Самые опасные и ядовитые растения россии. Особенности токсического действия растительных ядов На фото вех ядовитый


Введение

Яды растений

2.Яды животных

Заключение

Список литературы


Введение


Яды известны человеку с древнейших времён. Он постепенно методом проб и ошибок узнавал о них, общаясь с растительным и животным миром. Вероятно, эти «знакомства» часто заканчивались трагически. Действие ядов мистифицировалось, растения и животные, ими обладающие - обожествлялись. Позже человек научился использовать яды в лечебных целях, а также для обработки оружия, которым охотился. Яды использовались и в военных целях. Чаще всего они приводили к мучительной смерти, за что заслужили дурную славу.

Яды обычно делят на растительные и животные.

Яды растений представлены большим многообразием типов соединений, обладающих различными механизмами токсического действия.

Цель работы - рассмотреть яды животных и растений.

Информационной базой послужили труды отечественных и зарубежных авторов, посвященные данной теме.


Яды животных


Яды животных - токсические вещества белковой и небелковой природы. Первые - с молекулярной массой от нескольких тысяч до нескольких сотен тысяч, олиго- и полипептиды а так же ферменты - в основном у активно ядовитых животных. Вторые очень разнообразны и могут включать разные классы органических соединений.

Ежегодно от укусов змей страдает 1 млн. человек, из них около 3 процентов случаев смертельные. В среднем ядовитость ЛД100 для человека от 0,04 до 1,6 мг/кг. При этом змея вводит за один укус от 10 до 1000 мг. В общем антидот - противозмеиная поливалентная сыворотка, но часто необходимо специальное лечение в зависимости от яда укусившей змеи.

Исход поражения любым ядом зависит не только от его токсичности, но и от количества введённого яда, а также от способа введения. Так, белковые яды кишечнополостных (книдария) в десять раз более токсичны, чем яды змей, но вводится их гораздо меньше. С другой стороны даже очень маленькое животное, вводя очень малое количество яда, может убить крупное млекопитающее.

Самый мощный биологический гемотоксин - яд диамфотоксин - выделяет личинка африканского жука листоеда, его половинная летальная доза составляет 0,000025 мг/кг (мыши в/в). При введении вызывает внутрисосудистый гемолиз, резкое падение тонуса мышц и паралич. Местные жители давно используют этот яд для обработки стрел. Одной стрелой можно убить животное массой 500 кг. Яды небелковой природы включают органические и неорганические вещества. Среди неорганических можно назвать серную кислоту (моллюски); синильную кислоту (бабочки пестрянки, многоножки) и др. Они, как правило, дополняют основной токсин (чаще белковый). Среди органических известны карбоновые кислоты, биогенные амины, сложные амины, аммонийные соли, ГАМК, гидрохиноны, хиноны, фенолы, камфороподобные вещества, сапонины, конденсированные азотсодержащие гетероциклы, фурановые соединения, ароматические бромиды, полиолы и др.

Формально яды небелковой природы делят на:

1.физиологически активные, но сравнительно низкотоксичные (дополняют основной токсин);

2.высокотоксичные вещества, которые определяют силу и направленность яда.

Наиболее активные представители: Палитоксин - продуцируется некоторыми шестилучевыми кораллами (по другим данным продуцируется вирусом-симбионтом). Аборигены острова Таити издавна используют эти кораллы для изготовления отравленного оружия. ЛД100 для человека 0,001 мг в/в. Обладает сильнейшим кардиотоксическим действием. Смерть наступает через 5-30 минут в результате сужения коронарных сосудов и остановки дыхания.

Батрахотоксин - содержится в кожных железах некоторых жаб, ЛД50 0,002 мг/кг. Подкожно через 8 минут. Обладает сильным кардиотоксическим действием. Антидотов нет.

Тетродотоксин - содержится в яйцах и коже некоторых жаб, калифорнийском тритоне, слюнных железах некоторых осьминогов и во многих рыбах из отряда тетродотовых ЛД50 0,008 мг/кг для человека.

Обладает мощным нейротоксическим и гипотенезивным действием.

Используется для производства обезболивающих препаратов.

Токсическое действие обусловлено тем, что атом углерода и три аминогруппы при нём в токсине имеют практически такой же размер, как и гидратированный катион натрия. При попадании токсина в организм он как пробка закупоривает натриевые каналы в клеточных мембранах. То же происходит и в синапсах, что приводит к прекращению прохождения нервных импульсов, наступает паралич. Однако, как известно рыба Фугу из отряда Тетродотовых является деликатесом в Японии. И при правильном приготовлении не приводит к отравлению. А блюдо пользуется популярностью из-за того, что оказывает некоторое психотропное и наркотическое действие. Кантаридин - содержится в жуках нарывниках (семейство Meloidae) например, в Шпанской мушке ЛД50 для человека 40-80 мг. При приёме внутрь. Обладает кожно-нарывным действием при попаданием на кожу гемолимфы жуков. При этом поражаются устья фолликул с образованием крупных волдырей. Может привести к параличу.

Несмотря на токсичные свойства, многие яды широко используются на практике: в качестве лекарственных веществ (яды пчёл и змей); в экспериментальной терапии для диагностики и моделирования некоторых заболеваний (тетродотоксин, атропин и другие); для уничтожения насекомых и грызунов; для борьбы с грибами и водорослями.

Яды растений


Яды растений также можно разделить на белковые и небелковые.

Выделенные и охарактеризованные яды белковой природы относительно немногочисленны. Так, в бледной поганке и некоторых мухоморах содержатся фаллотоксины и аматотоксины, которые представляют собой бициклические полипептиды с мостиком из триптофана или его производных.

Механизм токсического действия связан с ингибированием ДНК-зависимой РНК-полимеразы (аматотоксин) и необратимым связыванием с примембранным актином, что вызывает его полимеризацию (фаллотоксин). ЛД50 для человека 5-7 мг (в одном грибе содержится 10 мг.).

Большая группа токсических веществ белковой природы выделена из различных видов семейства омеловых, тыквенных, бобовых. Это полипептиды с молекулярной массой от4000 до 23000, обладающие различной активностью, некоторые весьма ядовиты.

Яды растений небелковой природы делят на три группы:

1.Обладают выраженной специфичностью действия и относительной общностью элементов структуры (алкалоиды).

2.Менее специфичны, но более универсальны в растительном мире (гликозиды).

.Разнообразны по структуре и механизмам действия

Алкалоидытоксический растительный животный антидот

К числу наиболее токсичных относятся алкалоиды трёх классов:

Индольные (стрихнин, курарин)

Дитерпеновые (аконитин)

Пиридиновые (никотин).

Стрихнин содержится, в том числе, в Чилибухе <#"244" src="doc_zip4.jpg" />


Аконитин, содержащийся в различных видах Аконита, обладает судорожно-паралитическим действием, которое обусловлено повышением проницаемости катионов натрия в мембранах нервных и мышечных клеток и их деполяризации. Смерть наступает в результате остановки сердца и паралича дыхания. ЛД100 для человека 2-5 мг перорально. Никотин - вырабатывается табачными растениями. Является блокатором н-холинорецепторов (чувствительных к никотину) в симпатических и парасимпатических ганглиях скелетных мышц. ЛД50 чел. 50-100 мг.

К ядам растений, содержащим в молекуле остаток углевода, относятся гликозиды. В этом ряду выраженной физиологической активностью обладают сердечные гликозиды. Они продуцируются лютиковыми, норичниковыми, шелковицей и др. В токсических дозах (3-7 мг для человека) вызывают остановку сердца. Многие гликозиды обладают кумулятивными свойствами. Токсический эффект обусловлен нарушением Na-K - насоса в миокарде. Сердечные гликозиды очень широко используются в медицинской практике. Группа ядов небелковой природы включает соединения различной структуры. Простейшее ядовитое вещество - синильная кислота присутствует в растениях в связанной форме - в виде цианогенных гликозидов, которые высвобождают HCN в процессе ферментативного гидролиза после повреждения клетки. Так, амигдалин, присутствующий в ядрах абрикосовых, содержит следующее вещество, которое способно высвобождать синильную кислоту по приведённой схеме.

Другой простейший яд - фторуклусная кислота. В форме калиевой соли она содержится в тропическом растении - дихапетум цимозный. Токсичная доза для человека около 500 мг зелёной массы или плодов. Часто причиной массовых отравлений и гибели скота является употребление в пищу Астрагала <#"44" src="doc_zip7.jpg" />


Группа токсичных дитерпенов (грайанотоксинов) содержат растения семейства рододендроновых. Наиболее известны грайанотоксин 3 и родоспонин 3 - это нейротоксины, вызывающие повышение проницаемости мембран клеток нервной и мышечной тканей для ионов натрия. ЛД50 0,4 мг/кг мыши в/б.

Необычным действием обладает гиперицин из растения Зверобой продырявленный и некоторые другие токсины. Гиперицин накапливается в коже и наружных тканях, делая их чувствительными к УФ и длинноволновому излучению. В результате на солнечном свету образуются дерматиты, очаги ожогового поражения и некротические участки.

Группу ядовитых веществ относительного строения содержат некоторые виды высших грибов. Например, мухомор краснеющий (Amanita muskaria) продуцирует мускарин, являющийся имитатором ацетилхолина по отношению к м-холинорецепторам (то есть к мускариночувствительным парасимпатическим постганглионарным синапсам). Мускарин вызывает спазмы мышц, судороги и коматозное состояние. ЛД50 для человека 0,7 мг./кг.

Мусказон, который содержится в том же мухоморе обладает психогенным действием (вызывает галлюцинации, потерю памяти и ориентировки). Итак, токсичные вещества чрезвычайно разнообразны по химическому строению, физиологической активности и механизму действия. Однако можно проследить зависимость токсичности яда от его молекулярной массы.

Одно из самых токсичных синтетических веществ - 2,3,7,8-тетрахлордибензопарадиоксин (классический диоксин). Классический диоксин признан в мире абсолютным ядом. Он является ксенобиотиком - неприемлем для живых организмов. Диоксинов со сходной ядовитостью несколько сотен, но все они представляют собой трициклические кислородсодержащие ксенобиотики.

Причина такой исключительной ядовитости в том, что молекула любого диоксина имеет форму прямоугольника размерами 3 на 10 ангстрем. Это позволяет ей удивительно точно вписываться в рецепторы живых организмов, подавляя различные физиологические процессы. Кроме того, диоксины - кумулятивные яды и могут влиять на геном. Диоксины образуются при различных химических синтезах, как побочные продукты, при сжигании многих органических топлив.


Заключение


Яды - вещества растительного, животного и минерального происхождения или продукты химического синтеза (промышленные яды, газы, пестициды), способные при воздействии наживой организм вызвать острое или хроническое отравление.

Граница, разделяющая яды и лекарства, весьма условная, настолько условная, что в Академии Медицинских Наук РФ издается общий журнал «Фармакология и токсикология», а учебники по фармакологии могут использоваться для преподавания основ токсикологии. Принципиальной разницы между ядом и лекарством нет и не может быть. Всякое лекарство превращается в яд, если его концентрация в организме превышает определенный терапевтический уровень. И почти любой яд в малых концентрациях может найти применение как лекарство.

