Полипропиленовые трубы гидравлический расчет таблица. Расчет полипропиленовых труб и фитингов

Тепловое удлинение

При проектировании и проведении монтажных работ необходимо учитывать те-пловое удлинение трубопроводов. Неармированные полипропиленовые трубы имеют значительное тепловое расширение. У полипропиленовых труб, армированных алюминием или стекловолокном, коэффициент линейного расширения в пять раз меньше по сравнению с неармированными трубами. Об этом нужно помнить всегда, приступая к монтажу той или иной системы.

Сравнительная таблица линейного расширения труб из различных материалов

Материал трубопровода

Коэффициент линейного расширения, мм/м °С

Чугун

0 ,0104

Сталь нержавеющая

0 ,011

Сталь черная и оцинкованная

0 ,0115

Медь

0 ,017

Латунь

0,017

Алюминий

0 ,023

Металлопластик

0 ,026

Поливинилхлорид ( PVC)

0 ,08

Полибутилен (PB)

0,13

Полипропилен (PP - R 80 PN 10 и PN 20)

0 ,15

Полипропилен (PP - R 80 PN 25 алюминий)

0 ,03

Полипропилен (PP - R 80 PN 20 стекловолокно)

0 ,035

Сшитый полиэтилен (PEX)

0,024

Вопрос теплового расширения во многом решается правильным использованием опор и выбором конфигурации трубопровода. Одним из общих правил монтажа является стремление создать как можно более гибкую эластичную систему с минимумом жестких коротких узлов, имеющих малую способность к деформации. Игнорирование указаний по компенсации линейных расширений трубопровода вызывает высокие продольные напряжения в стенках труб и тем самым существенно сокращает срок службы системы. Неверно выбранные расстояния между креплениями трубопровода также негативно сказываются на сроке службы. Произвольное увеличение расстояния между опорами может повлечь увеличе-ние прогиба трубы и защемление ее на опорах, что исключает прямолинейность и возможность свободного удлинения или укорочения трубопровода в период эксплуатации, а также создает дополнительные усилия на конструкцию опор.

Тепловое удлинение/укорочение трубопровода Δ l , мм, независимо от его диаметра определяют по формуле

Δ l = α/Δ t ,

где α - коэффициент линейного удлинения,

Δt - разность между температурами при эксплуатации и при монтаже.

Если температура трубопровода при эксплуатации выше температуры мон-тажа, то длина трубопровода увеличивается, и наоборот.

Чтобы исключить появление ошибки в расчетах, целесообразно обозначать удлинение со знаком плюс (+Δl), а укорочение со знаком минус (-Δl).

Продольное усилие, возникающее в жестко закрепленном участке трубо-провода, не зависит от его длины, поэтому необходимо учитывать влияние те-пловых напряжений в любом закрепленном участке трубопровода.

Трубопровод должен свободно удлиняться или укорачиваться без перена-пряжения материала труб, соединительных деталей, шва трубопровода, а также подвижных (скользящих) и неподвижных (мертвых) опор. Это обеспечивается благодаря компенсирующей способности элементов трубопровода (самокомпенсация) и компенсаторов, а также правильной расстановки подвижных и неподвижных опор.

Неподвижные опоры должны направлять линейное тепловое удлинение трубопровода в сторону компенсирующих элементов. Расстояния между опорами рассчитываются на основании нормативных документов (СП 40-101-96, СП 40-102-2001 и технический каталог компании «Эгопласт» «Система трубопроводов для водоснабжения и отопления», часть 1) в зависимости от ма-териала, наружного диаметра, толщины стенок трубы, температуры и массы транспортируемых веществ. При этом должно обеспечиваться сохранение пря-молинейности трубопровода на весь расчетный период эксплуатации. Если расчет произведен неверно или же он совсем не производился, то негативный результат не заставит себя ждать.

Шероховатость и диаметр

При проектировании напорных трубопроводных систем определяющее зна-чение имеют их гидравлические расчеты. Они служат основой для вычисления диаметра труб и подбора насосного оборудования, которые обеспечивают требуемый режим работы этих систем в течение всего срока эксплуатации. Качество выполненных гидравлических расчетов определяет экономичность как самого трубопровода, так и всего ком-плекса связанных с ним сооружений. Полимерные трубы имеют очень гладкую внутреннюю поверхность и малые гидравлические потери, что позволяет использовать трубы меньшего диаметра, чем стальные. Монтаж становится более компактным и экономичным. Из приведенной ниже таблицы видно, что коэффициент эквивалентной шероховатости полипропиленовой трубы на два порядка ниже по сравнению со стальной трубой. Поэтому, когда у заказчика появляется вопрос: «Почему при замене стальной трубы на полипропиленовую был выбран меньший диаметр?», можно привести данную таблицу, даже если у вас нет под рукой гидравлического расчета системы.

