сокращения количества энергии, потребляемой для поддержания требуемых условий микроклимата в отапливаемых помещениях, приобретает все большую актуальность.

Снижение температуры воздуха в помещениях в период отсутствия людей или остановки технологического оборудования дает возможность уменьшить потребление энергетических ресурсов. Имеющиеся исследования, связанные с анализом прерывистого отопления (переменного режима работы отопления), как правило, не имеют системного характера.

В математических моделях акцент сделан на переносе теплоты в массиве ограждающих конструкций, не принимаются во внимание процессы конвекции в воздушной среде помещения. Такой подход не позволяет адекватно учесть влияние месторасположения и вида нагревателя на тепловой режим помещения. В разработанной автором под руководством д.т.н., проф. П. И. Дячека нестационарной двумерной физико-математической модели учтена сопряженность различных видов теплообмена в ограждениях и в свободном пространстве отапливаемых помещений, влияние вида отопительных приборов на процессы переноса.

Приняты во внимание геометрические и конструктивные особенности ограждений и заполнений световых проемов. Удовлетворительная степень соответствия двумерной модели реальным трехмерным процессам проверена в экспериментах. Дифференциальные уравнения переноса, входящие в разработанную модель, приведены в работе . Проанализируем задачу о прерывистом отоплении общественного помещения.

Расчетная область представляет собой вертикальный разрез помещения, расположенного на нижнем этаже, по центру окна. Снизу находится подвал. Высота помещения составляет 2,5 м, длина — 6 м. Наружные и внутренние ограждения выполнены с использованием железобетонных конструкций. Подробная информация о конструкции ограждений, внешний вид расчетной области, а также характер распределений полей температуры и скорости при различных вариантах работы отопительных приборов представлены в материале .

Предполагая, что помещение не эксплуатируется в субботу и воскресенье, рассмотрим несколько вариантов применения прерывистого отопления с четырьмя видами приборов (радиатор, конвектор, подоконная отопительная панель и напольное отопление). Для исключения влияния на результат прочих нестационарных факторов задаем постоянную температуру наружного воздуха на уровне -24 °C (условия Минска).

В смежных помещениях назначена температура воздуха 20 °C, в подвале температура задана на уровне 5 °C. Отопительная нагрузка помещения Q расч определена по традиционной методике. Связь между текущим значением мощности прибора Q тек и его расчетной нагрузкой Q расч задаем с помощью коэффициента мощности K, итого эта связь запишется как: Q тек = KQ расч. (1)

При наступлении выходных в течение первых суток задаем полное отключение системы отопления (K = 0) или снижение мощности в два раза (K = 0,5). Во вторые сутки включаем отопление, задаваясь одним из следующих значений коэффициента мощности K = 1; 1,5 или 2. Для сопоставления динамики повышения температуры в условиях применения различных режимов и отопительных приборов моделируем разогрев помещения в течение более длительного периода, чем одни сутки.

На рис. 1 представлены кривые изменения средней температуры воздуха обслуживаемой зоны для группы расчетов с полным отключением отопления в первые сутки. Рис. 2 содержит аналогичные графики для расчетов, в которых в период 0-24 ч коэффициент мощности задан 0,5. В начальный момент (0 ч) средняя температура воздуха в помещении соответствует стационарной задаче и зависит от вида прибора.

Основной причиной отличия температуры воздуха в начальный момент является различие фактических потерь теплоты вследствие неодинаковой интенсивности прогрева ограждающих конструкций, расположенных вблизи отопительных элементов . Рис. 1 и рис. 2 показывают, что динамика изменения температуры воздуха во многом зависит от вида отопительного прибора. Наиболее высока скорость изменения в расчетах с конвектором и радиатором.

Варианты с подоконной отопительной панелью и, особенно, с напольным отоплением, демонстрируют более низкую динамику снижения и увеличения температуры. Количественное сопоставление результатов удобно выполнять, используя величины, представленные в табл. 1-4. Курсивом выделены значения для режимов, не обеспечивающих своевременное достижение исходной температуры внутренней среды после периода снижения температуры.

В табл. 1 приведено время повышения температуры воздуха до исходного значения, считая от начала разогрева. Допустим, что к концу вторых суток (то есть на момент времени 48 ч) в помещении должна быть восстановлена исходная температура воздушной среды. По данным табл. 1 видно, что разогрев помещения необходимо проводить с повышенной мощностью (K > 1), так как при коэффициенте K = 1 ни один из приборов не обеспечивает достаточного темпа разогрева.