Когда преподается фармакология, традиционно говорится, что pharmacon в переводе с греческого означает и лекарство, и яд, но студенты, естественно воспринимают это теоретически, а врачи потом уже находятся под прессом той информации, которая идет в основном об эффективности лекарственных препаратов. Фирмы-производители тратят колоссальные деньги для продвижения своих препаратов на рынок, и, несмотря на то, что государственные контролирующие органы пытаются вводить определенные требования и ограничения, информация о положительных свойствах тех или иных медикаментов намного перевешивает предупреждение о возможных побочных эффектах. Вместе с тем, именно они часто являются причиной госпитализации пациентов, а смертность, связанная с потреблением лекарств, выходит на 5-е место.


Список литературы


1. Вассер С.П., в кн.: Актуальные вопросы современной ботаники, К., 1976;

Барбье М., Введение в химическую экологию, пер. с франц., М., 1978;

Гелашвили Д.Б., Ибрагимов А.К., Ядовитые животные и растения СССР, М., 1990.

Горюнова С.В., Демина Н.С., Водоросли - продуценты токсических веществ, М., 1974

Харборн Д., Введение в экологическую биохимию, пер. с англ., М., 1985; Орлов Б.Н.,


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

В настоящее время острые отравления ядовитыми растениями являются распространенным видом пищевых интоксикаций. Среди 300 тысяч видов растений, произрастающих на земном шаре, более 700 могут вызвать тяжелые отравления.

Различают собственно ядовитые растения, которые содержат химические вещества, токсичные для человека, и неядовитые культурные растения, отравления которыми возможны вследствие изменения их химического состава или их заражения грибами при неправильном хранении, как, например, это бывает с зерном или картофелем, перезимовавшим в поле.

Действующим токсическим началом ядовитых растений служат различные химические соединения, которые относятся преимущественно к алкалоидам, гликозидам, растительным мылам (сапонины), кислотам (синильная, щавелевая кислоты), смолам, углеводородам и др.

Алкалоиды представляют собой сложные органические соединения, содержащие углерод, водород и азот. Их соли растворимы в воде и быстро всасываются в желудке и кишечнике.

Гликозиды легко распадаются на углеводную (сахарную) часть и несколько других токсических веществ.

Ядовитые свойства некоторых растений известны людям с древнейших времен. Интересно, что и сегодня неподалеку от человека на клумбе может расти грозный и непрекословный убийца.

Племена Африки, аборигены Австралии и американские индейцы использовали сок найденных ядовитых растений в охоте, смазывая наконечники стрел ядом для того, чтобы быстрее обездвижить жертву или даже убить на месте с помощью лишь легкой царапины. Само собой, яд быстро стал использоваться и в междуусобицах: всегда разумнее обездвижить опасного противника за несколько метров, нежели ввязываться в открытый бой. Поэтому ядам уделялось так много внимания в культуре японских ниндзя - мастеров шпионажа и быстрых бесшумных способом расправы.

Наиболее используемые и частые растительные яды - алкалоиды . Они достаточно сильны, чтобы вызвать смерть или как минимум тяжелые последствия. Среди наиболее известных и опасных растений-источников этого яда можно выделить хорошо знакомые каждому белладонну, болиголов, аконит. В России можно встретить вороний глаз, а если говорить о на первый взгляд невинных растениях, то здесь выделяются обыкновенный лютик, таинственные ангельские трубы, гигантский борщевик, хитрый нарцисс и многие другие.

Воздействие ядовитых растений на организм может быть как внутренним (отравление с параличом и летальным исходом в тяжелых случаях), так и внешним (ожог, который может перерасти в некроз тканей). В некоторых случаях негативное воздействие может ощущаться лишь через длительное время после воздействия, вплоть до нескольких месяцев.

Хороший известный в Южной Америке яд кураре добывают из коры стрихноса, растущего у берегов Амазонки. При попадании в кровоток кураре вызывает мгновенный паралич, однако не вызывая отравления при попадании в желудочно-кишечный тракт. Поэтому люди активно используют этот яд в охоте, не опасаясь отравления при поедании добытого мяса.

На летних клумбах можно часто встретить аконит (борец, волчий корень или волкобой). Это растение опасно и при употреблении в пищу, вызывая тяжелые осложнения вплоть до остановки сердца. Растение применялось в Древней Греции для казни преступников. По греческой же легенде аконит образовался из ядовитой слюны Цербера во время сражения с Гераклом.

Другой «цветок с клумбы» - лютик - выглядит невинно и уж точно не грозно, в отличие от сердитого аконита. Однако это одно из самых распространенных смертоносных растений, часто недооцениваемое и от того особо опасное. Токсин лютика вызывает сыпь, а употребление цветка в пищу чаще всего приводит к интоксикации органов и «замыканию» нервной системы.

Гигантский борщевик , в отличие от своего мелкого собрата, может нанести действительно сильные повреждения коже даже от простого контакта, что может привести к некрозу тканей вплоть до полного омертвения. А растение с красивым внешним видом и названием ангельские трубы выделяет сразу несколько сильных токсинов, оказывая на человека необычное гипнотическое воздействие, ставшее основой для мифов о превращении людей в зомби.

Наконец, еще одно известное и распространенное растение под названием болиголов (кониум или вех) расползлось по многим странам, широко встречаясь и в России. Сок болиголова при попадании в желудок вызывает паралич нервной системы, изначально проявляя себя под видом отравления. Это растение часто применялось как отрава в дворцовых и политических интригах.

Растительные яды в малых дозах часто используются как лекарства. Великий европейский врач эпохи Возрождения Парацельс в свое время сформулировал одно из важнейших фармакологических правил, не потерявшее своего значения до сих пор: "Все есть яд, все дело в дозировке. Только количество делает любое вещество ядовитым или неядовитым ".

Сделаем краткое резюме:

    при контакте с ними нужно соблюдать предельную осторожность, особенно, если мы выращиваем их у себя в саду или в доме;

    они давно перестали быть пугалом, каким были веками, если не тысячелетиями, для суеверных малообразованных людей;

    они живут рядом с нами, многие их них удивительно красивы;

    люди научились использовать их свойства для врачевания и - вот парадокс! - для спасения жизни.

В заключение же остается только привести цитату из стихов великого персидско-таджикского поэта древности Рудаки (858-941), жившего в Х веке, который написал:

"Что ныне снадобьем зовут, то завтра станет ядом. И что ж? Лекарством яд опять сочтут больные..."

Гликозиды — сложные, безазотистые органич. вещества, молекула к-рых состоит из углевода и неуглеводного компонента, т. н. агликона (генина). Агликонами могут быть остатки соединений жирного, ароматич. и гетероциклич. рядов. Г. широко распространены в природе, особенно в растит. мире. Мн. из них применяются в лечебной практике (в качестве витаминов, антибиотиков, сердечных средств) и обладают токсикологич. свойствами. Лекарств. Г. встречаются в различных частях мн. растений. В состав Г. обычно входят моносахариды, возможно присоединение и нескольких молекул сахара.

По химич. составу агликонов лекарств. Г. классифицируют на фенолгликозиды, тиогдикозиды, нитрилгликозиды (циангликозиды), Г.- производные фенилбензо-у-пирона (флавоны); антрагликозиды; Г.- производные 1,2-циклопента-нофенантрена, сапонины, др. гликозиды. К фенолгликозидам относятся Г., выделенные из листьев толокнянки (напр., арбутин). Препараты Г. этой группы применяются как мочегонные и дезинфицирующие средства. К тиогликозидам относятся синигрин, выделенный из семян чёрной горчицы, а также Г., содержащиеся в растениях сем. крестоцветных, к-рые обладают токсикологич. свойствами. К нитрилгликозидам относятся Г., содержащиеся в ядрах костянок горького миндаля, вишни, абрикосов (амигдалин), во льне (линамарин), в торговых растениях (дуррин) и др. Являясь источником образования синильной кислоты, они играют большую роль в фитотоксикологии (см. Ядовитые растения). К Г.- производным фенил-бензо-у-пирона относятся жёлтые растит. пигменты, встречающиеся во мн. растениях. Флавоновые Г. устраняют повышенную проницаемость и хрупкость капилляров, оказывают гипотензивное действие, предохраняют от окисления аскорбиновую кислоту. Антрагликозиды встречаются в различных видах кассии, сабуре, ревене, крушине. Некоторые препараты этих растений применяются в качестве слабительных средств. Г. — производные 1,2-циклопентанофенантрена (напр., Г. наперстянки, горицвета, ландыша) представляют наиболее важную группу лекарственных Г., обладающих выраженной кардиотонич. активностью. Сапонины обнаружены более чем в 150 видах растений семейства лютиковых, лилейных, бобовых, гвоздичных, первоцветных и др. Г., относящиеся к этой группе, с водой образуют, подобно мылу, сильно пенящиеся коллоидные р-ры; являются клеточными ядами. Другие Г. в химич. отношении изучены недостаточно. Некоторые из них применяются в качестве горечей. Горькие вещества в форме Г. содержат трилистник, одуванчик лекарственный и др. растения.

Сердечные гликозиды — очень ядовитые вещества растительного происхождения, но в малых дозах они стимулируют сердечную деятельность. Используются для лечения сердечных и других заболеваний. Под действием кислот распадаются на сахар и агликон (стероид). Свободные агликоны сердечных гликозидов (генины) — сильные яды, которые в медицине не применяются; среди них наиболее хорошо изучен строфантидин (конваллатоксигенин), его содержат ландыш, кендырь конопляный, желтофиоль. Известны также и другие агликоны, например, дигитоксигенин, диоксигенин, гитоксигенин, периплогенин, сарментогенин, адонитоксигенин и т.д.

Ядовитые растения — растения, содержащие специфические вещества, способные при определенной экспозиции (дозе и длительности воздействия) вызывать болезнь или смерть человека или других животных. В растительном мире существуют тысячи ядовитых веществ, которые обычно делят в зависимости от их химической природы на несколько групп. Например, выделяют алкалоиды, гликозиды, фитотоксины, фотосенсибилизирующие пигменты, сапонины, минеральные яды и др. Их можно также классифицировать по клинической картине отравления. Различают, скажем, нейротоксины, печеночные и почечные яды, вещества, раздражающие пищеварительный тракт, вызывающие остановку дыхания, повреждающие кожу, вызывающие пороки развития. Иногда одно вещество относится сразу к нескольким химическим классам или действует на несколько систем органов.

Точно установлена токсичность по крайней мере 700 видов североамериканских растений. Они известны во всех крупных таксономических группах — от водорослей до однодольных. Существуют ядовитые одноклеточные, папоротники, голосеменные и покрытосеменные; иногда отравление бусловлено плесневыми, головневыми или ржавчинными грибами, присутствующими на растениях или в растительной пище. Хотя бактерии и грибы сейчас относят к самостоятельным царствам организмов, некоторых из них по традиции рассматривают вместе с ядовитыми растениями.

Отравление и другие реакции. Различают отравление и инфекцию, которые вызывают бактерии или грибы. Инфекционные агенты поселяются в другом организме, разрушая ткани и размножаясь за их счет. Ядовитые же организмы выделяют токсичные вещества, которые действуют независимо от того, жив ли образовавший их организм или мертв, присутствует он или уже отсутствует в момент отравления. Например, ботулотоксин, вырабатываемый бактерией Clostridium botulinum , вызывает интоксикацию (ботулизм), даже если сама бактерия была убита при стерилизации продуктов.