Коэффициент эквивалентной шероховатости трубопроводов в зависимости от материала труб

Трубопроводы

Коэффициент эквивалентной шероховатости К, мм

Стальные новые трубы

Медные трубы

0,0015

Полипропиленовые трубы

0,003-005

Изоляция

Для предотвращения возникновения избыточных напряжений и повреждения полипропиленовых труб о строительные конструкции, их необходимо замоноличивать в изоляции. Чтобы избежать появления конденсата на трубах в системах холодного водоснабжения, монтаж трубопроводов также необходимо производить в изоляции. Изоляция трубопроводов системы горячего водоснабжения обеспечивает снижение тепловых потерь в окружающую среду.

Сварка и крепеж

В трубопроводах из полипропилена сварное соединение практически не снижает надежности системы, количество соединительных и установочных элементов при соблюдении всех правил сварки не имеет значения. При сварке полипропиленовых труб и фитингов необходимо соблюдать рекомендации и требования, изложенные в «Руководстве по монтажу напорных трубопроводных систем из полипропилена».

Коэффициенты сопротивления полипропиленовых фитингов ниже, чем у чугунных. Запорная арматура отличается высокой надежностью, усилия от затяжки резьбы отсутствуют. При размещении труб на стенах и потолках не рекомендуется использовать неподвижные опоры. Неподвижные опоры, как правило, фиксируют тяжелые трубные узлы или тяжелые элементы трубопровода, не имеющие собственных креплений (например, фильтры или краны).

При проведении монтажных работ не допускается использование трубного (газового) ключа для затяжки комбинированных полипропиленовых фитингов. Использование данного ключа приводит к разрушению фитингов. Соблюдение всех этих нормативных правил обеспечит надежную и безаварийную эксплуатацию системы трубопроводов в течение всего расчетного периода ее эксплуатации.

С анализом технологий производства и анализом текущего состояния и прогнозом рынка Вы можете познакомиться в отчете маркетингового исследования Академии Конъюнктуры Промышленных Рынков: «Рынок полипропиленовых труб в России».

Ю. Д. Олейников, к. т. н., компания «Эгопласт», руководитель направления «Отопление»

Гидравлический расчет является важной составляющей процесса выбора типоразмера трубы для строительства трубопровода . В нормативной литературе по проектированию этот ясный с точки зрения физики вопрос основательно запутан. На наш взгляд, это связано с попыткой описать все варианты расчета коэффициента трения, зависящего от режима течения, типа жидкости и ее температуры, а также от шероховатости трубы , одним (на все случаи) уравнением с вариацией его параметров и введением всевозможных поправочных коэффициентов. При этом краткость изложения, присущая нормативному документу, делает выбор величин этих коэффициентов в значительной степени произвольным и чаще всего заканчивается номограммами, кочующими из одного документа в другой.
С целью более подробного анализа предлагаемых в документах методов расчета представляется полезным вернуться к исходным уравнениям классической гидродинамики .

Потеря напора, связанная с преодолением сил трения при течении жидкости в трубе , определяется уравнением:

Где: L и D длина трубопровода и его внутренний диаметр, м; ? - плотность жидкости, кг/м3; w - средняя объемная скорость, м/сек, определяемая по расходу Q, м3/сек:

λ - коэффициент гидравлического трения, безразмерная величина, характеризующая соотношение сил трения и инерции, и именно ее определение и есть предмет гидравлического расчета трубопровода . Коэффициент трения зависит от режима течения, и для ламинарного и турбулентного потока определяется по-разному.
Для ламинарного (чисто вязкого режима течения) коэффициент трения определяется теоретически в соответствии с уравнением Пуазейля:
λ = 64/Re (2)
где: Re - критерий (число) Рейнольдса.
Опытные данные строго подчиняются этому закону в пределах значений Рейнольдса ниже критического (Re При превышении этого значения возникает турбулентность. На первом этапе развития турбулентности (3000 λ = 0,3164 Re -0,25 (3)
В несколько расширенном диапазоне чисел Рейнольдса (4000

λ = 1,01 lg(Re) -2,5 (4)

Для значений Re > 100000 предложено много расчетных формул, но практически все они дают один и тот же результат .

