Реконструкция систем отопления. Способы удаления воздуха из систем отопления Современные обогреватели: типы, расчет мощности, ремонт – для дома, офиса и не только

1

Проведен анализ систем отопления и установлена возможность применения прерывистого отопления в жилых зданиях и помещениях. Для изучения особенностей формирования микроклимата в помещениях с притоком наружного воздуха через вентиляционные клапаны и отопительными приборами разного типа (конвектор и радиатор) разработана математическая модель. Расчеты выполнены с использованием пакета STAR-CD. Системы уравнений аэродинамики и теплопереноса решались в нестационарной постановке с шагом по времени от 1 с до 10 с. Получены зависимости изменения температуры внутреннего воздуха в четырех контрольных точках. Установлена неоднородность поля температуры воздуха в жилом помещении при подаче наружного воздуха через вентиляционные клапаны. В значительной степени поле температуры воздуха в помещении зависит от типа отопительного прибора (радиатора или конвектора).

моделирование

микроклимат

тепловой режим

жилые помещения

1. Дацюк Т.А., Таурит В.Р. Моделирование микроклимата жилых помещений // Вестник гражданских инженеров. - 2012. - № 4. - С. 196-198.

2. Мишин М.А. Исследование процессов остывания теплоносителя при прерывистом регулировании // Ползуновский вестник. – 2010. - № 1. - С. 146-152.

3. Панферов В.И. Анализ возможности экономии тепловой энергии при прерывистом режиме отопления / В.И. Панферов, Е.Ю. Анисимова // Вестник ЮУрГУ. Сер.: Строительство и архитектура. - 2008. - Вып. 6. - № 12. - С. 30-37.

4. Протасевич А.М. Энергосбережение в системах теплогазоснабжения, вентиляции и кондиционирования воздуха: учеб. пособие. – Минск: Новое знание; М. : ИНФРА-М, 2012. – 286 с.

5. СНиП 41-01-2003. Отопление, вентиляция и кондиционирование. – М. : Госстрой России, 2004. – 56 с.

6. Энергосбережение в системах теплоснабжения, вентиляции и кондиционирования воздуха: справ. пособие / Л.Д. Богуславский, В.И. Ливчак, В.П. Титов и др.; под ред. Л.Д. Богуславского и В.И. Ливчака. - М. : Стройиздат, 1990. – 624 с.

Отопление зданий и помещений может быть постоянным или прерывистым (периодическим) . При прерывистом отоплении снижается или полностью отключается подача теплоты в здание или помещение. В холодный период года в жилых помещениях, когда они не используются, допускается обеспечивать температуру внутреннего воздуха ниже нормируемой, но не менее 15 °С . Использование прерывистого режима отопления позволяет уменьшить расход тепловой энергии.

Суточный цикл имеет три части :

  • начало работы системы отопления (период «натопа» помещения) - температура в помещении повышается от минимальной допустимой t д до расчетной температуры внутреннего воздуха t в;
  • время установившегося режима - в помещении поддерживается температура внутреннего воздуха t в;
  • прекращение подвода теплоты - температура в помещении понижается до минимальной допустимой t д.

Тепловой поток в режиме разогрева помещения больше, чем во время установившегося режима. Дополнительная мощность системы отопления при периодической эксплуатации в течение всего отопительного периода в нормальном и экономичном температурных режимах зависит от следующих показателей:

  • времени, необходимого для достижения расчетной температуры внутреннего воздуха;
  • величины снижения температуры внутреннего воздуха по отношению к расчетной;
  • теплоаккумулирующей способности здания;
  • воздухообмена во время натопа.

Для повышения энергоэффективности систем отопления (снижения энергопотребления) возможно использование прерывистого режима подачи теплоносителя. Однако время натопа помещения в нормативных документах не регламентируется, т.е. предполагается только постоянное отопление. При прерывистом отоплении существенным фактором следует рассматривать скорость восстановления температурного поля помещений до расчетного значения.

Постановка задачи и исследование

Для изучения особенностей формирования микроклимата в помещениях с притоком наружного воздуха через вентиляционные клапаны и отопительными приборами разного типа (конвектор и радиатор) использован метод численного моделирования.

Моделирование микроклимата выполнялось на примере типовой жилой комнаты здания 137 серии:

  • размеры помещения: 6х3 м; внутренняя высота 2,56 м; внутренний объем комнаты - 46,08 м 3 ; суммарная площадь внутренних стен - 73 м 2 ;
  • одно окно размером 1,5х1,5 м.

Расчетная температура наружного воздуха - минус 26 °С. Расчетная температура внутреннего воздуха - плюс 20 о С.

Сопротивление теплопередаче наружной стены и оконного блока приняты в соответствии с нормативными требованиями:

для наружной стены - R с = 3,1 (м 2 К)/Вт;

для окна - R ок = 0,51 (м 2 К)/Вт.

Коэффициент теплоотдачи для наружной поверхности - Вт/(м 2 К).

Теплообмен с соседними помещениями не учитывается. Расчетный тепловой поток системы отопления помещения - 1026 Вт. Отопительные приборы размещаются под окном. Предусмотрена установка конвектора типа Atoll Pro (ПКН 310) производства ОАО «Фирма Изотерм» (Санкт-Петербург). При параметрах теплоносителя для отопительного прибора 95/70 °С (применительно к двухтрубной системе водяного отопления и схеме движения теплоносителя в отопительном приборе - сверху-вниз) тепловой поток конвектора составляет 980 Вт. Расхождение между требуемым тепловым потоком конвектора и тепловым потоком конвектора, принятого к установке, допускается в сторону уменьшения в пределах до 5%, но не более чем на 60 Вт (при нормальных условиях) . В данном случае это расхождение составляет 4,1% (56 Вт).