Отравление следует отличать и от аллергических реакций, возникающих у животных при действии на них особых веществ — аллергенов, присутствующих, в частности, в некоторых растениях. Так, сыпь на коже, возникающая при прикосновениях к сумаху укореняющемуся (Rhus toxicodendron , по другой классификации — Toxicodendron radicans ) или близким к нему видам, — аллергическая реакция на определенные вещества, присутствующие в данном растении. Неоднократный контакт с аллергеном способен повысить чувствительность к нему. Покраснение и раздражение кожи вызываются некоторыми веществами и без сенсибилизации, например млечным соком молочаев (Euphorbia spp.) или секретом жгучих волосков крапивы (Urtica spp.). Локальный солнечный ожог, иногда многие месяцы сохраняющийся в виде темного пигментного пятна, может возникать на фоне воздействия псоралена на влажную кожу. Это фенольное соединение присутствует в пастернаке посевном (Pastinaca sativa ), ясенце белом (Dictamnus albus ), цедре лайма (Citrus aurantifolia ) и некоторых других растениях.

Воздействие токсичных соединений. Природа отравления зависит от тех реакций, которые протекают в организме животного, а также от того, в какой мере яд накапливается в организме и каким образом выводится из него. В некоторых случаях ядовитое вещество образуется в тканях животного из безвредного предшественника, присутствующего в растении. Так, при поедании листьев дикой сливы (Prunus spp.) из содержащихся в них безобидных гликозидов высвобождается цианид; нитраты, присутствующие в корме или пище, превращаются организмом животного в гораздо более токсичные нитриты. Однако в большинстве случаев растительные токсины проявляют свое действие без предварительного химического изменения.

При поедании яд попадает в первую очередь в ротовую полость. Некоторые раздражающие вещества, например аронниковых растений (Dieffenbachia и др.), действуют главным образом на этом уровне. Затем яд проходит в следующие отделы пищеварительной системы (не обязательно повреждая их) и может всасываться или выводиться наружу. После всасывания он прежде всего поступает в воротную вену печени и саму печень. Там может произойти его химическая детоксикация, т. е. перевод в безвредную форму и выделение с желчью; с другой стороны, он может вызвать повреждение клеток печени или же просто пройти через нее и попасть с кровью в другие органы и ткани — в этом случае возможно поражение всего организма или лишь некоторых чувствительных к яду структур.

Поскольку яды поступают прежде всего в пищеварительную систему, ее анатомические и физиологические особенности у данного вида животных существенно влияют на проявление отравляющего действия того или иного вещества. Например, у птиц пища перед всасыванием проходит через зоб и мускульный желудок, а у жвачных, в частности у коров, коз и овец, сначала (в рубце) подвергается действию ферментов микроорганизмов и лишь затем собственно переваривается и всасывается. И птицы, и жвачные в этом смысле резко отличаются от «одножелудочных» животных, например свиней и лошадей, у которых растительный материал начинает перевариваться в желудке практически сразу после проглатывания. Легкость удаления съеденной пищи путем рвотной реакции тоже варьирует в зависимости от типа пищеварительной системы. Жвачные способны избавиться таким способом лишь от части содержимого первого отдела желудка — рубца, тогда как человек, собака и свинья могут быстро и эффективно опорожнить весь этот орган. У лошади тоже бывает рвота, но из-за особенностей строения ее мягкого неба исторгаемый материал попадает в трахею, что обычно грозит смертью от удушья. К счастью, многие яды сами стимулируют рвотную реакцию.

Из книги: «Яды — вчера и сегодня».
Ида Гадаскина.

Aconitum napelles (капюшон монаха, борец), многолетняя трава семейства лютиковых, имеет цветок в форме шлема. Известно около 300 видов этого растения, все они ядовиты, хотя использовались в средние века в арабской и персидской медицине. В настоящее время применяется только в гомеопатии. Ядовитый алкалоид содержится главным образом в клубнях в виде соединения с органическими кислотами (C 34 H 47 NO 17). Аконитин возбуждает, а затем парализует выработку химических передатчиков (медиаторов) в нервных узлах (ганглиях) вегетативной нервной системы. Смерть наступает от прямого действия яда на дыхательный центр.

Феофраст пишет, что «яд из него (аконита) составляют определенным способом, который известен не всем. Поэтому врачи, не знающие этого состава, и дают аконит как содействующее пищеварению, а также в других случаях. Если его выпить с вином и медом, то вкус его совершенно неощутим. Яд из него составляют с расчетом на то, чтобы он подействовал в положенный срок: через два, три, шесть месяцев, через год, иногда через два года. Очень тяжело умирают люди, чахнущие от него в течение долгого времени; самая лёгкая смерть от него мгновенная. Растений, которые бы служили противоядием от него, какие, мы слышали, есть от других ядов, не найдены... Покупать его недозволено, и за такую покупку карают смертью». Нужно, однако, добавить, что нет уверенности, что сказанное относится именно к тому растению, о котором идет речь, так как описание его не совпадает с описаниями, сделанными Диоскоридом и другими более поздними авторами. Вполне возможно, что этот яд стал для античности символом всякого яда.

Растение получило свое наименование у греков или от названия города Акон, связанного с именем Геракла, или от слова «акон», что значит «ядовитый сок». Вызываемое ядом сильное слюноотделение, по преданию, также связано с мифом о Геракле, который в борьбе со стражем Аида — трехголовым псом Цербером привел его в такое бешенство, что пес стал испускать слюну, из которой и вырос ядовитый аконит. Аконит — наиболее ядовитый растительный яд — был знаком многим народам Востока. В Индии и Гималаях произрастает разновидность растения, называемая «бич». Этот вид (Aconitum ferox ) содержит близкий к аконитину алкалоид псевдоаконитин C 36 H 49 NO 12 , отличающийся, однако, еще большей ядовитостью. Заготовки корня в Индии происходят осенью и сопровождаются рядом мистических церемоний, а при высушивании и измельчении корня принимают меры предосторожности, боясь его ядовитого действия. Корень сохраняют в бамбуковых трубочках и в таком виде продают. Распространен был напиток «нехваи», получавшийся при брожении разваренного риса, к которому иногда добавляли корень аконита, что неоднократно приводило к отравлениям. Некогда в казахстанских степях (СССР) аконитом не только отравляли, но и обрекали жертву на медленную, неминуемую гибель. Даже лошадей соперников в состязаниях устраняли при помощи ядовитого корешка (П. Массагетов). А. П. Чехов встречался с жертвами этого яда на Сахалине.

История не сохранила истоков обычая использования яда для наказания преступников. Однако уже в историческое время эллины имели «государственный яд», называемый ими цикутой, который приобрел горькую славу, будучи причиной смерти многих прославленных мужей в Греции. О смертоносной цикуте пишут в римское время Плиний, Тацит, Сенека: «Цикута, яд, страшный при потреблении, использовали в Афинах,чтобы убивать преступников» (Плиний Ст.); «Это яд, которым убивали преступников в Афинах» (Тацит); «Яд, которым умерщвляются осужденные уголовным судом афиняне» (Сенека). Афины, как и другие полисы, не сразу дошли до народовластия, но реформы Солона (594 г. до н. э.), правление и законы Перикла (около 490...429 гг. до н. э.) укрепили в Афинах демократическое управление, которое нужно понимать как наличие определенных правовых норм всех свободных граждан полиса.

Conium maculatum — болиголов пятнистый, омег пятнистый, или цикута (название, сохранившееся с древнейших времен), — относится к семейству зонтичных, все части его ядовиты. Ядовитым началом является алкалоид кониин (C 8 H 17 N). Минимальная смертельная доза для человека не выяснена, но она, безусловно, составляет всего несколько миллиграммов. Кониин — яд, вызывающий паралич окончаний двигательных нервов, по-видимому мало затрагивающий полушария головного мозга. Судороги, вызываемые ядом, приводят к удушью.

Феофраст дает подробное описание способа изготовления яда из стеблей растения и отсылает своих читателей к врачу Фрасию, который «нашел, говорят, такое средство, которое делает смерть легкой и безболезненной. Он брал сок болиголова, мака и других таких же трав и приготовлял крохотные пилюли, весом около драхмы... Противоядия от этого средства нет вовсе». Плиний Старший, автор «Естественной истории», живший в эпоху, когда самоубийство считалось достойным выходом, среди прочих ядовитых растений описал и действие цикуты. При этом он подчеркивает, что природа сжалилась над человеком и послала ему различные яды для безболезненной смерти. Вполне возможно, что древние называли цикутой вех ядовитый — Cicuta virosa, — содержащий ядовитый алкалоид цикутотоксин..

После выделения из растения алкалоида были сделаны попытки использовать его как лекарство; действие яда изучалось на животных, но лекарственного значения алкалоид не получил. Уже в XIX в. в Венской фармакологической школе широко проводились автоэксперименты, позволяющие проанализировать действие ядовитых веществ на человека. В этих опытах участвовали врачи или студенты-медики. Историческая слава цикуты вызывала к ее яду особый интерес. Опыты на себе поставили несколько студентов, принимавших внутрь разовые дозы кониина от 0,003 до 0,008 г. Они выявили местное раздражающее действие на слизистые, резко выраженную мышечную слабость, которая при малейшем мышечном напряжении приводила к болезненным судорогам. Отравление сопровождалось головной болью, головокружением, расстройством со стороны желудочно-кишечного тракта, сонливостью, помрачением сознания.

«Век Перикла» — это расцвет афинской демократии и вместе с тем гегемония Афин в греческом мире: их обогащение, широкая торговая деятельность, предпринимательство, успехи искусства и литературы. Политические и экономические условия приводят к тому, что философы от вопросов космологии начинают обращаться к человеку: его инициативе, предпринимательской деятельности, знаниям. Любой афинский гражданин может выступить в народном собрании, но он должен хорошо и ясно высказать свое мнение. Нужны теперь новые навыки: логическое, последовательное изложение, нужно красноречие. Учителями этих современных требований выступают философы-софисты, платные учителя логического красноречия, мало интересующиеся вопросами морали. Вот на этом фоне увлечения софистикой появляется Сократ, о котором пойдет наш дальнейший рассказ. О Сократе потом скажет Сенека: «Цикута сделала Сократа великим... он выпил сок цикуты как способ стать бессмертным».

Сократ, вместе с некоторыми софистами, впервые обратился в философии к проблеме человека и, в частности, к проблеме разума. Это было ново. Его стремление анализировать обычные человеческие поступки и понятия вызывали у многих его современников неприязнь, а порою даже испуг. Сократ излагал свои взгляды устно, ведя разговоры на улицах, площадях, в общественных и частных местах. Жизнь его прошла в беседах, но манера бесед как по стилю и содержанию, так и по своей цели резко отличалась от внешней напыщенности софистических риторов. Эти беседы-полемики, часто иронические, обычно ставили собеседника в тупик, так как они задевали его самомнение. Аристократы считали Сократа развязным простолюдином, а демократы видели в нем своего разоблачителя.