На рис.1 показано, как "работают" уравнения (2) - (4) в указанном диапазоне чисел Рейнольдса, который достаточен для описания всех реальных случаев течения жидкости в гидравлически гладких трубах .
Рис.1

Шероховатость стенки трубы влияет на гидравлическое сопротивление только при турбулентном потоке, но и в этом случае, из-за наличия ламинарного пограничного слоя существенно сказывается только при числах Рейнольдса, превышающих некоторое значение, зависящее от относительной шероховатости ξ/D, где ξ - расчетная высота бугорков шероховатости, м.
Труба , для которой при течении жидкости выполняется условие:

считается гидравлически гладкой, и коэффициент трения определяется по уравнениям (2) - (4).
Для чисел Re больше определенных неравенством (5) коэффициент трения становится величиной постоянной и определяется только относительной шероховатостью по уравнению:

которое после преобразования дает:

Гидравлическое понятие шероховатости не имеет ничего общего с геометрией внутренней поверхности трубы , которую можно было бы инструментально промерить. Исследователи наносили на внутреннюю поверхность модельных труб четко воспроизводимую и измеряемую зернистость, и сравнивали коэффициент трения для модельных и реальных технических труб в одних и тех же режимах течения. Этим определяли диапазон эквивалентной гидравлической шероховатости , которую следует принимать при гидравлических расчетах технических труб . Поэтому уравнение (6) точнее следует записать:

где: ξ э - нормативная эквивалентная шероховатость (Таблица 1).

Таблица 1

Данные таблицы 1 получены для традиционных на тот период материалов трубопроводов .
В период 1950-1975 годов западные гидродинамики аналогичным способом определили ξ э труб из полиэтилена и ПВХ разных диаметров, в том числе и после длительной эксплуатации. Получены значения эквивалентной шероховатости в пределах от 0,0015 до 0,0105 мм для труб диаметром от 50 до 300 мм . В США для собранного на клеевых соединениях трубопровода из ПВХ этот показатель принимается 0,005 мм . В Швеции, на основе фактических потерь давления в пятикилометровом трубопроводе из сваренных встык полиэтиленовых труб диаметром 1200 мм, определили, что ξ э = 0,05 мм . В российских строительных нормах в случаях, относящихся к полимерным (пластиковым) трубам , их шероховатость либо совсем не упоминается , либо принимается: для водоснабжения и канализации - "не менее 0,01 мм" , для газоснабжения ξ э = 0,007 мм . Натурные измерения потерь давления на действующем газопроводе из полиэтиленовых труб наружным диаметром 225 мм длиной более 48 км показали, что ξ э Вот, пожалуй, и все, чем положения классической гидродинамики могут помочь при анализе нормативной документации, посвященной гидравлическому расчету трубопроводов . Напомним, что

Re = w D/ν (7)

где: ν - кинематическая вязкость жидкости, м2/сек.

Первый вопрос, который следует решить раз и навсегда - являются ли , имеющие, как показано выше, уровень шероховатости, от ≈ 0,005 мм для труб малых диаметров, до ≈ 0,05 мм для труб большого диаметра , гидравлически гладкими.
В Таблице 2 для труб различных диаметров по уравнениям (5) и (7) определены значения расходных скоростей движения воды при температуре 20°С (ν = 1,02*10-6 м2/сек), выше которых труба не может считаться гидравлически гладкой. Для полимерных (пластиковых) труб шероховатость плавно повышали с увеличением диаметра, как это оговорено выше; для новых и старых стальных труб - принимали минимальные значения из Таблицы 1. Отметим, что критические скорости в старых стальных трубопроводах в 10 раз ниже, чем в новых, и их шероховатость не может не учитываться при расчете гидравлических потерь напора.

Таблица 2

Для трубопроводов внутри зданий предельными значениями скорости воды в трубопроводах являются:
для отопительных систем - 1,5 м/сек ;
для водопровода - 3 м/сек .
Для наружных сетей мы таких ограничений в нормативной документации не нашли, но если оставаться пределах, определенных таблицей 2, можно сделать однозначный вывод - полимерные (пластиковые) трубы являются, безусловно, гладкими.
Оставляя предельное значение скорости, w = 3 м/сек, определим, что при течении воды в трубах диаметром 20-1000 мм число Рейнольдса лежит в диапазоне 50000-2500000, то есть для расчета коэффициента трения течения воды в вполне корректно использовать уравнения (3) и (4). Уравнение (4) вообще охватывает весь диапазон режимов течения.
В нормативной документации, посвященной проектированию систем водоснабжения , уравнение для определения удельных потерь напора (Па/м либо м/м) дается в развернутом относительно диаметра трубы и скорости движения воды виде:

где: К - набор всевозможных коэффициентов, n и m - показатели степеней при диаметре D, м и скорости w, м/сек.
Уравнение Блязиуса (3), наиболее удобное для подобного преобразования, для воды при 20°С при 3000

но оно действует при Re 100000 следует пользоваться модификацией уравнения (4).
В ISO TR 10501 для пластмассовых труб при 4000

Для диапазона чисел Рейнольдса 150000

СНиП 2.04.02-84 без указания диапазона режима течения дает уравнение, которое подстановкой соответствующих коэффициентов для пластмассовых труб принимает вид:

которое после проверки и выполнения различных условий, для ряда режимов течения воды в шероховатых трубах (b ≥ 2) превращается в уравнение:

λ = 0,5 /(lg(3,7D/ ξ)) 2

что в точности совпадает с уравнением (61)

Обозначения в уравнении (12) здесь не расшифровываем, потому что они многоступенчато зависят одно от другого и с трудом понимаются из текста оригинала.

Таким образом, с небольшими вариациями коэффициентов и показателей степеней уравнения (9 - 12) базируются на классических уравнениях гидродинамики.
Приняв скорость движения воды в трубопроводе w=3 м/сек, рассчитаем потери давления J, м/м (табл.3, рис.2) в полимерных (пластиковых) трубах разных диаметров по четырем рассмотренным выше подходам. При расчетах по СП 40-102-2000 (уравнение 12) уровень шероховатости в зависимости от диаметра труб принимался как в таблице 2.



Рис. 2


Как видно из табл.3 и рис.2, расчеты по ISO TR 10501 практически совпадают с расчетами по уравнениям классической гидродинамики, расчеты по российским нормативным документам, также совпадая между собой, дают несущественно завышенные по сравнению с ними результаты. Непонятно, почему составители СП 40-102-2000 в части гидравлического расчета полимерного водопровода отошли от рекомендаций более раннего документа СНиП 2.04.02-84 и не учли рекомендаций международного документа ISO TR 10501.
Уравнения (9 - 11) охватывают все реально возможные режимы течения воды в гладких трубах и удобны тем, что легко могут быть решены относительно любой входящей в них величины (J, w и D). Если это сделать относительно D:

где: К - коэффициент, а n и m - показатели степеней при диаметре D и скорости w, то можно предварительно выбрать диаметр трубопровода по рекомендованной для данного типа сети скорости w, м/сек, c учетом допустимых потерь напора для данной протяженности трубопровода (∆ Нг = J*L, м).

Пример:
Определить внутренний диаметр пластмассового трубопровода длиной 1000 м, при wмакс = 2 м/сек и ∆ Нг = 10 м (1 бар), то есть J = 10/1000 = 0,01 м.
Выбрав, например, коэффициенты уравнения (11), получаем:

При этом расход составит Q=460 м3/час. Если полученный расход велик или мал, достаточно скорректировать значение скорости. Взяв, например, w=1,5 м/сек, получим D=0,188 м и Q=200 м3/час.
Расход в трубопроводе определяется потребностями потребителя и устанавливается на этапе проектирования сети. Оставив этот вопрос проектировщикам, сравним удельные потери давления в стальном (новом и старом) и пластмассовом трубопроводах при равных расходах для различных диаметров труб .

Как видно из таблицы 4, учитывая неизбежное старение стальной трубы в процессе эксплуатации, для труб малых и средних диаметров полиэтиленовую трубу можно выбирать на одну ступень наружного диаметра меньше. И только для труб диаметром 800 мм и выше, вследствие относительно меньшего влияния абсолютной эквивалентной шероховатости на потери напора, диаметры труб нужно выбирать из одного ряда.

Литература.
1. Н.З.Френкель, Гидравлика, Госэнеогоиздат, 1947.
2. И.Е.Идельчик, Справочник по гидравлическому сопротивлению фасонных и прямых частей трубопроводов , ЦАГИ, 1950.
3. L.-E. Janson, Plastics pipes for water supply and sewage disposal. Boras, Borealis, 4th edition, 2003.
4. ISO TR 10501 Thermoplastics pipes for the transport of liquids under pressure - Calculation of head losses.
5. СП 40-101-2000 Проектирование и монтаж трубопроводов из полипропилена "рандом сополимер".
6. СНиП 41-01-2003 (2.04.05-91) Отопление, вентиляция и кондиционирование.
7. СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.
8. СНиП 2.04.02-84 . Наружные сети и сооружения.
9. СП 40-102-2000 Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов.
10. СП 42-101-2003 Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб .
11. Е.Х.Китайцева, Гидравлический расчет стальных и полиэтиленовых газопроводов , Полимергаз, №1, 2000.