Инерционность панельных отопительных приборов является причиной того, что при K = 1 время разогрева составит более шести суток. Таким образом, к началу следующих выходных температура воздуха не достигнет значения, которое наблюдалось до начала отключения отопления (или снижения) мощности. При полном отключении в первые сутки и последующем разогреве с K = 1,5 только напольное отопление не обеспечит своевременного разогрева, поскольку является наиболее инерционным.

Табл. 2 содержит значения дополнительных затрат теплоты (из расчета на 1 м 2 площади помещения) в период разогрева до исходной температуры. Данные затраты имеют место при разогреве с коэффициентом мощности K > 1 до момента достижения исходной температуры воздуха. Далее следует перевести систему отопления в режим постоянной работы с K = 1.

Чем более длительный период времени требует разогрев помещения и чем более высокая отопительная мощность при этом используется, по сравнению с расчетной мощностью, тем значительнее дополнительные затраты. Экономия теплоты за счет прерывистого режима работы отопления за рабочий цикл, длящийся одну неделю, указана в табл. 3. Максимально возможное значение экономии для исследуемых вариантов определяется количеством теплоты, которое не использовано в период суточного отключения отопления (3170 кДж на 1 м 2 площади помещения) или снижения мощности в два раза (1580 кДж/м 2). При последующем разогреве помещения с K > 1 дополнительные затраты (табл. 2) определяют итоговое, более низкое значение экономии теплоты.

В табл. 4 представлена экономия теплоты в условиях прерывистого отопления, выраженная в процентах. Значения определены относительно затрат теплоты на отопление в течение недельного периода работы при постоянном режиме с коэффициентом мощности K = 1, составляющих 22 180 кДж/м 2 . В рассмотренных режимах для всех видов приборов полное отключение отопления в первые сутки выходных является более выгодным, чем снижение мощности на 50 %.

При отключении происходит более интенсивное и глубокое снижение температуры воздуха, за счет этого более значительно уменьшаются потери теплоты. Однако полное отключение не следует допускать при опасности замерзания теплоносителя в системе или в случае понижения температуры воздуха до значения, которое приведет к нарушению исправности технологического или иного оборудования.

Максимальная экономия среди вариантов, обеспечивающих своевременный разогрев помещения, наблюдается при использовании конвектора или радиатора, поскольку указанные приборы обеспечивают самый быстрый темп разогрева внутренней воздушной среды. Результаты других исследователей также свидетельствуют об этом . Значительно меньшая экономия обеспечивается при использовании подоконной отопительной панели.

Напольное отопление практически не дает экономии при прерывистом режиме работы по причине чрезмерной инерционности. Результаты проведенного исследования полностью подтверждают предположение о непригодности панельных отопительных приборов для использования в условиях прерывистого отопления. Для предварительного сопоставления различных отопительных приборов можно порекомендовать следующее соображение.

Чем более массивным является отопительный прибор, и чем больше его емкость по теплоносителю, тем выше тепловая инерция данного нагревателя и тем меньше выгоды можно получить от применения прерывистого отопления. Анализ результатов позволяет сделать вывод, что при использовании прерывистого отопления следует по возможности максимально удлинить период отключения (или снижения мощности), а на разогрев оставить время, необходимое для повышения температуры воздуха до требуемого значения при включении нагревателей с максимальной мощностью.

Практика показывает, что наиболее быстро обеспечить разогрев внутреннего воздуха можно, используя отопительные приборы с принудительной циркуляцией воздуха (например, конвекторы со встроенными вентиляторами). Длительность периода разогрева зависит от большого числа факторов: вида прибора, его мощности и места размещения, исходной температуры внутреннего воздуха, исходной температуры ограждений и оборудования, а также их тепловой инерции.

Применение программно реализованных математических моделей дает возможность наиболее полно учесть все факторы, определяющие процессы охлаждения и нагрева помещения, и спроектировать систему отопления, максимально подходящую для прерывистого режима работы. В рамках существующего объекта численные эксперименты позволяют разработать оптимальный режим функционирования имеющейся отопительной системы.