Философия Сократа сводилась к пониманию добродетельной жизни, достигаемой умеренностью, воздержанием, разумными потребностями. Прямо или косвенно осуждались или высмеивались честолюбие, стремление к богатству, роскоши, подчинению человека своим страстям, чувствам, прихотям. Эти беседы сделали Сократа уже при жизни популярнейшей фигурой не только в Афинах, но и во всей Элладе. Сократ ничего не писал. О его взглядах, разговорах, привычках можно судить по записям его друзей и учеников, по диалогам Платона и по воспоминаниям Ксенофонта.

Большое волнение в февральские дни 399 г. до н. э. вызвало в афинском обществе сообщение, что молодой, малозначимый писатель Мелет подал жалобу на семидесятилетнего философа, требуя его смерти. Текст обвинения следующий: «Это обвинение составил и, подтвердив присягой, подал Мелет, сын Мелета из дема Питтос, против Сократа, сына Софроникса из дема Алопеки: Сократ повинен в отрицании богов, признанных городом, и во введении новых божественных существ; повинен он и в совращении молодежи. Предлагается смертная казнь».

Свыше 500 судей приняло участие в процессе. Триста человек против двухсот пятидесяти приговорили Сократа к смерти. Что же произошло? Власти, считавшие себя демократическими, не выдержали добродушной иронии Сократа, и ему был вынесен смертный приговор — такой, какого до сих пор еще никогда не произносили в Афинах в случаях отвлеченных идейных несогласий. Сократ не хотел просить о помиловании или смягчении наказания. Он сказал своим судьям: «...не жизнь, а хорошая жизнь является для смертного наибольшим благом». По ряду соображений его казнь была отложена на 30 дней. Его уговаривали бежать, но он оставался в заключении и продолжал беседовать со своими друзьями, рассуждая о жизни и смерти.

Платон познакомился с Сократом, когда Сократу было уже 60 лет, и Сократ навсегда остался для него идеалом человека и философа: в сочинениях Платона Сократ выступает как действующее лицо. Смерть Сократа описал Платон, хотя он не присутствовал во время последней с ним беседы, так как был болен (Платон «Федон»).

Когда Сократ увидел тюремного служителя, то спросил его: «Ну, милый друг, что я должен делать с этим кубком?» Тот ответил: «Ты должен только испить его, затем ходить взад и вперед до тех пор, пока у тебя отяжелеют бедра, а потом лечь, и тогда яд будет продолжать свое действие...» Сократ очень бодро и без злобы опорожнил кубок. Он ходил взад и вперед, а когда заметил, что бедра отяжелели, то лег прямо на спину, как велел ему тюремный служитель. Затем этот последний стал дотрагиваться до него время от времени и исследовать его стопы и бедра... После этого служитель сильно сжал ему стопу и спросил, чувствует ли он что-либо при этом. Сократ ответил: «Нет». Служитель надавил сначала на колено, затем надавливал все выше и показал нам, что тело становится холодным и оцепенелым. После этого он прикоснулся к нему еще раз и сказал, что как только действие яда дойдет до сердца, то наступит смерть. Когда живот уже сделался совершенно холодным, Сократ раскрылся (он лежал прикрытый) и сказал: «Мы должны Асклепию принести в жертву петуха, сделайте это немедленно», — это были последние его слова. «Будет исполнено, — ответил Критон,— но подумай, не имеешь ли еще чего-нибудь нам сказать». Но Сократ ничего не ответил, вскоре после этого тело его вздрогнуло. Когда служитель раскрыл его, то глаза были уже неподвижны. Увидя это, Критон закрыл ему рот и глаза.

Жертвоприношение петуха Асклепию, богу врачевания, обычно полагалось за выздоровление. Имел ли в виду Сократ выздоровление своей души и освобождение ее от бренного тела? Или это была обычная его ирония?

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

по дисциплине Токсикология

Яды и противоядия

ВВЕДЕНИЕ

1. ИСТОРИЯ ЯДОВ И ПРОТИВОЯДИЙ

3.1 Стрихнин

3.2 Морфин

3.3 Кокаин

4. ЖИВОТНЫЕ ЯДЫ

4.1 Змеиный яд

4.2 Паучий яд

4.3 Яд скорпионов

4.4 Жабий яд

4.5 Пчелиный яд

5.1 Кадмий

5.2 Свинец

5.4 Мышьяк

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Биологическая энергичность химических соединений определяется их структурой, физиологическими и химическими свойствами, особенностями механизма действия и путей поступления в организм и перевоплощения в нем, а также дозой (концентрацией) и продолжительностью воздействия на организм. В зависимости от того, в каком количестве действует то или другое вещество, оно может являться или индифферентным для организма, или снадобьем, или ядом.

При значительных превышениях доз почти все лечебные вещества становятся ядами. Так, к примеру, повышение целебной дозы сердечного гликозида строфантина в 2,5-3 раза уже приводит к отравлению. В то же время такой яд, как мышьяк, в небольших дозах является лекарственным препаратом. Лечебным действием обладает и известное отравляющее вещество иприт: разбавленный в 20 000 раз вазелином, этот яд военной химии используется под названием псориазин в качестве целебного средства против чешуйчатого лишая.

Понятие «Яд» носит не столько качественный, сколько количественный характер и сущность явления обязана, прежде всего, оцениваться количественными взаимоотношениями между химически вредоносными факторами наружной среды и организмом. На этом положении основаны известные в токсикологии определения:

1) «Яд - мера (единство количества и качества) действия химических веществ, в результате которого при определенных условиях возникает отравление»;

2) «Яды - химические соединения, отличающиеся высокой токсичностью, т.е. способные в минимальных количествах вызывать тяжелые нарушения жизнедеятельности или гибель животного организма»;

3) « Яд - химический компонент среды обитания, поступающий в количестве (реже - качестве), не соответствующем врожденным или приобретенным свойствам организма, и поэтому несовместимый с жизнью».

Из данных дополняющих друг друга определений следует, что отравления должны рассматриваться как особенный вид болезней, этиологическим фактором (т. е. предпосылкой) которых являются вредоносные химические агенты.

Также не стоит забывать о противоядиях, созданные для уменьшения или предотвращения развития расстройств жизненно важных функций в организме, обусловленных отравлением.

Следует заметить, что разработка действенных мер борьбы с отрицательным воздействием вредоносных химических факторов на организм человека становится одной из первоочередных задач науки и практики. Отсюда, становится понятным и основное предназначение токсикологии, как науки - раскрытие сущности воздействия ядов на организм и создание на данной базе эффективных средств предостережения и лечения отравлений. Точная и краткая формулировка одной из главных методик решения этой проблемы - «создание полезных веществ, активно действующих против опасных веществ».

яд растительный животный противоядие

1. ИСТОРИЯ ЯДОВ И ПРОТИВОЯДИЙ

Появлению эффективных противоядий предшествовал длинный путь исканий почти всех поколений населения земли. Естественно, что начало этого пути соединено с тем временем, когда людям стали известны яды. В Древней Греции существовало убеждение, что против любого яда должно применяться свое противоядие. Этот принцип, одним из создателей которого был Гиппократ, поддерживался и иными выдающимися представителями медицины в течении многих веков, хотя в химическом значении тогда не было оснований для таковых утверждений. Примерно к 185- 135 гг. до н.э., можно отнести известный антидот понтийского короля Митридата VI Эвпатора (120 - 63 гг. до н.э.), состоявший из 54 частей. Он включал опий, разные растения, высушенные и растертые в порошок части тела змеи. Имеются, свидетельства, что Митридат принимал собственный антидот раз в день небольшими порциями, чтоб выработать невосприимчивость к отравлениям любыми ядами. Предание гласит, что опыт оказался успешным. Когда против короля вспыхнуло восстание под управлением его отпрыска Фер-нака, Митридат решил покончить с собой, все его попытки отравиться оказались напрасными. Он умер, бросившись на меч. Впоследствии на его базе было создано иное универсальное противоядие под названием «терьяк», которое в течение почти всех веков использовалось в различных странах для исцеления отравленных, хотя обладало лишь успокаивающим и болеутоляющим действием.

Во II-I веках до н.э. при дворах некоторых царей умышленно изучали воздействия ядов на организм, при этом сами монархи не только проявляли интерес к этим изучениям, но и время от времени даже принимали в них личное участие. Объясняется это тем, что в те эпохи (и до сих пор) яды часто применялись для убийств. В частности, для этого использовали змей, укус которых рассматривался как расправа богов. Так, к примеру, правитель Митридат и его придворный доктор устанавливали эксперименты над приговоренными к смерти людьми, которых они подвергали укусам ядовитых змей и на которых испытывали разные методы исцеления. Впоследствии они составили « Тайные мемуары» о ядах и противоядиях, которые тщательно охранялись.

Для раннего средневековья более ценным с точки зрения практических советов по борьбе с отравлениями следует признать знаменитый «Канон врачебной науки» созданный в период с 1012 по 1023 г. В нем описано 812 фармацевтических средств растительного, животного и минерального происхождения и среди них множество противоядий. В то время на Востоке были распространены умышленные отравления, в особенности средством подмешивания яда к еде. Поэтому в «Каноне» предоставляются особые советы, как уберечься от яда. В «Каноне» приводится множество конкретных рекомендаций по использованию противоядий при разных интоксикациях. Например, отравленным солями предписывалось молоко и масло, а отравленным стальными опилками - магнитный железняк, который, тогда считался, собирает рассеивающиеся в организме железо и остальные сплавы. Особое пространство в сочинениях Ибн-Сины занимает отображение укусов ядовитых членистоногих и змей и методик борьбы с их последствиями. Не оставил он без интереса и кишечные отравления, в частности ядовитыми грибами и испорченным мясом. В качестве противоядий Ибн-Сина советовал антидот Митридата, а еще инжир, цитварный корень, терьяк, вино.

Качественно иной шаг развития учения об антидотах и ядах связан со становлением химии как науки и, в частности, - с выяснением состава почти всех ядов. Этот шаг начался с конца XVIII в., и его можно считать переходным к нашему времени. Некоторые из созданных в конце XVIII и в начале XIX в. противоядий существуют и сейчас. Прежде, только в химических лабораториях того времени в сотрудничестве с докторами были найдены противоядия - нейтрализаторы ядовитых веществ, которые образовывали с ядами нетоксичные нерастворимые в воде соединения.

Любопытен путь внедрения угля в практику борьбы с отравлениями. Несмотря на то, что уже в XV в. было известно, что древесный уголь обесцвечивает окрашенные растворы, и только в конце XVIII в. это к тому времени забытое свойство угля было опять открыто. Как антидот уголь упоминается в литературе лишь в 1813 г. В следующие годы в химических лабораториях ряда государств уголь применялся при постановке почти всех экспериментов. Так, было найдено (1829 г.), что растворы разных солей при пропускании через древесный уголь утрачивают сплавы. Но экспериментальное подтверждение антидотной значимости угля было получено лишь в 1846 г. Гарродом. Тем не менее, в течение второй половины XX в. и даже в истоке XIX в. уголь не осознавался, как антидот.

Случилось так, что к концу XIX века применение угля для оказания помощи при отравлениях было позабыто, и лишь начиная с 1910 г. Можно наблюдать второе появление угля как антидота.