Расчёт потерь напора воды в трубопроводе выполняется очень просто, далее мы подробно рассмотрим варианты расчёта.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода .

Вам посчастливилось пробурить скважину прямо около дома? Замечательно! Теперь вы сможете обеспечить себя и свой дом или дачу чистой водой, которая не будет зависеть от центрального водоснабжения. А это значит никакого сезонного отключения воды и бегания с вёдрами и тазиками. Нужно только установить насос и готово! В настоящей статье мы поможем вам рассчитать потери напора воды в трубопроводе , и уже с этими данными можно смело покупать насос и наслаждать, наконец, своей водой из скважины.

Из школьных уроков физики понятно, что вода, текущая по трубам, в любом случае испытывает сопротивление. Величина этого сопротивления зависит от скорости потока, диаметра трубы и гладкости её внутренней поверхности. Сопротивление тем меньше, чем меньше скорость потока и больше диаметр и гладкость трубы. Гладкость трубы зависит от материала, из которого она изготовлена. Трубы из полимеров более гладкие, чем стальные трубы , а также они не ржавеют и, что немаловажно, дешевле других материалов, не уступая при этом в качестве. Вода будет испытывать сопротивление, двигаясь даже по полностью горизонтальной трубе. Однако чем длиннее сама труба, тем менее значительны будут потери напора. Что ж, приступим к расчету.

Потери напора на прямых участках трубы.

Чтобы подсчитать потери напора воды на прямых участках труб использует уже готовую таблицу, представленную ниже. Значения в этой таблице указаны для труб, изготовленных их полипропилена, полиэтилена и других слов, начинающихся с «поли» (полимеров). Если же вы собираетесь установить стальные трубы, то необходимо умножить приведённые в таблице значения на коэффициент 1,5.

Данные приведены на 100 метров трубопровода, потери указаны в метрах водного столба.

Расход

Внутренний диаметр трубы, мм

Как пользоваться таблицей : Например, в горизонтальном водопроводе с диаметром трубы 50 мм и расходом 7 м 3 /ч потери будут составлять 2,1 метра водного столба для трубы из полимера и 3,15 (2,1*1,5) для трубы из стали. Как видите, всё довольно просто и понятно.

Потери напора на местных сопротивлениях.

К сожалению, трубы бывают абсолютно прямыми только в сказке. В реальной же жизни всегда есть различные изгибы, заслонки и вентиля, которые нельзя не учитывать при расчёте потерь напора воды в трубопроводе. В таблице приведены значения потерь напора в самых часто встречающихся местных сопротивлениях: колене в 90 градусов, скруглённом колене и клапане.

Потери указаны в сантиметрах водного столба на единицу местного сопротивления.

Скорость потока, м/с

Колено 90 градусов

Скруглённое колено

Клапан

Для определения v - скорости потока необходимо Q - расход воды (в м 3 /с) разделить на S - площадь поперечного сечения (в м 2).

Т.е. при диаметре трубы 50 мм (π*R 2 =3,14*(50/2) 2 =1962,5 мм 2 ; S=1962,5/1 000 000=0,0019625 м 2) и расходе воды 7 м 3 /ч (Q=7/3600=0,00194 м 3 /с) скорость потока
v=Q/S=0,00194/0,0019625=0,989 м/с

Как видно из приведённых выше данных, потери напора на местных сопротивлениях совсем незначительны. Основные потери всё-таки происходят на горизонтальных участках труб, поэтому для их уменьшения следует тщательно продумать выбор материала трубы и их диаметра. Напомним, чтобы минимизировать потери следует выбирать трубы из полимеров с максимальным диаметром и гладкостью внутренней поверхности самой трубы.



Свод правил по проектированию и монтажу трубопроводов из полипропилена

"Рандом сополимер"

СП 40-101-96

2. Проектирование трубопроводов

2.1. Проектирование систем трубопроводов связано с выбором типа труб, соединительных деталей и арматуры, выполнением гидравлического расчета, выбором способа прокладки и условий, обеспечивающих компенсацию тепловых изменений длины трубы без перенапряжения материала и соединений трубопровода. Выбор типа трубы производится с учетом условий работы трубопровода: давления и температуры, необходимого срока службы и агрессивности транспортируемой жидкости.