Конвектор моделировался в виде прямоугольного блока. На верхней грани блока имитировалась выходная решетка конвектора длиной 0,74 м и глубиной 0,1 м, через которую выходит струя нагретого воздуха со скоростью 0,34 м/с и температурой 50 °С (эти параметры получены из натурных измерений). Конвективная составляющая теплового потока равна 94%. Через нижнюю грань блока в конвектор поступал воздух из помещения. Остальная часть теплового потока моделировалась как радиационная составляющая (6% от общего теплового потока), излучаемая нагретым кожухом прибора.

Радиатор моделировался в виде прямоугольного блока длиной 1,3 м, высотой 0,4 м, глубиной 0,14 м, заполненного условным материалом со специально подобранными характеристиками, чтобы имитировать теплоемкость массивной металлической конструкции радиатора. Полный тепловой поток от радиатора - 980 Вт; 50% - конвективная составляющая и 50% - радиационная составляющая.

Поступление приточного воздуха в помещение осуществляется через приточные клапаны типа «Аэреко». Размеры приточных клапанов были выбраны таким образом, чтобы в помещении обеспечивался однократный воздухообмен. Приняты два приточных клапана сечением 0,01х0,3 м 2 каждый, расположенных в верхней части оконного блока. При перепаде давления между внутренним и наружным воздухом 10 Па клапаны обеспечивают расход приточного воздуха 46 м 3 /ч, т.е. однократный воздухообмен в комнате. Удаление воздуха из комнаты выполняется через щель, имитирующую зазор под закрытой дверью, расположенной в стене напротив окна. Расположение приточных клапанов показано на рис. 1.

Рис. 1. Расчетная схема (разрез) помещения и расположения точек контроля температуры.

Расчет проводился с использованием пакета STAR-CD. Системы уравнений аэродинамики и теплопереноса решались в нестационарной постановке с шагом по времени, который варьировался от 1 до 10 с. В ходе расчета контролировались температуры воздуха в четырех точках (рис. 1).

В результате расчетов для двух типов отопительных приборов получены графики изменения температуры воздуха во времени при нагреве помещения до и после открытия приточных клапанов для 4 контрольных точек (рис. 2 - 5).

Рис. 2. Характер изменения температуры в точке 1.

Рис. 3. Характер изменения температуры в точке 2.

Рис. 4. Характер изменения температуры в точке 3.

Рис. 5. Характер изменения температуры в точке 4.

Начальная температура воздуха в помещении перед включением отопительных приборов принята равной плюс 15 о С. Приточные клапаны при предварительном нагреве помещения закрыты.

После включения отопительных приборов:

  • конвектора: температура воздуха в верхних контрольных точках (1 и 3) достигла 28 о С за 10 минут; в нижних точках (2 и 4) температура воздуха достигла 23 о С за 12-14 минут;
  • радиатора: температура воздуха в верхних точках достигает 28 о С за 30 минут; в нижних контрольных точках (2 и 4) при работе радиатора температура воздуха за 30 минут достигает значений 26 о С.

Таким образом, в режиме нагрева помещения («натопа») при работе конвектора температура в верхних контрольных точках устанавливается в 3 раза быстрее, чем при работе радиатора. Сравнивая процесс нарастания температуры в нижних точках, где в меньшей степени сказывается влияние конвективной струи конвектора, видно, что прогрев воздуха при работе конвектора также происходит быстрее. Например, в точке 2 температура 23 °С при работе конвектора достигается за 12 мин, а при работе радиатора - за 20 мин.

При достижении температуры воздуха в верхних контрольных точках 28 ºС проводилось открытие приточных клапанов.

Через 10 мин после открытия клапанов температура воздуха в контрольных точках снижается до плюс 22-24 ºС для обоих приборов. Далее с течением времени температура во всех контрольных точках продолжает снижаться. Однако характер падения температуры (во всех контрольных точках) при работе радиатора более резкий, чем для конвектора. Это объясняется большей подвижностью воздуха в помещении при работе конвектора, которая связана с взаимодействием более мощной конвективной струи нагретого воздуха с холодным приточным воздухом.

Через 50 минут после открытия клапана минимальная температура в контрольных точках при работе конвектора - 22-23 ºС, а при работе радиатора - 19,5-21 ºС, т.е. на 2 ºС ниже.

Заключение

  1. Поля температуры воздуха в жилых помещениях при подаче наружного воздуха через вентиляционные клапаны неоднородны. Формирование поля температуры в помещении в значительной степени зависит от типа отопительного прибора.
  2. Сравнение изменения температуры в объеме помещения при работе конвектора и радиатора позволяет сделать вывод о том, что при работе конвектора поле температуры в комнате более однородно вследствие преобладания конвективной составляющей теплообмена.
  3. В нормативных документах для жилых помещений для повышения энергоэффективности систем отопления путем применения прерывистого режима подачи теплоносителя необходимо установить длительность периода восстановления температуры внутреннего воздуха до расчетного значения.
  4. Результаты исследования формирования температурного поля отапливаемых жилых помещений с учетом естественной вентиляции должны учитываться как проектировщиками, так и производителями отопительных приборов.

Рецензенты:

Анисимов С.М., д.т.н., профессор кафедры «Теплогазоснабжение и вентиляция», ФГБОУ ВПОУ «СПбГАСУ», г. Санкт-Петербург.

Гримитлин А.М., д.т.н., профессор кафедры «Теплогазоснабжение и вентиляция», ФГБОУ ВПОУ «СПбГАСУ», г. Санкт-Петербург.