Конец 60-ч годов прошлого века ознаменовался появлением качественно нового типа противоядий - веществ, которые сами не реагируют с ядами, но избавляют или предостерегают нарушения в организме, появляющиеся при отравлениях. Именно тогда германские эксперты Шмидеберг и Коппе в первый раз показали антидотные атропина. Яд и отлично действующее противоядие не вступают в конкретный контакт. Что касается остальных видов действенных противоядий, которые в данный момент имеются на вооружении практической токсикологии, то они создавались в новейшее время, главным образом в крайние 2-3 десятилетия. В их числе вещества, возвращающие активность или замещающие поврежденные ядами био-структуры или же восстанавливающие жизненно важные биохимические процессы, нарушенные ядовитыми представителями. Надо иметь также в виду, что много антидотов располагаться в стадии экспериментальной разработки и, не считая такого, отдельные старые антидоты временами совершенствуются.

2. МНОГООБРАЗИЕ ЯДОВ И МЕХАНИЗМ ИХ ДЕЙСТВИЯ

Смертельные дозы некоторых ядов:

Белый мышьяк 60 мг/кг

Мускарин (яд мухоморов) 1,1мг/кг

Стрихнин 0,5мг/кг

Яд гремучей змеи 0,2мг/кг

Яд кобры 0,75мг/кг

Зорин (боевое ОВ) 0,015мг/кг

Палитоксин (токсин морских кишечнополостных) 0,00015мг/кг

Нейротоксин ботулизма 0,00003мг/кг

В чем же причина такого разнообразия между ядами?

Прежде всего - в механизме их деяния. Один яд, попав в организм, ведет себя буквально как лесной великан в посудном магазине, круша все подряд. Другие действуют тоньше, избирательнее поражая определенную цель, к примеру нервную систему или узловые звенья обмена веществ. Такие яды, как правило проявляют токсичность в существенно наименьших концентрациях.

Наконец невозможно не учесть, конкретные обстоятельства, связанные с отравлением. Сильно токсичные соли синильной кислоты (цианиды) имеют все шансы оказаться безобидными из-за своей склонности к гидролизу, начинающемуся уже в увлажненной атмосфере. Образовавшаяся синильная кислота или испаряется, или вступает в последующие перевоплощения.

Давно подмечено, что при работе с цианидами полезно удерживать за щекой кусок сахара. Секрет тут в том, что сахара превращают цианиды в сравнительно безопасные циангидрины (оксинитррилы).

Ядовитые животные, содержат в организме непрерывно или периодически вещества, ядовитые для особей других видов. Всего существует примерно 5 000 видов ядовитых животных простейших - около 20, кишечнополостных - около 100, червей - примерно 70 членистоногих - примерно 4 000, моллюсков - примерно 90, иглокожих - примерно 25, рыб-около 500, земноводных-около 40, пресмыкающихся-примерно 100, млекопитающих-3 вида. В Росси около 1500 видов.

Из ядовитых животных самыми изученными являются змеи, скорпионы, пауки и др., наименее - рыбы, моллюски и кишечнополостные. Из млекопитающих известны три вида: два вида щелезубов, три вида землероек, утконос.

Парадоксально, но щелезубы не имеют иммунитета к личному яду и гибнут даже от легких укусов, приобретенных во время драк меж собой. Землеройки также не являются иммунными к личному яду, но меж собой они не бьются. И щелезубы, и землеройки употребляют токсин, паралитический кликренноподобный протеин. Яд утконоса может уничтожить некрупное животное. Для людей в целом он не смертелен, но вызывает чрезвычайную сильную болезнь и отек, который равномерно распространяется на всю конечность. Гепаралгизия может продолжаться несколько дней и даже месяцев. Одни из ядовитых животных имеют особенные железы, вырабатывающие яд, остальные содержат ядовитые вещества в тех или других тканях тела. У некоторых животных имеется ранящий аппарат, способствующий введению яда в тело неприятеля или жертвы.

Некоторые животные малочувствительны к тем или другим ядам, к примеру, свиньи - к яду гремучей змеи, ежи - к яду гадюки, грызуны, обитающие в пустынях - к яду скорпионов. Не существует ядовитых животных, опасных для всех остальных. Их токсичность относительна.

В мировой флоре известно более 10 тысяч видов ядовитых растений, главным образом в тропиках и субтропиках, множество их и в странах умеренного и холодного климатов. В Росси примерно 400 видов ядовитых растений наблюдаются они среди грибов, хвощей, плаунов, папоротников, голосемянных и покрытосеменных. Основные действующие вещества ядовитых растений - алканоиды, гликозиды, эфирные масла, органические кислоты и другие. Обычно они содержаться во всех частях растения, но иногда в неодинаковых количествах, и при общей токсичности всего растения некоторые части бывают более ядовиты, чем другие. Некоторые токсичные растения (к примеру, хвойник) могут быть ядовиты лишь при длительном их употреблении. Большинство ядовитых растений сразу же действуют на разные органы, однако какой-то орган или центр обычно бывает поражен сильнее.

Растений, владеющих безусловной токсичностью, а природе, по - видимому не существует. Например, белладонна и дурман ядовиты для человека, но безвредны для грызунов и птиц, морской лук, ядовитый для грызунов, но безопасный для других животных; пиретрум ядовит для насекомых, но безопасен для позвоночных.

3. РАСТИТЕЛЬНЫЕ ЯДЫ. АЛКАЛОИДЫ

Известно, что из одних и тех же растений готовили и медикаменты и яды. В Древнем Египте мякоть персика входила в состав лечебных средств, а из ядер косточек и листьев готовили чрезвычайно опасный яд, содержащий синильную кислоту.

Алкалоиды - азотсодержащие гетероциклические основания, владеющие мощной и специфичной энергичностью. В цветковых растениях чаще всего представлено сразу некоторое количество групп алкалоидов, различающихся не только по химической структуре, но и по биологическим эффектам.

К настоящему времени найдено свыше 10 тысяч алкалоидов различных структурных типов, что превосходит количество узнаваемых соединений любого другого класса природных веществ.

Попав в тело животного или человека алкалоиды, связываются с рецепторами, предназначенными регуляторных молекул самого организма, и блокируют или запускают различные процессы, к примеру, передачу сигнала от нервных окончаний к мускулам.

3.1 Стрихнин

Стрихин - C 21 H 22 N 2 O 2 индоловый алкалоид, выделенный в 1818г. Пельтье и Кавенту из рвотных орешков - зерен чилибухи.

Рисунок 1 Стрихнин

При отравлении стрихином возникает грубо выраженное чувство голода, развивается трусость и волнение. Дыхание становится глубоким и частым, возникает чувство боли в груди.

Развивается болезненное содрогание мышц и, сопровождаясь зрительными ощущениями мелькания молний, разыгрывается приступ тетанических судорог - вызывающее опистонус. Давление в брюшной полости грубо возрастает, дыхание вследствие тетануса грудных мышц прекращается. Вследствие сокращения внешних мускул возникает представление ухмылки. Сознание сохраняется. Приступ продолжается некоторое количество секунд или минут и меняется на состояние общей беспомощности. После недлительного промежутка начинается новый приступ. Смерть начинается не во время приступа, а через некоторое количество времени от подавления дыхания.

В медицине он используется при параличах, связанных с поражением центральной нервной системы при хронических расстройствах желудочно-кишечного тракта и, главным образом, как общее тонизирующее при разных состояниях расстроенного питания и беспомощности, а еще для физических и нейроанатомических изучений. Еще стрихнин оказывает содействие при отравлениях хлороформом, хлоргидратом и др. При сердечной беспомощности стрихнин способствует в тех вариантах, когда недостаток сердечной деятельности вызывается недостающим тонусом сосудов. Также его используют при неполной атрофии зрительного нерва.

3.2 Морфин

Морфин - один из главных алкалоидов опия. Морфин и остальные морфиновые алкалоиды встречаются в растениях рода маковых, стефания, синомениум, луносемянник.

Морфин был одним из первых алкалоидом, приобретенным в чистом виде. Однако, распределение он получил после изобретения инъекционной иглы в 1853 году. Морфин употреблялся для облегчения боли. Кроме того, его использовали в качестве «исцеления» опиумной и алкогольной зависимости. В 1874 году из морфина синтезировали диацетилморфин, более известный как героин.

Рисунок 2 Морфин

Морфин отличается мощным болеутоляющим действием. Понижая возбудимость болевых центров, он оказывает также противошоковое действие при травмах. В огромных порциях вызывает усыпительный результат, который наиболее выражен при нарушениях сна, связанных с болевыми чувствами.

Морфин вызывает выраженную эйфорию, и при его повторном использовании развертывается болезненное пристрастие.

Он оказывает тормозящее воздействие на условные рефлексы, снижает суммационную дееспособность центральной нервной системы, усиливает действие наркотических, снотворных и местноанестезирующих средств. Он понижает возбудимость кашлевого центра. Характерным для действия морфина является подавление дыхательного центра. Большие дозы обеспечивают урежение и уменьшение глубины дыхания со снижением легочной вентиляции. Токсичные дозы вызывают появление периодического дыхания и последующую его остановку. Возможность развития наркомании и подавление дыхания являются большими недостатками морфина, ограничивающими в ряде случаев внедрение его массивных аналгизирующих параметров.

Применяют морфин как болеутоляющее лекарство при травмах и разных заболеваниях, сопровождающихся сильными болевыми чувствами, при подготовке к операции и в послеоперационном периоде, при бессоннице, связанной с сильными муками, время от времени при сильном кашле, сильной отдышке, обусловленной острой сердечной недостаточностью. Морфин иногда используют в рентгенологической практике при исследовании желудка, двенадцатиперстной кишки, желчного пузыря.

3.3 Кокаин

Кокаин (C 17 H 21 NO 4) - мощное психоактивное стимулирующее лекарство, получаемое из южно - американского растения кока. Листья этого кустарника, содержат от 0,5 до 1% кокаина. Люди еще в древности употребляли его. Жевание листьев коки помогало индейцам древней империи инков переносить высокогорный климат. Такой метод употребления кокаина не вызывал такой наркотической зависимости, как сейчас. Так как содержание кокаина в листьях все - таки не велико.

Рисунок 3 Кокаин

Кокаин впервые выделили из листьев коки в Германии в 1855 году, он длительное время считался «чудодейственным средством». Полагали, что кокаином возможно вылечить бронхиальную астму, расстройства пищеварительной системы, алкоголизм и морфизм.

Оказалось также, что кокаин перекрывает проведение по нервным окончаниям болевых импульсов, поэтому является сильным анестезирующим средством. Раньше его нередко употребляли для местной анестезии при хирургических операциях, в том числе глазных. Однако, когда стало ясно, что использование кокаина приводит к наркомании и серьезным психическим расстройствам, а иногда и к летальному исходу, его использование в медицине резко сократилось.

Как и остальные стимулирующие средства, кокаин снижает чувство голода и может привести к физиологическому и психическому разрушению личности. Чаще всего кокаинисты прибегают к вдыханию кокаинового порошка через слизистую носа, где в последствии он попадает прямо в кровь. Воздействие на психику возникает уже через некоторое количество минут. Человек ощущает прилив энергии, чувствует в себе новые способности. Физиологический результат кокаина сходен с легким стрессом - незначительно увеличивается кровяное давление, учащаются сердцебиение и дыхание. Через некоторое время начинается депрессия и волнение, что приводит к желанию принять новую дозу, чтобы этого не стоило. Для кокаинистов обычны бредовые расстройства и галлюцинации: ощущение под кожей бегающих насекомых и мурашек становится настолько явственным, что наркоманы не редко наносят себе повреждения.