2.2. Сортамент труб, соединительных деталей и арматуры приводится в прил. 3 .

2.3. Гидравлический расчет трубопроводов из PPRC заключается в определении потерь напора на преодоление гидравлических сопротивлений, возникающих в трубе, в стыковых соединениях и соединительных деталях, в местах резких поворотов и изменений диаметра трубопровода.

2.4. Гидравлические потери напора в трубах определяются по номограммам рис. 2.1. и 2.2.

Расход, л/сек.

Потеря напора на трение, мм/м

Рис. 2.1. Номограмма для инженерного гидравлического расчета холодного водопровода из труб PPRC (PN10)

Пример определения

Дано: труба PPRC 32PN10,

расход жидкости 1 л/с

По номограмме: средняя скорость течения жидкости 1,84 м/с, потеря напора 140 мм/м

Расход, л/сек.

Потеря напора на трение, мм/м

Рис. 2.2. Номограмма для инженерного гидравлического расчета холодного водопровода из труб PPRC (PN20)

Пример определения

Дано: труба PPRC50 PN20,

расход жидкости 1 л/с

По номограмме: средняя скорость течения жидкости 1,1 м/с, потеря напора 45 мм/м

2.5. Гидравлические потери напора в стыковых соединениях можно принять равными 10-15% величины потерь напора в трубах, определенными по номограмме. Для внутренних водопроводных систем величину потерь напора на местные сопротивления, в соединительных деталях и арматуре рекомендуется принимать равной 30% величины потерь напора в трубах.

2.6. Трубопроводы в зданиях прокладываются на подвесках, опорах и кронштейнах открыто или скрыто (внутри шахт, строительных конструкций, борозд, в каналах). Скрытая прокладка трубопроводов необходима для обеспечения защиты пластмассовых труб от механических повреждений.

2.7. Трубопроводы вне зданий (межцеховые или наружные) прокладываются на эстакадах и опорах (в обогреваемых или необогреваемых коробах и галереях или без них), в каналах (проходных или непроходных) и в грунте (бесканальная прокладка).

2.8. Запрещается прокладка технологических трубопроводов из PPRC в помещениях, относящихся по пожарной опасности к категориям А, Б, В.

2.9. Не допускается прокладка внутрицеховых технологических трубопроводов из пластмассовых труб через административные, бытовые и хозяйственные помещения, помещения электроустановок, щиты системы контроля и автоматики, лестничные клетки, коридоры и т.п. В местах возможного механического повреждения трубопровода следует применять только скрытую прокладку в бороздах, каналах и шахтах.

2.10. Теплоизоляция трубопроводов водоснабжения выполняется в соответствии с требованиями СНиП 2.04.14-88 (раздел 3).

2.11. Изменение длины трубопроводов из PPRC при перепаде температуры определяется по формуле

L = 0,15 x L x t (2.1)

где L - температура изменения длины трубы, мм;

0,15 - коэффициент линейного расширения материала трубы, мм/м;

L - длина трубопровода, м;

t - расчетная разность температур (между температурой монтажа и эксплуатации), С.

2.12. Величину температурных изменений длины трубы можно также определить по номограмме рис. 2.3.

Температура t, ° С

Изменение длины трубы L, мм

Пример: T 1 = 20 ° C, t 2 = 75 ° C, L = 6,5 м.

По формуле 2.1

L = 0,15 x 6,5 x (75 - 20) = 55 мм

t = 75 - 20 = 55 ° С.

По номограмме = 55 мм.

2.13. Трубопровод должен иметь возможность свободно удлиняться или укорачиваться без перенапряжения материала труб, соединительных деталей и соединений трубопровода. Это достигается за счет компенсирующей способности элементов трубопровода (самокомпенсация) и обеспечивается правильной расстановкой опор (креплений), наличием отводов в трубопроводе в местах поворота, других гнутых элементов и установкой температурных компенсаторов. Неподвижные крепления труб должны направлять удлинения трубопроводов в сторону этих элементов.

2.14. Расстояние между опорами при горизонтальной прокладке трубопровода определяется из табл. 2.1.

Таблица 2.1

Расстояние между опорами в зависимости от температуры воды в трубопроводе

Номинальный наружный

Расстояние, мм

диаметр трубы, мм

2.15. При проектировании вертикальных трубопроводов опоры устанавливаются не реже чем через 1000 мм для труб наружным диаметром до 32 мм и не реже чем через 1500 мм для труб большого диаметра.