Библиографическая ссылка

Дацюк Т.А., Ивлев Ю.П., Пухкал В.А. МОДЕЛИРОВАНИЕ ТЕПЛОВОГО РЕЖИМА ЖИЛЫХ ПОМЕЩЕНИЙ ПРИ ПРЕРЫВИСТОМ ОТОПЛЕНИИ // Современные проблемы науки и образования. – 2014. – № 5.;
URL: http://science-education.ru/ru/article/view?id=14698 (дата обращения: 18.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Ответ: достаточно существенные перетопы в осенний и весенний периоды (а для теплых климатических зон – практически весь отопительный сезон) присущи как раз зависимой схеме присоединения. Если схема независимая, то тепловая энергия передается через теплообменник и соответствующая автоматика должна регулировать величину потребления (соблюдение температурного графика, исключающего перетопы).

В отдельных случаях, когда теплоснабжающая организация ведет себя некорректно и с ней трудно найти общий язык – регулятор может помочь избежать излишнего навязываемого объема потребления и при независимой схеме, но это - «экзотика».

Ответ: известно несколько схем, позволяющих регулировать потребление тепловой энергии зданием на нужды отопления. Наиболее часто применяется насосная схема, которая позволяет плавно регулировать потребление тепловой энергии зданием. Но внедрение такой схемы требует затрат на покупку насоса и соответствующего клапана, что при малом потреблении (соответственно и сравнительно небольших объемах экономии) будет окупаться достаточно продолжительное время. Специально для таких потребителей и был разработан наш Регулятор, который показал на практике окупаемость 1-2 месяца. Для зданий с потреблением больше 0,2 Гкал/ч традиционная насосная схема окупается в приемлемые сроки.

Ответ: установку Регулятора нужно согласовывать с теплоснабжающей организацией. Хотя прямых указаний на необходимость согласования в нормативных документах нет, большинство теплоснабжающих организаций придерживаются мнения, что любые узлы регулирования у потребителей влияют на гидравлику всей сети и поэтому требуют согласования. Справедливости ради, надо сказать, что процедура получения техусловий и согласования формальны и не требуют, как правило, много времени и сил.

Ответ: при потреблении зданием до 0,2 Гкал (и менее) расход теплоносителя составляет около 2 л/с (при скорости теплоносителя в трубе порядка 1 м/с), при таких расходах возникновение гидроудара не возможно. Если используется соленоидный клапан, регулирующий расход, то при его закрытии/открытии (где-то 2 раза в полчаса) слышен характерный щелчок. В офисных зданиях его, конечно, не слышно. Если рядом жилые помещения, то лучше использовать клапан шаровой с сервоприводом, он работает бесшумно, но его стоимость несколько выше.

Ответ: нет. Клапан будет регулировать подачу тепловой энергии кратковременным перекрыванием подающего трубопровода. Обратный трубопровод ничем не перекрывается. Именно давлением в обратном трубопроводе теплосети обеспечивает нормальную работу зависимых систем потребителей без завоздушивания.

Ответ: На каждое здание нужно ставить свой Регулятор, поскольку он рассчитывает индивидуальное потребление зданием тепловой энергии. Если подключить несколько зданий, то из-за индивидуальных особенностей одни из них будут перегреваться, а другие недогреваться. При индивидуальной установке регулятора он будет учитывать особенности конкретного здания и обеспечивать ему необходимое количество тепловой энергии для поддержания комфортной температуры в помещении.

Ответ: Регулятор настраивается очень просто: ему задается температурный график тепловой сети и температура, которую необходимо поддерживать в помещениях здания. Остальное он вычислит сам. Кроме того, если здание офисное или промышленное, можно указывать периоды, когда температура в помещениях может быть пониженной (выходные дни и ночные часы). В этом случае экономия будет еще больше. Если Регулятор подключен к сети Интернет, то настройка может быть осуществлена с любого компьютера (по логину и паролю).

Ответ: Монтаж сводится к установке клапана (на резьбовом или фланцевом соединении - операция доступная любому слесарю). Операция требующая сварки – установка гильзы в трубопровод для датчика температуры. Крепление второго датчика температуры (воздуха) на северный (желательно) фасад здания – не представляет сложности. Сам Регулятор монтируется на стену (можно в шкафчик). Если подключение к интернету через мобильную связь, то возможно потребуется вывести антенку на фасад здания.

Ответ: В качестве примера приведем данные работы регулятора в здании офиса теплоснабжающей компании в Москве. На рис. 1 виден исполнительный механизм (шаровой клапан с сервоприводом), установленный после теплосчетчика (по ходу теплоносителя). На рис. 2 представлен график температуры в подающем и обратном трубопроводе системы отопления, которые фиксировал теплосчетчик. На рис. 3. график потребления тепловой энергии зданием (данные теплосчетчика). На рис. 2 и 3 примеры работы системы диспетчеризации и учета данных, которые доступны при подключении этой услуги.

Рисунок 1. Исполнительный механизм регулятора отопления.

Рисунок 2. График температур в офисном здании после установки регулятора (по данным теплосчетчика)

Рисунок 3. Потребление тепловой энергии зданием после установки регулятора отопления (данные теплосчетчика)

Экономия тепловой энергии 25-40%. Простота установки и эксплуатации. Окупаемость - 1 сезон.

Введение

Общеизвестно, что в межсезонье, (особенно это ощущается весной) в системах отопления большинства жилых зданий происходит «перетоп», что не только создает дискомфорт, но и обходится в существенную «копеечку». Это, конечно, касается не только жилых зданий, а любых, имеющих «зависимую» схему подключения, например, через элеватор.