Из-за уникальных свойств одновременно блокировать болевые ощущения и уменьшать кровотечения, кокаин до сих пор используют в медицинской практике, а также при хирургических операциях в ротовой и носовой полости.

4. ЖИВОТНЫЕ ЯДЫ

Символом доброго дела, здоровья и врачевания является змея, обвивающая чашу и склонившая над ней свою голову. Использование змеиного яда и самой змеи один из наиболее старинных способов. Существуют разные легенды, согласно которым змеи делаю разные хорошие поступки, чем и заслужили свое увековечивание.

Змеи во многих вероисповеданиях являются священными. Считалось, что через змей боги передают свою волю. В настоящее время на базе змеиного яда сотворено большая численность фармацевтических средств.

4.1 Змеиный яд

Ядовитые змеи снабжены особыми железами, которые вырабатывают яд, вызывающий весьма тяжкие повреждения организма. Это один из немногих живых существ на Земле, способных убить человека.

Сила змеиного яда не всегда аналогична. Чем сильнее разъярена змея, тем сильнее действует яд. При нанесении раны зубы змеи, могут, прокусить одежду и тогда часть яда будет впитана тканью. Кроме того, не остается без воздействия сила личного сопротивления укушенной жертвы. Иногда случается так, что действие яда можно сравнить с действием удара молнии или с приемом синильной кислоты. Сразу же за укусом больной вздрагивает с выражением мучительной боли на лице, а затем падает мертвым. Некоторые змеи вводят в тело жертвы яд, который превращает кровь в густое желе. Спасти жертву чрезвычайно тяжело, это нужно сделать в течении нескольких секунд.

Чаще всего укушенное место опухает и скоро приобретает темно - багровый оттенок, кровь становится жидкой и у больного развиваются симптомы, сходные с симптомами гнилокровия. Число сердечных сокращений возрастает, но сила и энергия уменьшается. У больного появляется последний упадок сил, тело покрывается холодным потом. На теле возникают черные пятна от подкожных кровоизлияний, больной слабеет от подавления нервной системы или от разложения крови, впадает в тифозное состояние и умирает.

Змеиный яд, по-видимому, поражает в большей степени блуждающие и придаточные нервы, поэтому в качестве соответствующих явлений негативные симптом ы со стороны горла, дыхания и сердца.

Одним из первых чистый яд кобры с лечебной целью при злокачественных заболеваниях около 100 лет назад применил французский микробиолог А. Кальмет.

Полученные положительные итоги привлекли внимание почти всех исследователей. В предстоящем стало известно, что кобротоксин не обладает противоопухолевым действием, он обладает болеутоляющим и стимулирующим действием на организм. Яд кобры может заменить морфий. Он оказывает наиболее длительное действие и не вызывает привыкания. Кобротоксин после избавления от геморрагинов методом кипячения с успехом использовали для лечения бронхиальной астмы, эпилепсии и невротических болезней. При этих же заболеваниях был получен положительный эффект и после назначения больным яда гремучих змей, сотрудники Ленинградского научно-исследовательского психоневрологического института им. В. М. Бехтерева сделали вывод, что при лечении эпилепсии змеиные яды по возможности по способности подавлять очаги возбуждения стоят на одном из первых мест среди известных фармакологических препаратов. Препараты, содержащие яды змей, используют, основным образом, в качестве болеутоляющих и антивосполительных средств при невралгиях. А также при карбункуле, гангрене, адинамических состояниях и иных заболеваниях. Из яда гюрзы создали лекарство «Лебетокс», останавливающий кровотечение у больных разными формами гемофилии.

4.2 Паучий яд

Пауки - чрезвычайно полезные животные, уничтожающие вредоносных насекомых. Яд большинства пауков для человека безвреден, даже если это укус тарантула. Раньше числилось, что противоядием от укуса может быть танец до упаду. Но укус каракурта вызывает резкую болезнь, судороги, удушье, рвоту, слюно - и потоотделение, нарушение работы сердца.

Отравление ядом паука - птицееда характеризуется сильной болью, которая распространяется от места укуса по телу, а также к случайным сокращениям скелетной мускулатуры. Не редко на месте укуса развивается некротический очаг.

В настоящее время яд пауков все больше используется в медицине. Обнаруженные характеристики яда показывают их иммунофармакологическую энергичность. Отчетливо выраженные биохарактеристки яда птицеедов, преимущественное влияние на центр нервной системы делают перспективными исследование возможности его применения в медицине. В научной литературе имеются сведения об использовании в качестве средства регулирующего сон. Он избирательно действует на ретикулярную формацию мозга и обладает превосходствами перед подобными средствами синтетического происхождения. Способность паучьего яда воздействовать на кровяное давление используют при гипертонической болезни. Яд пауков вызывает некроз мышечной ткани и гемолиз.

4.3 Яд скорпионов

В мире скорпионов насчитывается около 500 видов. Отравление ядом скорпионов характеризуется поражением печени и почек. По мнению почти всех исследователей, нейротопный компонент яда воздействует подобно стрихнину, вызывая судороги. Выражено его воздействие и на вегетативный центр нервной системы: не считая нарушения сердцебиения и дыхания, наблюдается тошнота, рвота, головокружение, сонливость, озноб. Нервно - психические расстройства характеризуются страхом смерти. Отравление ядом скорпиона сопровождается повышением глюкозы в крови, что в свою очередь отражается на функции поджелудочной железы, в которой увеличивается секреция инсулина, амилазы и трипсина. Такое состояние не редко приводит к развитию панкреатита. Следует отметить, что сами скорпионы чувствительны к собственному яду, но в существенно огромных порциях.

В литературе описаны рекомендации применения скорпионов для лечения разнообразных заболеваний. Препараты из скорпиона назначают на востоке в качестве успокаивающего лекарства, хвостовая часть скорпиона оказывает антитоксический результат. Также используют и неядовитых лжескорпионов, которые живут под корой деревьев. Жители корейских деревень собирают их, приготавливают снадобье для исцеления ревматизма и радикулита.

Яд некоторых видов скорпионов может благотворно влиять на организм человека, страдающего от ракового заболевания.

Результаты изучений свидетельствуют о том, что препараты на базе яда скорпиона обладают разрушительными действиями на злокачественные опухоли, также он оказывает антивосполительное действие и, в общем, улучшает самочувствие пациентов, страдающих от рака.

4.4 Жабий яд

Жабы являются ядовитыми животными. В их коже заложено не мало обычных мешотчатых ядовитых желез, скопляющихся позади глаз в «паротиды». Однако, ни малейшего колющего и ранящего приспособления жабы не имеют. Для защиты камышовая жаба сокращает кожу, благодаря чему покрывается неприятно пахнущей белоснежной пеной секретом ядовитых желез. Если переполошить агу, ее железы также выделяет молочно - белый секрет, она способна даже «стрелять» ими в хищника. Яд аги - сильнодействующий, в большей степени он влияет на сердце и нервную систему, вызывая обильное слюноотделение, конвульсии, рвоту, аритмию, повышение кровяного давления, время от времени кратковременный паралич и погибель от остановки сердца. Для отравления достаточно обычного контакта с ядовитыми железами. Яд, проникший через слизистую кожицу глаз, носа и рта, вызывает сильную болезнь, воспаление и временную слепоту.

Рисунок 4 Буфотоксин

Жабы издревле используются в народной медицине. В Китае жабы используются как сердечное средство. Сухой яд, выделяемый шейными гландами жаб, может замедлить прогрессирование онкологических заболеваний. Вещества из яда жаб не помогают излечить людей с раковыми заболеваниями, но помогают стабилизировать состояние больных и остановить рост опухоли.

4.5 Пчелиный яд

Отравление пчелиным ядом может протекать в виде интоксикаций, вызванных множественными ужалениями пчел, а также носить аллергический характер. При попадании больших доз яда в организм наблюдаются повреждение внутренних органов, в особенности почек, участвующих в выведении яда из организма.

Были случаи, когда функции почек восстанавливались. Аллергические реакции на пчелиный яд наблюдаются 0,5-2% людей.

У некоторых наблюдается резкая реакция вплоть до анафилактического шока, которое может развиться даже от одного ужаления. Последствия ужаления зависит от количества ужалений и функционального состояния организма. Как правило, сначала начинаются местные симптомы резкая боль и отеки. Последние в особенности опасны при поражении слизистых оболочек рта и дыхательных путей, так как имеют все шансы привести к асфиксии.

Пчелиный яд приводит к повышению гемоглобина, понижает вязкость и свертываемость крови, уменьшает количество холестерина в крови, расширяет сосуды, увеличивает приток крови к больному органу, снимает боль, увеличивает общий тонус, трудоспособность, улучшает сон и аппетит.

Пчелы способны вылечить болезнь Паркинсона, рассеянный склероз, постинсультные заболеваний, а также постинфарктные заболевания и ДЦП. А также пчелиный яд эффективен при лечении болезней нервной системы (радикулитах, невритах, невралгиях), болях в суставах, при ревматизме и аллергических заболеваниях, при варикозном расширении вен и тромбофлебитах, при бронхиальной астме и бронхите и последствиях радиоактивного облучения и прочих заболеваниях.

5. «МЕТАЛЛИЧЕСКИЕ ЯДЫ». ТЯЖЕЛЫЕ МЕТАЛЛЫ

В эту группу традиционно включают сплавы с плотностью большей, чем у железа, а конкретно: свинец, медь, цинк, никель, кадмий, кобальт, сурьму, олово, висмут и ртуть. Выделение их находящуюся вокруг среду происходит главным образом при сжигании минерального горючего. В золе угля и нефти найдены практически все металлы. В каменноугольной золе, например, по данным Л.Г Бондарева (1984), известно присутствие 70 элементов. Л.Г Бондарев, беря во внимание инновационные масштабы применения ископаемого горючего, приходит к последующему выводу: «Сжигание угля представляет собой основной источник поступления почти всех металлов в окружающую среду». Например, при ежегодном сжигании 2,4 млрд. тонн каменного и 0,9 млрд. тонн бурого угля вместе с золой рассеивается 200 тыс. тонн мышьяка и 224 тыс. тонн урана, тогда как мировое производство этих двух металлов составляет 40 и 30 тыс. тонн в год. Многие из тяжелых металлов при их многочисленном количестве в организме оказываются ядами. К примеру, конкретное отношение к заболеванию раком имеют: мышьяк (рак легких), свинец (рак почек, желудка, кишечного тракта), никель (рак полости рта, толстого кишечника), кадмий (фактически все формы рака).