  1. Захаревич А.Э. Особенности формирования микроклимата в многосветных пространствах // Вестник МГСУ, №7/2011.
  2. Захаревич А.Э. Особенности формирования микроклимата отапливаемых помещений // Энергетика, №5/2009.
  3. Захаревич А.Э. Формирование параметров микроклимата в отапливаемых помещениях в условиях естественной конвекции: Автореф. дисс. на соиск. уч. ст. к.т.н. - Минск: БНТУ, 2012.
  4. Асатов P.P. Факторы, влияющие на экономию теплоты при прерывистом отоплении зданий // Теоретические основы теплогазоснабжения и вентиляции: Сб. докл. III Межд. науч.-техн. конф. МГСУ, 2009.
  5. Табунщиков Ю.А., Бродач М.М. Экспериментальное исследование оптимального управления расходом энергии // Теоретические основы теплогазоснабжения и вентиляции: Сб. докл. III Межд. науч.-техн. конф. МГСУ, 2009.

Реконструкция системы отопления, т. е. частичная или полная замена ее элементов, их конструктивная модерни­зация, осуществляется в связи с физическим износом систе­мы, различного рода технологическими изменениями, вы­званными назначением и объемом здания или условиями работы системы, ее моральным старением и другими причи­нами.

Износ системы водяного и парового отопления при дли­тельной эксплуатации происходит под воздействием внут­ренней, а иногда и внешней коррозии. Вследствие отложе­ния взвешенных частиц и образования накипи повышается гидравлическое сопротивление теплопроводов, отопитель­ных приборов, ухудшаются их теплотехнические свойства. Этим же процессам подвержены оборудование систем (теп­лообменники, баки, воздухосборники, грязевики и пр.) и запорно-регулирующая арматура.

Исследованиями систем водяного отопления, проведен­ными в условиях эксплуатации их в Москве, установлено заметное различие в изменении потерь давления в системах в течение многолетней эксплуатации в зависимости от ка­чества теплоносителя. Оценить это изменение можно по формуле

Дрг/Дрр = 0,6 + аг°"38,

где Дрг, Дрр - потери давления в системе отопления соответст­венно через г лет эксплуатации и расчетные; а - коэффициент, зависящий от качества теплоносителя (а- 0,17 для деаэрированной воды при содержании кислорода в ней до 0,1 мг/л и а=0,65 для недеаэрированной и смешанной воды при содержании кислорода 10 мг/л).

В начале эксплуатации потери давления в новой системе водяного отопления составляют около 60% расчетных. Рас­четные потери давления достигаются в системах, питаемых недеаэрированной водой, практически в первый год экс­плуатации, а в системах, работающих на деаэрированной воде, через 8-10 лет эксплуатации.

Повышение потерь давления в системе приводит к умень­шению расхода теплоносителя, к гидравли­ческой и тепловой разрегулировке системы отопления и снижению теплоотдачи ее элементов.

Срок службы отдельных элементов системы отопления не одинаков. Долговечность систем зависит от вида и качества используемого теплоносителя, условий их рабо­ты. Срок службы систем водяного отопления возрастает при их теплоснабжении от ТЭЦ и тепловых станций, когда про­водятся умягчение и деаэрация воды, по сравнению с тепло­снабжением от местных котельных. Особенности работы системы парового отопления, более интенсивные процессы коррозии, происходящие в ней, ставят ее на последнее мес­то по долговечности среди других систем. Наиболее долго­вечной считают систему воздушного отопления (за исклю­чением воздухонагревателей).

Срок службы системы отопления зависит и от материала, из которого сделаны ее элементы, его качества. Например, коррозионные процессы, особенно в стальных отопитель­ных приборах и деталях, быстро понижают их прочность. Важно и качество изготовления самих элементов, прове­дения сборочных и монтажных работ.

Решение о частичной или полной замене элементов систе­мы отопления принимают после специального обследования, в ходе которого проводят гидравлическое и тепловое испы­тания системы, определяют расход теплоносителя в системе в целом и ее отдельных узлах, соответствие теплоотдачи элементов расчетной. Состояние металла в системе оцени­вают путем исследования образцов, извлеченных путем частичной разборки или вырезки.

Проектируя реконструкцию системы отопления, стре­мятся сохранить те ее элементы, которые мало изменили свои свойства в процессе эксплуатации. К ним относятся чугунные радиаторы и ребристые трубы, которые при ка­чественной ежегодной промывке практически не подвер­жены коррозии. Относительно долго служат и те элементы системы, которые выполнены из неметаллических материа­лов (керамические отопительные приборы, стеклянные трубы в бетонных отопительных панелях и пр.).