Технически причина этого «перетопа» может быть устранена только регулированием потребления в самом здании. Для этого сейчас активно предлагаются к внедрению индивидуальные тепловые пункты (ИТП) - решение, скажем прямо, не дешевое. Другой вариант - насосное смешение - тоже не лишен недостатков, поскольку требует не только затрат на насос и автоматику, но и постоянного расхода электроэнергии (а это постоянные затраты), кроме того схема зависима от электроэнергии, при ее отключении отопления в здании не будет. Самое главное - насосная схема требует капитальных затрат, которые при небольшом теплопотреблении будет окупаться очень долго.

Как раз для зданий с небольшим потреблением (до 0,3 Гкал/ч) есть недорогое и качественное решение проблемы - регулятор отопления, который регулирует потребление тепловой энергии здания позиционно (т.е. обеспечивая прерывистое отопление) - метод давно известный и описанный во всех учебниках, но несколько забытый, поскольку большинство известных регуляторов работало по параметру температуры теплоносителя из системы отопления, что приводило по ряду причин к разрегулировке системы отопления по стоякам. Предлагаемый регулятор имеет совершенно другой метод регулирования. Программное обеспечение вычисляет по температуре наружного воздуха необходимое количество тепловой энергии для здания и не дает ему потреблять лишнего.

При непродолжительных (до 30 мин) перерывах циркуляции теплоносителя в системе отопления температура в помещении практически не будет отличаться от начального значения. Даже при сильных морозах (-20 О С) шестиминутный перерыв в циркуляции теплоносителя приведет к понижению температуры помещения в панельном здании всего на 0,1 °С поскольку инерционность водяной системы отопления и самого здания весьма велики. Кратковременный перерыв циркуляции в особенности оправдан тогда, когда он обусловлен избыточной в данный момент времени тепловой мощностью, которая фиксируется приборами автоматического регулирования. В этом случае позиционное регулирование будет столь же эффективно, как и регулирование пропорциональное, которое обеспечивает, например, ИТП (независимое подключение).

Технические средства, реализующие позиционное регулирование, не требуют применения сложной и дорогой техники. Не нужны циркуляционные насосы, требующие постоянного электропитания, существующие элеваторы могут остаться на своих местах, а стоимость исполнительных механизмов позиционного типа, например, электромагнитных клапанов, существенно ниже стоимости клапанов пропорционального регулирования.

О регуляторе отопления здания

Регулятор предназначен для управления процессом потребления тепловой энергии в зданиях с зависимым подключением с нагрузкой не более 0,3 Гкал/ч.

По показаниям датчиков температуры наружного воздуха и температуры в обратном трубопроводе (см. рис.) контроллер оценивает количество избыточного тепла, поступающего в здание. Для поддержания комфортной температуры в помещениях поток теплоносителя периодически прерывается с помощью клапана, устраняя «перетопы». Во время кратковременного отключения протопленное здание экономит тепло, а температура в помещениях остается стабильной за счет теплоаккумуляторного свойства здания.

Экономия

В среднем типовое 5-этажное или 9-этажное здание потребляет на отопление 70-100 Гкал тепловой энергии (март). Даже при минимальной экономии в 25% и средней стоимости 1 Гкал в 2000 руб. экономия составит 35-50 тыс. руб. в месяц. Регулятор окупается сразу, за первый же отопительный сезон!

Настройка и управление

Для настройки и управления контроллером не требуется специальных программ. Его обслуживание осуществляется через встроенный WEB-сервер с помощью мобильных устройств (ноутбук, планшет, смартфон).

Более того, встроенный модем может осуществлять рассылку SMS сообщений при возникновении аварийных и нештатных ситуаций. При подключении пакета услуг «экономь» возможна организация удаленного доступа к контроллеру через сеть Интернет.

Кроме того, вычислитель регулятора сертифицирован как средство измерения (тепловычислитель узла учета). Таким образом, если к нему подключить расходомер, то получится полноценный узел учета тепловой энергии без дополнительных затрат.

Частые вопросы и ответы

  1. Регулятор можно устанавливать только потребителям с зависимой схемой подключения?

Ответ: достаточно существенные перетопы в осенний и весенний периоды (а для теплых климатических зон - практически весь отопительный сезон) присущи как раз зависимой схеме присоединения. Если схема независимая, то тепловая энергия передается через теплообменник и соответствующая автоматика должна регулировать величину потребления (соблюдение температурного графика, исключающего перетопы).

  1. Почему регулятор рекомендуется устанавливать при потреблении зданием до 0,3 Гкал/ч

Ответ: известно несколько схем, позволяющих регулировать потребление тепловой энергии зданием на нужды отопления. Наиболее часто применяется насосная схема, которая позволяет плавно регулировать потребление тепловой энергии зданием. Но внедрение такой схемы требует затрат на покупку насоса и соответствующего клапана, что при малом потреблении (соответственно и сравнительно небольших объемах экономии) будет окупаться достаточно продолжительное время. Специально для таких потребителей и был разработан наш Регулятор, который показал на практике окупаемость от 2 месяцев до 2 отопительных сезонов. Для зданий с потреблением больше 0,3 Гкал/ч традиционная насосная схема окупается в приемлемые сроки.

  1. Не вызовет ли работа Регулятора шума или гидроударов в системе отопления здания?