5.1 Кадмий

Этот элемент, наверное, самый опасный для организма человека. Разница между содержанием этого вещества в организме современных подростков и критической величиной, оказывается очень малой. Это приводит к нарушениям работы почек, болезням легких и костей. Особенно у курильщиков. Табак во время собственного роста очень активно и в огромных количествах содержит кадмий. Его концентрация в сухих листьях в тысячи раз выше средних результатов для биомассы наземной растительности. Поэтому с каждой затяжкой дыма, человек вдыхает вредоносные вещества, такие как никотин, окись углерода и кадмий. В одной сигарете содержится от 1,2 до 2,5 мг этого яда. Таким образом, при выкуривании всех изделий из табака в окружающую среду выделяется от 5,7 до 11,4 тонн кадмия, попадая как в легкие курильщиков, так и в легкие некурящих людей.

5.2 Свинец

При отравлении свинцом часто отмечаются неврологические симптомы: рвота, запоры, боли по всему телу, понижение частоты сердечных сокращений, а также поднятие артериального давления. При хронической интоксикации отмечается возбудимость, гиперактивность, депрессия, гипертония, утрата или понижение аппетита, боли в желудке, анемия, понижение содержания в организме кальция, цинка, селена и других полезных элементов.

Попадая в организм, свинец, как и большая часть тяжелых металлов, вызывает отравление. И тем ни менее, свинец нужен медицине. Желчь - одна из самых важных жидкостей организма. В ней содержаться две органические кислоты - гликолевая и таурохолевая, которые стимулируют работу печени. А так как не постоянно и не у всех печень работает с точностью отлаженного механизма, эти кислоты в чистом виде необходимы медицине. Выделяют и разделяют их с помощью уксусного свинца. Основная служба свинца в медицине связана с рентгенотерапией. Он защищает докторов от постоянного рентгеновского облучения. Для фактически совершенного поглощения лучей рентгена достаточно на их пути поставить слой свинца в 2 - 3 мм.

Препараты свинца в медицине используют с давних пор в качестве вяжущих, прижигающих и антисептических средств. Ацетат свинца используют в виде 0,25 - 0,5% водных растворов при воспалительных заболеваниях кожи и слизистых оболочек. Свинцовые пластыри используют при фурункулах, карбункулах и т.д.

Для ртутного отравления свойственны головная боль, покраснение, а набухание десен, появление на них темной каймы сульфида ртути, набухание лимфатических и слюнных желез, расстройств пищеварения. При лёгком отравлении через 2 - 3 недели нарушенные функции восстанавливаются по мере выведения ртути из организма. Если ртуть поступает в организм небольшими порциями, но в течение длительного времени, наступает хроническое отравление. Для него свойственны повышенная утомляемость, слабость, сонливость, апатия, головные боли и головокружения. Эти симптомы сходны с другими заболеваниями, поэтому распознать такое отравление очень тяжело.

В настоящее время ртуть обширно используется в медицине. Несмотря на то, что ртуть и ее составляющие ядовиты, ее применяют при изготовлении фармацевтических средств и дезинфицирующих средств. Примерно третья часть всего производства ртути приходится на медицину. Ртуть популярна по использованию в градусниках, так как она быстро и равномерно реагирует на изменение температуры. Также ртуть используется в стоматологии, при производстве хлора, каустической соли и электрооборудовании.

5.4 Мышьяк

При остром отравлении мышьяком наблюдается тошнота, боли в животе, диарея, подавление центральной нервной системы. Сходство симптомов отравления мышьяком с симптомами холеры долгое время позволяло удачно применять соединения мышьяка в качестве смертельного яда. Соединения мышьяка употребляются в медицине уже более 2000 лет. В Китае с древнейших пор используется триоксид мышьяка для лечения раковых заболеваний и таких как белокровие (лейкемия). Также мышьяк употребляли для лечения венерических заболеваний, тифа, малярии, ангины. Мышьяк используют для установки временной пломбы, ведь это проверенный и известный метод уничтожить больной нерв зуба.

С помощью ненатурально приобретенных радиоактивных изотопов мышьяка уточняют локализацию опухолей мозга и определяют степень радикальности их удаления. В настоящее время неорганические соединения мышьяка в незначимых количествах вступает в состав общеукрепляющих, тонизирующих средств, а также содержатся в минеральных водах и грязях. Органические соединения мышьяка применяют как антимикробные и против протозойные препараты.

ЗАКЛЮЧЕНИЕ

Граница, разделяющая яды и противоядия, весьма тонкая, настолько тонкая, что в Академии Медицинских наук Российской Федерации издается совместный журнал «Фармакология и токсикология», а учебники по фармакологии имеют все шансы применяться для преподавания базы по токсикологии. Принципиального различия между ядом и снадобьем нет, и не может существовать. Любое лекарственное средство становится ядом, если его концентрация в организме превосходит установленный терапевтический уровень. И практически любой яд в небольших пропорциях может найти использование, как лекарственное средство.

Когда преподается фармакология, обычно говорится, что «pharmacon» в переводе с греческого значит и лекарственное средство, и яд. Студенты воспринимают это теоритически, а доктора уже потом находятся под процессом той информации, которая идет в основном для лечебных препаратов. Фирмы - производители растрачивают колоссальные средства для продвижения собственных лекарств на рынок, и невзирая на то, что муниципальные контролирующие органы пытаются вводить определенные запросы по ограничению, информация о положительных свойствах тех или других медикаментов гораздо превышает предостережения о вероятных побочных эффектах. Вместе с тем, конкретно они нередко явлются предпосылкой госпитализации пациентов. Смертность, связанная с употреблением фармацевтических средств занимает 5-е место.

СПИСОК ЛИТЕРАТУРЫ

1. Краткая Медицинская Энциклопедия, изд. "Советская энциклопедия" - издание второе, г. Москва, 2009 г.

2. А.А. Немодрук. "Аналитическая химия мышьяка", изд. Наука, г. Москва, 1976 г.

3. Г.И Оксенгендлер. "Яды и противоядия", изд. Знание, 2008 г.

4. Популярная библиотека химических элементов. Книга 2 - я, изд. Наука, г. Москва, 2011 г.

5. Т.М. Трахтенберг., М.Н. Коршун. "Ртуть и ее соединения в окружающей среде", г. Киев, 2010 г.

Размещено на Allbest.ru

...

Подобные документы

    Зависимость действия промышленных ядов от их структуры и свойств. Физические и химические свойства ядов, вредное действие и пути проникновения. Превращение в организме, средства лечения отравлений и использование действия ядов в медицине и промышленности.

    реферат , добавлен 06.12.2010

    Общая характеристика промышленных ядов. Пути поступления ядов в организм, их биотрансформация и депонирование. Механизм действия и пути выведения промышленных ядов из организма. Основные принципы оказания неотложной помощи при острых отравлениях.

    реферат , добавлен 27.01.2010

    Особенности действия едкого и деструктивного ядов на организм. Свойства ядов, парализующие центральную нервную систему, не вызывающих заметных морфологических изменений. Расследование и проведение судебно-медицинской экспертизы по поводу отравления.

    курсовая работа , добавлен 24.05.2015

    Классификация ядовитых растений, специфика их состава и токсическое действие биологически активных веществ. Особенности токсического действия растительных ядов. Основные растительные токсиканты. Ядовитые высшие растения и их действие на организм.

    реферат , добавлен 17.09.2013

    Физико-химические и токсические свойства, механизм токсического действия тиоловых ядов, а именно мышьяка, ртути, свинца, кадмия и сурьмы. Анализ клинических проявлений и эффективности современных методов лечения и профилактики отравлений тиоловыми ядами.

    реферат , добавлен 04.04.2010

    Определение токсикологии. Отличия адаптивных и компенсаторных реакций организма. Особенности трансмембранного транспорта гидрофобных и гидрофильных токсикантов. Факторы, влияющие на поступление ядов в организм, на их метаболизм и на развитие интоксикации.

    шпаргалка , добавлен 15.01.2012

    Наиболее распространенные обстоятельства возникновения отравлений. Условия токсического действия веществ. Действие ядов на организм. Отравления кислотами и щелочами, оксидами углерода, соединениями тяжелых металлов, металлоорганическими соединениями.

    реферат , добавлен 13.09.2013

    Классификация травматизма. Нарушение анатомической целостности или физиологической функции тканей и органов человека. Происхождение огнестрельных повреждений. Симптомы отравления оксидом углерода, фосфором. Условия действия и способы выведения ядов.

    презентация , добавлен 25.05.2015

    Классификация и условия действия ядов. План действий эксперта при подозрении на отравление. Осмотр места происшествия и первоначальный осмотр трупа. Признаки отравления этиловым спиртом, техническими жидкостями, ядохимикатами. Виды пищевых отравлений.

    курсовая работа , добавлен 21.04.2015

    Виды отравлений, классификация ядов и токсичных веществ. Экстренная медицинская помощь при острых отравлениях. Клиническая картина отравления и принципы оказания помощи больным при отравлении. Пищевые отравления от употребления загрязненных продуктов.

Под механизмом токсического действия яда понимают ту биохимическую реакцию, в которую он вступает в организм и результаты которой определяют весь развертывающийся патологический процесс отравления. Вполне очевидно, что выяснение механизма действия ядов относится к важнейшим задачам токсикологии, поскольку только на основе знания метаболических основ действия яда могут быть разработаны наиболее эффективные, антидотные средства борьбы с отравлениями.

Современная токсикологическая наука располагает достаточно полными данными о механизме токсического действия ядов, относящихся к самым различным группам химических веществ. Рассмотрим несколько примеров, иллюстрирующих механизм действия некоторых ядовитых веществ.

Установлено, что в основе механизма действия синильной кислоты и цианидов лежит их способность взаимодействовать с окисленной формой железа цитохромоксидазы (ЦХ). Этот фермент участвует в переносе электронов в окислительно-восстановительной цепи за счет изменения состояния железа:

Под действием цианидов железо теряет способность переходить в восстановленную форму, процесс активации кислорода блокируется, кислород перестает реагировать с электроположительными атомами водорода, в митохондриях клеток накапливаются протоны и свободные электроны, прекращается образование аденозинтрифосфорной кислоты (АТФ). Таким образом, блокада цитохромоксидазы ведет к прекращению тканевого дыхания и, несмотря на насыщенность артериальной крови кислородом, отравленный организм погибает от ас- фикции.

Иная картина развертывается при отравлении оксидом углерода (СО). В этом случае ведущую роль в механизме токсического действия яда играет образование карбоксигемоглобина (НЬСО). Гемоглобин (НЬ) - это сложный по составу белок, содержащий и небелковую группу - гем (от греч. haima - кровь). В геме атом железа образует четыре связи с азотом донорных групп в плоскости порфиринового кольца.

Рис. 3.

Молекула гемоглобина схематично показана на рис. 3.

В реакции между гемоглобином и кислородом происходит образование относительно нестойкого комплекса оксиге- моглобина :

В присутствии СО происходит вытеснение кислорода из комплекса:


Рис. 4. Схема конкурентного процесса с участием 02 и СО в геме

Схема процесса образования карбоксигемоглобина приведена на рис. 4.

В реакции связывания с гемоглобином молекулы угарного газа превосходят кислород в 210 раз. Несмотря на то, что железо гемоглобина после присоединения к нему СО остается двухвалентным, кар- боксигемоглобин лишен способности транспортировать кислород от легких к тканям. Кроме того, как показали экспериментальные исследования, оксид углерода способен также реагировать с двухвалентным железом цитохромоксидазной системы. В результате эта система так же, как при отравлении цианидами, выходит из строя. Таким образом, при отравлении СО развивается как гемическая, так и тканевая форма гипоксии.