При реконструкции систем отопления с использованием существующих стальных труб эквивалентную шерохова­тость их внутренней поверхности принимают: для воды и пара - 0,5, конденсата-1,0 мм.

Реконструкцию системы отопления часто проводят по причинам, не связанным непосредственно сее состоянием. Так, полную замену системы осуществляют при капиталь­ном ремонте, связанном сперепланировкой здания. При этом иногда принимают принципиально новое схемное реше­ние системы с заменой устаревших конструкций, использо­ванием нового оборудования, обеспечением автоматизации. Перепроектирование проводят с учетом изменения тепло - затрат на отопление помещений.

В производственных и коммунальных зданиях конструк­ция системы отопления может изменяться вследствие изме­нения технологических процессов, теплового режима поме­щений, а также назначения здания в целом.

Полное перепроектирование системы отопления тре­буется при замене теплоносителя, например, при переходе от пара к воде.

Изменение условий теплоснабжения здания (изменение температуры, давления теплоносителя) вызывает реконст­рукцию теплового ввода и местного теплового пункта. Больших затрат требует, в частности, перевод системы во­дяного отопления с зависимой на независимую схему при­соединенияк тепловой сети. При этом дополнительно устанавливают теплообменники, циркуляционные и подпиточные насосы, расширительный бак, новые контрольно - измерительные приборы, приборы автоматизации, запорно-регулирующую арматуру. Каких-либо дополнительных из­менений непосредственно в системе отопления обычно не требуется.

Повышение требований к тепловому комфорту в зда­ниях, качеству работы инженерного оборудования со сни­жением эксплуатационных затрат, в том числе экономией тепловой энергии, также вызывает реконструкцию системы отопления.

Неспособность системы отопления удовлетворять воз­росшим требованиям называют ее моральным старением. Качество устаревшей системы повышают путем частичной модернизации отдельных узлов и деталей, оснащения ее средствами управления и диспетчерского контроля.

Одной из причин реконструкции может бытьизменение условий эксплуатации системы отопления. Например, переход от постоянного теплового режима помещений зда­ния к переменному с прерывистым отоплением. При этом изменяют мощность системы отопления, ее конструкцию, схемное решение, вводят новое оборудование.

Новую систему отопления в настоящее время проекти­руют, предусматривая возможность ее реконструкции или модернизации в будущем. Например, разделяют систему водяного отопления на пофасадные части для оснащения в будущем приборами автоматического регулирования; предусматривают возможность замены обычного элеватора элеватором с регулируемым соплом или смесительным на­сосом, перехода к независимой схеме присоединения к теп­ловой сети.

В системах воздушного отопления автоматизируют дей­ствие отопительных агрегатов и воздушно-тепловых завес, центральных систем, в том числе регулирование распре­деления воздуха по каналам и воздуховодам.

В зданиях старой постройки реконструкция системы отопления, как правило, связана с конструктивными изме­нениями (например, с перекладкой магистральных труб). Учет этих затрат, а также стоимости нового автоматизиро­ванного оборудования часто приводит к выводу об эконо­мической нецелесообразности реконструкции морально устаревшей системы. Окончательное решение и выбор ва­рианта реконструкции в этом случае увязывают с экономи­ческой целесообразностью реконструкции всего здания в целом.

Частичную реконструкцию системы отопления может вызвать какой-либо внутренний дефект, который нельзя устранить путем ремонта. Например, при выходе из строя замоноличенных в строительные конструкции греющих элементов приходится устанавливать новые отопительные приборы непосредственно в обогреваемых помещениях, присоединяя их к существующей системе.

В редких случаях, в условиях особенно суровых зим (на­пример, зимой 1978/79 гг.), реконструкция вызывается последствиями аварий, особенно при неправильной экс­плуатации систем отопления.

Библиографический список:

1. Справочник по теплоснабжению и вентиляции. Книга 1, Щекин Р.В., Кореневский С.М., Бем Г.Е., Госстройиздат УССР, 1959

2. СНиП 23-01-99*. Строительная климатология / Госстрой России. – М.: ГУП ЦПП, 2005.

3. СНиП 23-02-2003. Тепловая защита зданий / Госстрой России. – М.: ФГУП ЦПП, 2004.