Ответ: при потреблении зданием до 0,2 Гкал (и менее) расход теплоносителя составляет около 2 л/с (при скорости теплоносителя в трубе порядка 1 м/с), при таких расходах возникновение гидроудара не возможно. Если используется соленоидный клапан, регулирующий расход, то при его закрытии/открытии (где-то 2 раза в полчаса) слышен характерный щелчок. В офисных зданиях его, конечно, не слышно. Если рядом жилые помещения, то лучше использовать клапан шаровой с сервоприводом, он работает бесшумно, но его стоимость немного выше.

  1. Не вызовет ли работа Регулятора завоздушивания системы отопления здания?

Ответ: нет. Клапан будет регулировать подачу тепловой энергии кратковременным перекрыванием подающего трубопровода. Обратный трубопровод ничем не перекрывается. Именно давлением в обратном трубопроводе теплосеть обеспечивает нормальную работу зависимых систем потребителей без завоздушивания.

  1. Можно ли поставить один Регулятор на несколько зданий?

Ответ: На каждое здание нужно ставить свой Регулятор, поскольку он рассчитывает индивидуальное потребление зданием тепловой энергии. Если подключить несколько зданий, то из-за индивидуальных особенностей одни из них будут перегреваться, а другие недогреваться. При индивидуальной установке регулятора он будет учитывать особенности конкретного здания и обеспечивать ему необходимое количество тепловой энергии для поддержания комфортной температуры в помещении.

  1. Сложно ли настраивать Регулятор?

Ответ: Регулятор настраивается очень просто: ему задается температурный график тепловой сети и температура, которую необходимо поддерживать в помещениях здания. Остальное он вычислит сам. Кроме того, если здание офисное или промышленное, можно указывать периоды, когда температура в помещениях может быть пониженной (выходные дни и ночные часы). В этом случае экономия будет еще больше. Если Регулятор подключен к сети Интернет, то настройка может быть осуществлена удаленно с любого компьютера (по логину и паролю).

  1. Насколько сложен монтаж Регулятора?

Ответ: Монтаж сводится к установке монтажного модуля с уже установленной на нем необходимой арматурой (на резьбовом или фланцевом соединении - операция доступная любому слесарю). Операция требующая сварки - установка гильзы в трубопровод для датчика температуры. Крепление второго датчика температуры (воздуха) на северный (желательно) фасад здания - не представляет сложности. Шкаф управления монтируется на стену. Если подключение к интернету через мобильную связь, то возможно потребуется вывести антенну на фасад здания.

  1. Есть ли практический опыт внедрения Регулятора?

Ответ: В качестве примера приведем данные работы регулятора в здании офиса теплоснабжающей компании в Москве. На рис. 1 виден исполнительный механизм (шаровой клапан с сервоприводом), установленный после теплосчетчика (по ходу теплоносителя). На рис. 2 представлен график температуры в подающем и обратном трубопроводе системы отопления, которые фиксировал теплосчетчик. На рис. 3. график потребления тепловой энергии зданием (данные теплосчетчика). На рис. 2 и 3 примеры работы системы диспетчеризации и учета данных.

Рисунок 1. Исполнительный механизм регулятора отопления (слева) и смонтированный в шкафу регулятор (контроллер) (справа).

Рисунок 2. График температур в офисном здании после установки регулятора (по данным теплосчетчика)

Рисунок 3. Потребление тепловой энергии зданием после установки регулятора отопления (данные теплосчетчика)

2014-01-15

Вопрос экономии энергии, потребляемой для поддержания комфортного микроклимата в отапливаемых помещениях, становится все актуальнее. Снижение температуры воздуха в период отсутствия людей или остановки технологического оборудования дает возможность уменьшить потребление энергоресурсов.





По результатам численного моделирования выполнен расчет экономии тепловой энергии при прерывистом отоплении в условиях применения четырех видов отопительных приборов. Установлено, что наибольшая экономия теплоты наблюдается при использовании конвектора или радиатора, поскольку они обеспечивают самый быстрый темп разогрева.

Панельные отопительные приборы непригодны для прерывистого отопления, так как характеризуются значительной тепловой инерцией. Вопрос сокращения количества энергии, потребляемой для поддержания требуемых условий микроклимата в отапливаемых помещениях, приобретает все большую актуальность.

Снижение температуры воздуха в помещениях в период отсутствия людей или остановки технологического оборудования дает возможность уменьшить потребление энергетических ресурсов. Имеющиеся исследования, связанные с анализом прерывистого отопления (переменного режима работы отопления), как правило, не имеют системного характера.

В математических моделях акцент сделан на переносе теплоты в массиве ограждающих конструкций, не принимаются во внимание процессы конвекции в воздушной среде помещения. Такой подход не позволяет адекватно учесть влияние месторасположения и вида нагревателя на тепловой режим помещения. В разработанной автором под руководством д.т.н., проф. П. И. Дячека нестационарной двумерной физико-математической модели учтена сопряженность различных видов теплообмена в ограждениях и в свободном пространстве отапливаемых помещений, влияние вида отопительных приборов на процессы переноса.

Приняты во внимание геометрические и конструктивные особенности ограждений и заполнений световых проемов. Удовлетворительная степень соответствия двумерной модели реальным трехмерным процессам проверена в экспериментах. Дифференциальные уравнения переноса, входящие в разработанную модель, приведены в работе . Проанализируем задачу о прерывистом отоплении общественного помещения.

Расчетная область представляет собой вертикальный разрез помещения, расположенного на нижнем этаже, по центру окна. Снизу находится подвал. Высота помещения составляет 2,5 м, длина — 6 м. Наружные и внутренние ограждения выполнены с использованием железобетонных конструкций. Подробная информация о конструкции ограждений, внешний вид расчетной области, а также характер распределений полей температуры и скорости при различных вариантах работы отопительных приборов представлены в материале .