2.16. Компенсирующие устройства выполняются в виде Г-образных элементов (рис. 2.4), П-образных (рис. 2.5) и петлеобразных (круговых) компенсаторов (рис. 2.6).

Рис. 2.4. Г-образный элемент трубопровода

Рис. 2.5. П-образный компенсатор

Рис. 2.6. Петлеобразный компенсатор

2.17. Расчет компенсирующей способности Г-образных элементов (рис. 2.4) и П-образных компенсаторов (рис. 2.5) производится по номограмме (рис. 2.7) или по эмпирической формуле (2.2)

где L k - длина участка Г-образного элемента, воспринимающего температурные изменения длины трубопровода, мм;

d - наружный диаметр трубы, мм;

L - температурные изменения длины трубы, мм.

Величину L k можно также определить по номограмме (рис. 2.7).

(2.2)

Рис. 2.7. Номограмма для определения длины участка трубы, воспринимающего тепловое удлинение

Пример: d н = 40 мм,

По формуле 2.2

По номограмме L = 1250 мм

2.18. Конструирование систем внутренних трубопроводов рекомендуется производить в следующей последовательности:

На схеме трубопроводов предварительно намечают места расположения неподвижных опор с учетом компенсации температурных изменений длины труб элементами трубопровода (отводами и пр.);

Проверяют расчетом компенсирующую способность элементов трубопровода между неподвижными опорами;

Намечают расположение скользящих опор с указанием расстояний между ними.

2.19. Неподвижные опоры необходимо размещать так, чтобы температурные изменения длины участка трубопровода между ними не превышали компенсирующей способности отводов и компенсаторов, расположенных на этом участке, и распределялись пропорционально их компенсирующей способности.

2.20. В тех случаях, когда температурные изменения длины участка трубопровода превышают компенсирующую способность его элементов, на нем необходимо установить дополнительный компенсатор.

2.21. Компенсаторы устанавливаются на трубопроводе, как правило, посредине, между неподвижными опорами, делящими трубопровод на участки, температурная деформация которых происходит независимо друг от друга. Компенсация линейных удлинений труб из PPRC может обеспечиваться также предварительным прогибом труб при прокладке их в виде "змейки" на сплошной опоре, ширина которой допускает возможность изменения формы прогиба трубопровода при изменении температуры.

2.22. При расстановке неподвижных опор следует учитывать, что перемещение трубы в плоскости перпендикулярно стене ограничивается расстоянием от поверхности трубы до стены (рис. 2.4). Расстояние от неподвижных соединений до осей тройников должно быть не менее шести диаметров трубопровода.

2.23. Запорная и водоразборная арматура должна иметь неподвижное крепление к строительным конструкциям для того, чтобы усилия, возникающие при пользовании арматурой, не передавались на трубы PPRC.

2.24. При прокладке в одном помещении нескольких трубопроводов из пластмассовых труб их следует укладывать совместно компактными пучками на общих опорах или подвесках. Трубопроводы в местах пересечения фундаментов зданий, перекрытий и перегородок должны проходить через гильзы, изготовленные, как правило, из стальных труб, концы которых должны выступать на 20-50 мм из пересекаемой поверхности. Зазор между трубопроводами и футлярами должен быть не менее 10-20 мм и тщательно уплотнен несгораемым материалом, допускающим перемещение трубопроводов вдоль его продольной оси.

2.25. При параллельной прокладке трубы из PPRC должны располагаться ниже труб отопления и горячего водоснабжения с расстоянием в свету между ними не менее 100 мм.

2.26. Проектирование средств защиты пластмассовых трубопроводов от статического электричества предусматривается в случаях:

Отрицательного воздействия статического электричества на технологический процесс и качество транспортируемых веществ;

Опасного воздействия статического электричества на обслуживающий персонал.

2.27. Для обеспечения срока службы трубопроводов горячего водоснабжения из труб PPRC не менее 25 лет необходимо поддерживать рекомендуемые режимы эксплуатации (давление, температуру воды), указанные в прил. 2 .

2.28. Принимая во внимание диэлектрические свойства труб из PPRC, металлические ванны и мойки должны быть заземлены согласно соответствующим требованиям действующих нормативных документов.