4. ГОСТ 30494-96. Здания жилые и общественные. Параметры микроклимата в помещениях / Госстрой России. – М.: МНТКС, 1999.

5. СП 23-101-2004. Проектирование тепловой защиты зданий / Госстрой России. – М.: ГУП ЦПП, 2005.

6.Сканави А. Н., Махов Л. М. Отопление: Учебник для вузов. – М.: Издательство АСВ, 2002.

7. Внутренние санитарно-технические устройства. В 3 ч. Ч.1. Отопление / В. Н. Богословский, Б. А. Крупнов, А. Н. Сканави и др.; Под ред. И. Г. Староверова и Ю. И. Шиллера. – М.: Стройиздат, 1990. (Справочник проектировщика).

8. Лымбина Л. Е., Магнитова Н. Т. Отопление и вентиляция гражданского здания. Учебное пособие к курсовому проекту. Часть 1. Теплотехнический расчет конструкций. Теплоэнергетический баланс здания. – Челябинск, ЮУрГУ, 1998.

9. Лымбина Л. Е., Магнитова Н. Т., Буяльская И. С. Отопление и вентиляция гражданского здания. Учебное пособие к курсовому проекту. Задание. – Челябинск, ЧГТУ, 1994.

ПЕРИОДИЧЕСКОЕ («ПРЕРЫВИСТОЕ») ОТОПЛЕНИЕ, КАК ЭНЕРГОСБЕРЕГАЮЩЕЕ МЕРОПРИЯТИЕ

Среди задач управления системами отопления значительное место занимают задачи так называемого прерывистого режима отопления. Для большинства современных зданий (административных зданий, школ, жилых зданий, театров, кинотеатров, ряда производственных зданий и т. д.) допускается понижение температуры внутреннего воздуха ниже нормативного значения в течение части суток, в выходные и праздничные дни с целью экономии энергии, затрачиваемой на их теплоснабжение. К началу использования помещения в соответствии с его технологическим назначением температурный режим в нем должен соответствовать нормативным показателям. Такой режим отопления, когда температура внутреннего воздуха понижается на некоторый период времени ниже нормативного значения, называется «прерывистым». Подобная ситуация может иметь место также при авариях, когда прекращается подача тепла в помещение.

Прерывистая подача тепла рациональна только в случае автоматического регулирования по времени и температуре, которое позволяет экономить энергию, избегая ненужного завышения температуры в отапливаемых помещениях, и периодически снижать температуру помещения в соответствии с определенным графиком его использования, а также обеспечить необходимую оптимальную тепловую обстановку в помещении.

Колебания тепловыделений и связанные с ними колебания температуры внутреннего воздуха на общем расходе тепла не сказываются; он зависит от средней за период температуры внутреннего воздуха . Если при прерывистой теплоподаче значение среднесуточной температуры внутреннего воздуха равно нормативному ее значению, то общий расход тепла остается таким же, как при непрерывной теплоподаче, и экономия энергии не обеспечивается. Подобное положение имеет место при печном отоплении. Для обеспечения экономии энергии необходимо понизить среднесуточное значение температуры внутреннего воздуха, т.е. в течение части зимнего периода она должна быть равна нормативному значению и быть ниже в остальную часть периода. Для большинства современных зданий (административных зданий, школ, жилых зданий, театров, кинотеатров, ряда производственных зданий и т.д.) понижение температуры внутреннего воздуха ниже нормативного значения допускается в течение части суток.

Одним из критериев возможной длительности перерыва в теплоподаче и связанным с ней понижением температуры внутреннего воздуха является требование о невыпадении конденсата на внутренних поверхностях стен и покрытия. При понижении температуры внутреннего воздуха, если не меняется его влагосодержание, точка росы остается постоянной.

Система прерывистой теплоподачи будет особенно эффективной, если она способна в короткое время без привлечения большой дополнительной мощности повысить температуру внутреннего воздуха до нормативного значения . Таким требованиям в значительной степени удовлетворяют так называемые двухкомпонентные системы отопления. Основная (фоновая) часть системы может поддерживать в помещении температуру воздуха порядка 12-16 °С, а дополнительная в течение короткого промежутка времени может довести ее до нормативной. Система фонового отопления может быть любой теплоемкости, а дополнительная система должна быть малотеплоемкой и легко регулируемой. Двухкомпонентные системы могут быть различной конструкции. Возможны варианты теплоемких фоновых систем панельного отопления и безынерционных электродоводчиков (электрорадиаторов или электроконвекторов, оснащенных термостатами) или конвекторы, рассчитанные на внутреннюю температуру 15 °С, с вентиляторами, быстро поднимающими температуру помещения до нормативной.