Предполагая, что помещение не эксплуатируется в субботу и воскресенье, рассмотрим несколько вариантов применения прерывистого отопления с четырьмя видами приборов (радиатор, конвектор, подоконная отопительная панель и напольное отопление). Для исключения влияния на результат прочих нестационарных факторов задаем постоянную температуру наружного воздуха на уровне -24 °C (условия Минска).

В смежных помещениях назначена температура воздуха 20 °C, в подвале температура задана на уровне 5 °C. Отопительная нагрузка помещения Q расч определена по традиционной методике. Связь между текущим значением мощности прибора Q тек и его расчетной нагрузкой Q расч задаем с помощью коэффициента мощности K, итого эта связь запишется как: Q тек = KQ расч. (1)

При наступлении выходных в течение первых суток задаем полное отключение системы отопления (K = 0) или снижение мощности в два раза (K = 0,5). Во вторые сутки включаем отопление, задаваясь одним из следующих значений коэффициента мощности K = 1; 1,5 или 2. Для сопоставления динамики повышения температуры в условиях применения различных режимов и отопительных приборов моделируем разогрев помещения в течение более длительного периода, чем одни сутки.

На рис. 1 представлены кривые изменения средней температуры воздуха обслуживаемой зоны для группы расчетов с полным отключением отопления в первые сутки. Рис. 2 содержит аналогичные графики для расчетов, в которых в период 0-24 ч коэффициент мощности задан 0,5. В начальный момент (0 ч) средняя температура воздуха в помещении соответствует стационарной задаче и зависит от вида прибора.

Основной причиной отличия температуры воздуха в начальный момент является различие фактических потерь теплоты вследствие неодинаковой интенсивности прогрева ограждающих конструкций, расположенных вблизи отопительных элементов . Рис. 1 и рис. 2 показывают, что динамика изменения температуры воздуха во многом зависит от вида отопительного прибора. Наиболее высока скорость изменения в расчетах с конвектором и радиатором.

Варианты с подоконной отопительной панелью и, особенно, с напольным отоплением, демонстрируют более низкую динамику снижения и увеличения температуры. Количественное сопоставление результатов удобно выполнять, используя величины, представленные в табл. 1-4. Курсивом выделены значения для режимов, не обеспечивающих своевременное достижение исходной температуры внутренней среды после периода снижения температуры.

В табл. 1 приведено время повышения температуры воздуха до исходного значения, считая от начала разогрева. Допустим, что к концу вторых суток (то есть на момент времени 48 ч) в помещении должна быть восстановлена исходная температура воздушной среды. По данным табл. 1 видно, что разогрев помещения необходимо проводить с повышенной мощностью (K > 1), так как при коэффициенте K = 1 ни один из приборов не обеспечивает достаточного темпа разогрева.

Инерционность панельных отопительных приборов является причиной того, что при K = 1 время разогрева составит более шести суток. Таким образом, к началу следующих выходных температура воздуха не достигнет значения, которое наблюдалось до начала отключения отопления (или снижения) мощности. При полном отключении в первые сутки и последующем разогреве с K = 1,5 только напольное отопление не обеспечит своевременного разогрева, поскольку является наиболее инерционным.

Табл. 2 содержит значения дополнительных затрат теплоты (из расчета на 1 м 2 площади помещения) в период разогрева до исходной температуры. Данные затраты имеют место при разогреве с коэффициентом мощности K > 1 до момента достижения исходной температуры воздуха. Далее следует перевести систему отопления в режим постоянной работы с K = 1.

Чем более длительный период времени требует разогрев помещения и чем более высокая отопительная мощность при этом используется, по сравнению с расчетной мощностью, тем значительнее дополнительные затраты. Экономия теплоты за счет прерывистого режима работы отопления за рабочий цикл, длящийся одну неделю, указана в табл. 3. Максимально возможное значение экономии для исследуемых вариантов определяется количеством теплоты, которое не использовано в период суточного отключения отопления (3170 кДж на 1 м 2 площади помещения) или снижения мощности в два раза (1580 кДж/м 2). При последующем разогреве помещения с K > 1 дополнительные затраты (табл. 2) определяют итоговое, более низкое значение экономии теплоты.

В табл. 4 представлена экономия теплоты в условиях прерывистого отопления, выраженная в процентах. Значения определены относительно затрат теплоты на отопление в течение недельного периода работы при постоянном режиме с коэффициентом мощности K = 1, составляющих 22 180 кДж/м 2 . В рассмотренных режимах для всех видов приборов полное отключение отопления в первые сутки выходных является более выгодным, чем снижение мощности на 50 %.

При отключении происходит более интенсивное и глубокое снижение температуры воздуха, за счет этого более значительно уменьшаются потери теплоты. Однако полное отключение не следует допускать при опасности замерзания теплоносителя в системе или в случае понижения температуры воздуха до значения, которое приведет к нарушению исправности технологического или иного оборудования.

Максимальная экономия среди вариантов, обеспечивающих своевременный разогрев помещения, наблюдается при использовании конвектора или радиатора, поскольку указанные приборы обеспечивают самый быстрый темп разогрева внутренней воздушной среды. Результаты других исследователей также свидетельствуют об этом . Значительно меньшая экономия обеспечивается при использовании подоконной отопительной панели.

Напольное отопление практически не дает экономии при прерывистом режиме работы по причине чрезмерной инерционности. Результаты проведенного исследования полностью подтверждают предположение о непригодности панельных отопительных приборов для использования в условиях прерывистого отопления. Для предварительного сопоставления различных отопительных приборов можно порекомендовать следующее соображение.