При воздействии окислителей, анилина и родственных ему соединений оксидов азота, метиленового синего гемоглобин превращается в метгемоглобин, содержащий трехвалентное железо, и не способен переносить кислород от легких к тканям.

В случае образования большого количества метгемоглобина развивается отравление вследствие гемической гипоксии. В то же время перевод небольшой части гемоглобина в метгемоглобин может оказаться полезным, улучшает коронарное кровообращение и применяется для профилактики при ишемической болезни сердца и снятия приступов стенокардии. Представителем лекарственных нитратов является нитроглицерин.

Своеобразным механизмом токсического действия обладают ионы тяжелых металлов из-за специфической особенности избирательно соединяться с сульфгидрильными группами белков. Ионы тяжелых металлов, например Си 2+ или Ag + , блокируют сульфгидриль- ные группы с образованием меркаптанов:

Сульфгидрильные группы входят в состав многих ферментов, поэтому их выраженная блокада приводит к инактивации жизненно важных ферментов и несовместима с жизнью.

Типичными ферментными ядами являются многие карбаматы и фосфорорганические вещества. Проникая в организм, они очень быстро угнетают активность ацетилхолинэстеразы. Фермент ацетилхо- линэстераза обеспечивает передачу нервных импульсов в холинергических синапсах как центральной, так и периферической нервной системы, поэтому его инактивация ведет к накоплению медиатора ацетилхолина. Последний вызывает вначале резкое возбуждение всех холино-реактивных систем, которое в дальнейшем может смениться их параличом.

Различают три основных типа преимущественного действия токсических веществ - местное, резорбтивное, рефлекторное.

Примером местного действия может служить влияние раздражающих и прижигающих веществ на слизистую оболочку дыхательных путей, полости рта, желудка, кишок и кожу. На месте соприкосновения кислот, щелочей, раздражающих газов и жидкостей с тканями возникают ожог, воспалительная реакция, некроз тканей. Деление веществ на перечисленные три типа условно и основано на преобладании тех или иных реакций. При местном воздействии возникает множество рефлекторных реакций, может происходить всасывание ядов и токсичных веществ, образующихся в результате деструкции тканей.

К веществам с преимущественно местным типом действия относятся серная, соляная, азотная и другие кислоты и их пары, едкий натр, едкое кали, аммиак и другие щелочные вещества, некоторые соли. Многие вещества, наряду с местным действием, оказывают выраженное резорбтивно-токсическое влияние - сулема и другие соли ртути, мышьяк и его соединения, уксусная, щавелевая и другие органические кислоты, некоторые фтор- и хлорсодержащие соединения и т. п.

Рефлекторное действие веществ проявляется в результате влияния на окончания центростремительных нервов слизистых оболочек дыхательных путей и желудочно-кишечного тракта, а также кожи. Это действие бывает настолько сильным, что может привести к спазму голосовой щели, отеку слизистой оболочки гортани и развитию механической асфиксии. Таким влиянием обладают некоторые газы (хлор, фосген, хлорпикрин, аммиак и т. п.). Даже малые дозы (концентрации) некоторых алкалоидов (никотин, анабазин, цитизин, лобелии), производных синильной кислоты и динитрофенола вызывают сильные рефлекторные изменения дыхания и кровообращения, влияя на химиорецепторы сонного гломуса и других сосудистых областей.

Основные патологические изменения возникают в организме в результате резорбтивного действия веществ, их влияния на органы и ткани после всасывания в кровь. Различают яды с политропным действием, влияющие в примерно равной степени на различные органы и ткани, и яды с избирательным влиянием на отдельные системы и органы. Рассмотрение этого вопроса важно для выбора системы терапевтического вмешательства. Примером веществ с политропным действием могут служить протоплазматические яды (хинин и др.).

Наркотические, снотворные, успокаивающие вещества, аналеп- тики, фосфорорганические соединения влияют преимущественно на нервную систему, хлорированные углеводороды - на нервную систему и паренхиматозные органы. Некоторые токсические вещества (триортокрезилфосфат, лептофос, полихлорпинен, полихлоркам- фен) обладают избирательной способностью поражать миелиновую оболочку нервных волокон, в результате чего развиваются парезы и параличи. Типичными гепатотропными ядами являются четыреххлористый углерод, дихлорэтан, фосфор, некоторые растительные яды (грибы, мужской папоротник) и медикаменты (акрихин); нефроток- сическими веществами - соединения ртути, особенно сулема, четыреххлористый углерод и дихлорэтан, уксусная кислота. Свинец и его производные, соединения бензола поражают в первую очередь систему кроветворения. Нитриты, нитро- и аминопроизводные бензола являются метгемоглобинобразователями, оксид углерода нарушает дыхательную функцию крови путем образования карбоксигемоглобина, производные синильной кислоты блокируют ферменты тканевого дыхания, мышьяковистый водород - гемолитический яд, зоокумарин, ратиндан и другие антикоагулянты нарушают свертывающую систему крови. Это далеко не полный перечень ядов, оказывающих в той или иной мере избирательное действие на отдельные системы и органы. Вопрос об избирательной органотоксичности имеет важное значение для осуществления рациональной патогенетической терапии отравлений.

Развитие токсического процесса зависит от вредного вещества (яда), его физических и химических свойств, количества; организма, с которым взаимодействует яд (путей всасывания и особенностей распределения, обезвреживания и выделения яда из организма, от возраста, пола, состояния питания, особенностей индивидуальной реакции организма); от состояния среды, в которой происходит взаимодействие яда и организма (температура, влажность, атмосферное давление, наличие других вредных химических и физических факторов).

Химическое строение вещества определяет его химическую реакционную способность и физико-химические свойства, которые обусловливают действие вещества. Универсальная теория зависимости действия веществ от их химической структуры на настоящий момент не разработана, однако по отдельным группам веществ (наркотики, снотворные, фосфорорганические соединения) накоплено немало фактов, теоретически обосновывающих и позволяющих предсказать токсичность и характер действия новых соединений. Для многих веществ изучена зависимость между дозой и эффектом, что имеет существенное значение для прогнозирования характера и исхода интоксикации.

Скорость развития интоксикации, а иногда и ее характер в значительной мере зависят от того, каким путем яд поступил в организм. Особенно быстро развивается отравление при поступлении некоторых ядов в организм через дыхательные пути. Так, достаточно одного-двух вдохов воздуха, насыщенного парами синильной кислоты, для возникновения тяжелого молниеносно развивающегося отравления. Большая поверхность легочных альвеол (80-90 м 2 у взрослого человека), исключительная тонкость альвеолярной мембраны (толщина стенки альвеолы не превышает 1 мкм), обильное кровоснабжение обеспечивают быстрое всасывание веществ в кровь. Через легкие быстро всасываются газы и пары, а также некоторые аэрозоли, если величина их частиц не превышает 5-10 мкм. Скорость всасывания веществ через легкие зависит от ряда факторов, в том числе от парциального давления газа в воздухе, величины легочной вентиляции, состояния кровообращения в легких, соотношения растворимости вещества в масле и воде, от специфического взаимодействия его с элементами крови и тканей.

Основное место всасывания веществ при их поступлении в организм через рот - тонкая кишка. Однако некоторые из них могут всасываться уже через слизистые оболочки полости рта (никотин, фенол, нитроглицерин), желудка (спирт, соединения свинца и др.). При всасывании из тонкой кишки вещества вначале попадают через систему воротной вены в печень, подвергаются там различным химическим превращениям, иногда частично или полностью обезвреживаются, в других случаях, наоборот, их токсичность может повышаться

(«летальный» синтез). Однако следует учитывать, что при всасывании через лимфатические пути вещества могут миновать печеночный барьер. Для некоторых веществ (фосфор- и хлорорганические соединения, ароматические нитро- и аминосоединения и др.) одним из возможных путей поступления в организм является кожа. Количество всосавшегося вещества зависит от площади всасывания, места (нежные участки кожи живота, внутренняя поверхность бедер, паха и половых органов, подмышечные области и предплечья более проницаемы для ядов) и времени воздействия его на кожу.

Возрастные особенности могут влиять на развитие токсического процесса. У детей объем дыхания (на 1 кг массы тела) значительно больше, чем у взрослых, что создает условия для проникновения больших количеств токсичных веществ из воздуха. Из-за того, что у детей отношение поверхности тела к массе больше, а также вследствие более легкого проникновения веществ через кожу последние всасываются быстрее и в большем количестве, чем у взрослых. Различия в возрастной чувствительности обусловливаются также особенностями обмена веществ. Молодой организм, как правило, более чувствителен ко многим ядам, действующим на нервную систему (наркотики, алкалоиды и т. п.). Однако к веществам, вызывающим гипоксию, молодой организм, особенно в раннем постнатальном периоде, более устойчив. В некоторых случаях при бытовых отравлениях оксидом углерода новорожденные и дети одно- и двухлетнего возраста выживали, тогда как взрослые погибали. Чувствительность к токсичным веществам может варьировать в зависимости от пола.

Физиологические особенности женского организма (менструальный цикл, беременность, период лактации, климактерический период) приводят к изменению чувствительности к ядам, чаще всего к ее повышению. Повышение проницаемости капилляров в менструальный период, лабильность кроветворной системы, эндокринные и нервные влияния вызывают понижение резистентности организма женщин ко многим токсичным веществам, в частности к бензолу, ароматическим нитро- и аминосоединениям. Это, однако, не исключает того, что в отдельных случаях женщины могут быть даже более устойчивы к ядам, чем мужчины (например, к оксиду углерода, спирту).

Большое влияние на возникновение отравлений оказывают наследственно обусловленные особенности индивидуальной чувствительности людей к химическим соединениям. Некоторые препараты, например антибиотики, вступая в реакцию с белками организма, способны придавать им антигенные свойства и таким образом аллер- гизировать организм. Повторное воздействие тех же, а иногда и друзе гих химических агентов может вызвать повышение реакции. Чувствительность организма к химическим веществам зависит также от состояния питания. Голодание повышает чувствительность к токсическому воздействию. Всасывание ядов из желудочно-кишечного тракта зависит от степени наполнения желудка, натощак этот процесс происходит быстрее. Всасывание некоторых жирорастворимых соединений может быть ускорено введением жиров, причем в этом случае повышается резорбция веществ через лимфатические пути, минуя печень.

Отравления могут возникать при одновременном или последовательном поступлении в организм двух или нескольких веществ. Различают следующие виды комбинированного действия: суммирование (аддитивное действие), потенцирование, антагонизм, независимое действие. Особенно опасны случаи потенцирования, когда одно из веществ усиливает действие другого. Отравления протекают тяжелее при высокой температуре окружающей среды, так как создаются условия для поступления в организм большего количества яда (за счет повышенного содержания в воздухе его паров, более быстрого всасывания через кожу, усиления объема дыхания и кровообращения и т. п.).

Некоторые яды, например динитрофенол и его производные, нарушая процессы окислительного фосфорилирования, тем самым повышают температуру тела за счет нерационального расходования энергий окислительных процессов. Отравление этими веществами при высокой температуре окружающей среды протекает особенно тяжело.