Прерывистая теплоподача, сокращая общий расход тепла за период, требует более высокой подачи тепла в период натопа. Таким образом, прерывистая подача тепла является экономически выгодной, как правило, при достаточно высокой температуре наружного воздуха, которая имеет место больше всего в переходные периоды года, когда можно использовать для натопа имеющуюся мощность системы отопления.

В практике эксплуатации жилых зданий прерывистая теплоподача имеет место при электротеплоснабжении зданий. Периодичность теплоснабжения здесь обусловлена использованием внепиковой электроэнергии. Метод этот сводится к подключению электроотопительных приборов и установок и к накапливанию в них тепла исключительно в часы ночных провалов графика нагрузки энергосистемы (аккумуляционное отопление) или во внепиковые периоды (полуаккумуляционное отопление) . Тепло, запасенное в отдельных приборах, центральных установках или непосредственно в конструкциях зданий, расходуется в помещении для нужд обогрева по мере надобности. Электроотопление рационально только с автоматическим регулированием по времени и температуре и позволяет наилучшим образом сочетать график потребления электроэнергии для нужд обогрева с суточным графиком нагрузки на энергосистему путем рационального использования аккумулирующих свойств комплекса «здание - система отопления».

Задача управления расходом энергии, затрачиваемой на нагрев или охлаждение помещения, всегда занимала одно из центральных мест в теории отопления и кондиционирования, но особую значимость приобрела в настоящее время. Современная техника отопления и кондиционирования нуждается не в управлении вообще, а требует оптимального управления процессом расходования энергии. Не является исключением использование компьютерной техники в интеллектуальных зданиях, поскольку она должна работать в соответствии с алгоритмом, позволяющим осуществить процесс нагрева или охлаждения оптимальным образом.

Для большинства помещений жилых и общественных зданий минимизация затрат энергии на разогрев помещений может быть достигнута при выполнении следующих двух положений:

1) первое положение: разогрев помещений необходимо начинать с разогрева наиболее теплоемких частей помещения;

2) второе положение: разогрев помещений должен производиться с использованием максимальной мощности отопительного оборудования.

В большинстве случаев это относится к внутренним поверхностям наружных ограждающих конструкций, которые, к тому же, как правило, и наиболее охлаждены (минимизация времени разогрева в данном случае может быть достигнута, например, за счет быстрого нагрева внутренних поверхностей ограждающих конструкций конвективными настилающимися струями).

Отопление зданий и помещений может быть постоянным или прерывистым (периодическим) . При прерывистом отоплении снижается или полностью отключается подача теплоты в здание или помещение. В холодный период года в жилых помещениях, когда они не используются, допускается обеспечивать температуру внутреннего воздуха ниже нормируемой, но не менее 15 о С . Использование прерывистого режима отопления позволяет уменьшить расход тепловой энергии.

Суточный цикл имеет три части :

Начало работы системы отопления (период «натопа» помещения) - температура в помещении повышается от минимальной допустимой t д до расчетной температуры внутреннего воздуха t в;

Время установившегося режима - в помещении поддерживается температура внутреннего воздуха t в;

Прекращение подвода теплоты - температура в помещении понижается до минимальной допустимой t д.

Для повышения энергоэффективности систем отопления (снижения энергопотребления) возможно использование прерывистого режима подачи теплоносителя. Однако время натопа помещения в нормативных документах не регламентируется, т.е. предполагается только постоянное отопление. При прерывистом отоплении существенным фактором следует рассматривать скорость восстановления температурного поля помещений до расчетного значения.

Тепловой поток в режиме разогрева помещения больше, чем во время установившегося режима. Дополнительная мощность системы отопления при периодической эксплуатации в течение всего отопительного периода в нормальном и экономичном температурных режимах зависит от следующих показателей:

Величины снижения температуры внутреннего воздуха по отношению к расчетной;

Времени, необходимого для достижения расчетной температуры внутреннего воздуха;

Воздухообмена во время натопа;

Теплоаккумулирующей способности здания.