Чем более массивным является отопительный прибор, и чем больше его емкость по теплоносителю, тем выше тепловая инерция данного нагревателя и тем меньше выгоды можно получить от применения прерывистого отопления. Анализ результатов позволяет сделать вывод, что при использовании прерывистого отопления следует по возможности максимально удлинить период отключения (или снижения мощности), а на разогрев оставить время, необходимое для повышения температуры воздуха до требуемого значения при включении нагревателей с максимальной мощностью.

Практика показывает, что наиболее быстро обеспечить разогрев внутреннего воздуха можно, используя отопительные приборы с принудительной циркуляцией воздуха (например, конвекторы со встроенными вентиляторами). Длительность периода разогрева зависит от большого числа факторов: вида прибора, его мощности и места размещения, исходной температуры внутреннего воздуха, исходной температуры ограждений и оборудования, а также их тепловой инерции.

Применение программно реализованных математических моделей дает возможность наиболее полно учесть все факторы, определяющие процессы охлаждения и нагрева помещения, и спроектировать систему отопления, максимально подходящую для прерывистого режима работы. В рамках существующего объекта численные эксперименты позволяют разработать оптимальный режим функционирования имеющейся отопительной системы.

  1. Захаревич А.Э. Особенности формирования микроклимата в многосветных пространствах // Вестник МГСУ, №7/2011.
  2. Захаревич А.Э. Особенности формирования микроклимата отапливаемых помещений // Энергетика, №5/2009.
  3. Захаревич А.Э. Формирование параметров микроклимата в отапливаемых помещениях в условиях естественной конвекции: Автореф. дисс. на соиск. уч. ст. к.т.н. - Минск: БНТУ, 2012.
  4. Асатов P.P. Факторы, влияющие на экономию теплоты при прерывистом отоплении зданий // Теоретические основы теплогазоснабжения и вентиляции: Сб. докл. III Межд. науч.-техн. конф. МГСУ, 2009.
  5. Табунщиков Ю.А., Бродач М.М. Экспериментальное исследование оптимального управления расходом энергии // Теоретические основы теплогазоснабжения и вентиляции: Сб. докл. III Межд. науч.-техн. конф. МГСУ, 2009.

Реконструкция системы отопления, т. е. частичная или полная замена ее элементов, их конструктивная модерни­зация, осуществляется в связи с физическим износом систе­мы, различного рода технологическими изменениями, вы­званными назначением и объемом здания или условиями работы системы, ее моральным старением и другими причи­нами.

Износ системы водяного и парового отопления при дли­тельной эксплуатации происходит под воздействием внут­ренней, а иногда и внешней коррозии. Вследствие отложе­ния взвешенных частиц и образования накипи повышается гидравлическое сопротивление теплопроводов, отопитель­ных приборов, ухудшаются их теплотехнические свойства. Этим же процессам подвержены оборудование систем (теп­лообменники, баки, воздухосборники, грязевики и пр.) и запорно-регулирующая арматура.

Исследованиями систем водяного отопления, проведен­ными в условиях эксплуатации их в Москве, установлено заметное различие в изменении потерь давления в системах в течение многолетней эксплуатации в зависимости от ка­чества теплоносителя. Оценить это изменение можно по формуле

Дрг/Дрр = 0,6 + аг°"38,

где Дрг, Дрр - потери давления в системе отопления соответст­венно через г лет эксплуатации и расчетные; а - коэффициент, зависящий от качества теплоносителя (а- 0,17 для деаэрированной воды при содержании кислорода в ней до 0,1 мг/л и а=0,65 для недеаэрированной и смешанной воды при содержании кислорода 10 мг/л).

В начале эксплуатации потери давления в новой системе водяного отопления составляют около 60% расчетных. Рас­четные потери давления достигаются в системах, питаемых недеаэрированной водой, практически в первый год экс­плуатации, а в системах, работающих на деаэрированной воде, через 8-10 лет эксплуатации.

Повышение потерь давления в системе приводит к умень­шению расхода теплоносителя, к гидравли­ческой и тепловой разрегулировке системы отопления и снижению теплоотдачи ее элементов.

Срок службы отдельных элементов системы отопления не одинаков. Долговечность систем зависит от вида и качества используемого теплоносителя, условий их рабо­ты. Срок службы систем водяного отопления возрастает при их теплоснабжении от ТЭЦ и тепловых станций, когда про­водятся умягчение и деаэрация воды, по сравнению с тепло­снабжением от местных котельных. Особенности работы системы парового отопления, более интенсивные процессы коррозии, происходящие в ней, ставят ее на последнее мес­то по долговечности среди других систем. Наиболее долго­вечной считают систему воздушного отопления (за исклю­чением воздухонагревателей).

Срок службы системы отопления зависит и от материала, из которого сделаны ее элементы, его качества. Например, коррозионные процессы, особенно в стальных отопитель­ных приборах и деталях, быстро понижают их прочность. Важно и качество изготовления самих элементов, прове­дения сборочных и монтажных работ.

Решение о частичной или полной замене элементов систе­мы отопления принимают после специального обследования, в ходе которого проводят гидравлическое и тепловое испы­тания системы, определяют расход теплоносителя в системе в целом и ее отдельных узлах, соответствие теплоотдачи элементов расчетной. Состояние металла в системе оцени­вают путем исследования образцов, извлеченных путем частичной разборки или вырезки.

Проектируя реконструкцию системы отопления, стре­мятся сохранить те ее элементы, которые мало изменили свои свойства в процессе эксплуатации. К ним относятся чугунные радиаторы и ребристые трубы, которые при ка­чественной ежегодной промывке практически не подвер­жены коррозии. Относительно долго служат и те элементы системы, которые выполнены из неметаллических материа­лов (керамические отопительные приборы, стеклянные трубы в бетонных отопительных панелях и пр.).

При реконструкции систем отопления с использованием существующих стальных труб эквивалентную шерохова­тость их внутренней поверхности принимают: для воды и пара - 0,5, конденсата-1,0 мм.

Реконструкцию системы отопления часто проводят по причинам, не связанным непосредственно сее состоянием. Так, полную замену системы осуществляют при капиталь­ном ремонте, связанном сперепланировкой здания. При этом иногда принимают принципиально новое схемное реше­ние системы с заменой устаревших конструкций, использо­ванием нового оборудования, обеспечением автоматизации. Перепроектирование проводят с учетом изменения тепло - затрат на отопление помещений.

В производственных и коммунальных зданиях конструк­ция системы отопления может изменяться вследствие изме­нения технологических процессов, теплового режима поме­щений, а также назначения здания в целом.

Полное перепроектирование системы отопления тре­буется при замене теплоносителя, например, при переходе от пара к воде.

Изменение условий теплоснабжения здания (изменение температуры, давления теплоносителя) вызывает реконст­рукцию теплового ввода и местного теплового пункта. Больших затрат требует, в частности, перевод системы во­дяного отопления с зависимой на независимую схему при­соединенияк тепловой сети. При этом дополнительно устанавливают теплообменники, циркуляционные и подпиточные насосы, расширительный бак, новые контрольно - измерительные приборы, приборы автоматизации, запорно-регулирующую арматуру. Каких-либо дополнительных из­менений непосредственно в системе отопления обычно не требуется.

Повышение требований к тепловому комфорту в зда­ниях, качеству работы инженерного оборудования со сни­жением эксплуатационных затрат, в том числе экономией тепловой энергии, также вызывает реконструкцию системы отопления.

Неспособность системы отопления удовлетворять воз­росшим требованиям называют ее моральным старением. Качество устаревшей системы повышают путем частичной модернизации отдельных узлов и деталей, оснащения ее средствами управления и диспетчерского контроля.

Одной из причин реконструкции может бытьизменение условий эксплуатации системы отопления. Например, переход от постоянного теплового режима помещений зда­ния к переменному с прерывистым отоплением. При этом изменяют мощность системы отопления, ее конструкцию, схемное решение, вводят новое оборудование.

Новую систему отопления в настоящее время проекти­руют, предусматривая возможность ее реконструкции или модернизации в будущем. Например, разделяют систему водяного отопления на пофасадные части для оснащения в будущем приборами автоматического регулирования; предусматривают возможность замены обычного элеватора элеватором с регулируемым соплом или смесительным на­сосом, перехода к независимой схеме присоединения к теп­ловой сети.

В системах воздушного отопления автоматизируют дей­ствие отопительных агрегатов и воздушно-тепловых завес, центральных систем, в том числе регулирование распре­деления воздуха по каналам и воздуховодам.

В зданиях старой постройки реконструкция системы отопления, как правило, связана с конструктивными изме­нениями (например, с перекладкой магистральных труб). Учет этих затрат, а также стоимости нового автоматизиро­ванного оборудования часто приводит к выводу об эконо­мической нецелесообразности реконструкции морально устаревшей системы. Окончательное решение и выбор ва­рианта реконструкции в этом случае увязывают с экономи­ческой целесообразностью реконструкции всего здания в целом.

Частичную реконструкцию системы отопления может вызвать какой-либо внутренний дефект, который нельзя устранить путем ремонта. Например, при выходе из строя замоноличенных в строительные конструкции греющих элементов приходится устанавливать новые отопительные приборы непосредственно в обогреваемых помещениях, присоединяя их к существующей системе.

В редких случаях, в условиях особенно суровых зим (на­пример, зимой 1978/79 гг.), реконструкция вызывается последствиями аварий, особенно при неправильной экс­плуатации систем отопления.

Библиографический список:

1. Справочник по теплоснабжению и вентиляции. Книга 1, Щекин Р.В., Кореневский С.М., Бем Г.Е., Госстройиздат УССР, 1959

2. СНиП 23-01-99*. Строительная климатология / Госстрой России. – М.: ГУП ЦПП, 2005.

3. СНиП 23-02-2003. Тепловая защита зданий / Госстрой России. – М.: ФГУП ЦПП, 2004.

4. ГОСТ 30494-96. Здания жилые и общественные. Параметры микроклимата в помещениях / Госстрой России. – М.: МНТКС, 1999.

5. СП 23-101-2004. Проектирование тепловой защиты зданий / Госстрой России. – М.: ГУП ЦПП, 2005.

6.Сканави А. Н., Махов Л. М. Отопление: Учебник для вузов. – М.: Издательство АСВ, 2002.

7. Внутренние санитарно-технические устройства. В 3 ч. Ч.1. Отопление / В. Н. Богословский, Б. А. Крупнов, А. Н. Сканави и др.; Под ред. И. Г. Староверова и Ю. И. Шиллера. – М.: Стройиздат, 1990. (Справочник проектировщика).

8. Лымбина Л. Е., Магнитова Н. Т. Отопление и вентиляция гражданского здания. Учебное пособие к курсовому проекту. Часть 1. Теплотехнический расчет конструкций. Теплоэнергетический баланс здания. – Челябинск, ЮУрГУ, 1998.

9. Лымбина Л. Е., Магнитова Н. Т., Буяльская И. С. Отопление и вентиляция гражданского здания. Учебное пособие к курсовому проекту. Задание. – Челябинск, ЧГТУ, 1994.