Трубы и соединительные детали для систем горячего и холодного водоснабжения из обладают рядом преимуществ:

  • устойчивостью к высоким температурам;
  • высокими санитарно-гигиеническими свойствами;
  • шумопоглощающими свойствами;
  • абсолютной коррозионной стойкостью;
  • химической стойкостью к более чем трёмстам веществам и растворам;
  • гладкой и не изменяемой во времени внутренней поверхностью стенки трубы;
  • простотой монтажных и ремонтных работ.

Материал

Полипропилен - изотактический термопласт, макромолекулы которого имеют спиральную конформацию, впервые был получен в 1954 году.

Полипропилен производят путём полимеризации газа пропилена, имеющего химическую формулу: СН 2 СНСН 3 .

Полипропилен имеет следующие модификации:

  • гомополимер пропилена (тип 1) РРН;
  • сополимеры пропилена и этилена (тип 2) РРВ - блоксополимер;
  • статический сополимер пропилена с этиленом (тип 3) рандом сополимер - изначально обозначался как PPRC - полипропилен рандом сополимер, в дальнейшем абривиатура была сокращена до PPR.

Трубы и фитинги для водоснабжения PRO AQUA производятся из 3-го типа полипропилена - рандом сополимера.

Рандом сополимер PPR, получаемый путём набора молекул пропилена и этилена в беспорядочном их сочетании и представляется следующей графической формулой:

Физико-механические свойства полипропилена

    Физико-механические свойства всех разновидностей отличаются в небольших пределах, и не дифференцируются, когда приводятся свойства полипропилена:

  1. Минимальная длительная прочность - MRS (Minimum Required Strength) - характеристика материала трубы, численно равная напряжению в МПа в стенке трубы, возникающему при действии постоянного внутреннего давления, которое труба способна выдержать в течении 50 лет при температуре 20 °С с учётом коэффициента запаса прочности, равного 1,25. Под этим понимается способность материала трубы сохранять к концу предполагаемого срока службы такой запас прочности трубопровода, чтобы он при соблюдении условий эксплуатационного периода гарантировал ещё надёжное исполнение своих рабочих функций. По современным обозначениям напорных труб из полипропилена, показатель MRS в кгс/см 2 (бар) проставляют после сокращённого обозначения материала трубы. Например полипропилен рандомсополимер PPR с минимальной длительной прочностью MRS = 8 МПа (80 кгс/см 2 ; 80 бар), будет иметь обозначение PPR 80.

Стандартное размерное отношение - SDR (Standart Dimension Ratio) - безразмерный показатель, характеризующий отношение номинального наружного диаметра трубы Dn к номинальной толщине стенки S (в одинаковых единицах измерения обеих величин в мм или м) Значение стандартного размерного отношения трубы рассчитывается по формуле:

SDR = Dn / S;

Значение SDR соединительной детали будет соответствовать SDR трубы с которой она монтируется. Например, тройник с маркировкой SDR 11 предназначен для сварки с трубой имеющий такую же маркировку.

  1. Номинальное давление - PN (Pressure Nominal) - рабочее давление транспортируемой воды в пластмассовом трубопроводе (в барах) с температурой 20°С, который безотказно эксплуатируется в течении 50 лет при минимальной длительной прочности MRS равной 6,3 МПа.

Показатели типов труб PN, SDR, S находятся в связи между собой, их соотношение представлено в таблице 3.1:

Тип трубы по европейской классификации Тип трубы по российской классификации
Легкая Легкая Средне легкая Средняя Тяжёлая Очень тяжёлая Очень тяжёлая Очень тяжёлая
PN 2,5 3,2 4 6 10 16 20 25
SDR 41 33 26 17,6 11 7,4 6 5
S 20 16 12,5 8,3 5 3,2 2,5 2

Основные характеристики полипропилена

Молекулярная масса, (ат. ед. массы) 75 000 - 300 000
Плотность, г/см 3 0,91 - 0,92
Предел текучести при растяжении, Н/мм 2 27-30
Предел прочности при разрыве, Н/мм 2 34 - 35
Относительное удлинение при разрыве, % > 500
Модуль упругости, МПа 900 - 1200
Теплостойкость, °С 100
Температура плавления, °С > 146
Средний коэффициент линейного расширения, мм/м^°С 0,15
Коэффициент теплопроводности, Вт/м. °С 0,23

Отличительные особенности полипропилена

Для полипропилена характерна высокая стойкость к многократным изгибам и истиранию. Стойкость к поверхностно-активным веществам (ПАВ) у полипропилена повышена, в этом состоит и его преимущество перед полиэтиленом.

Ударная вязкость с надрезом составляет 5 - 12 кДж/м 2 , морозостоек при отрицательных температурах.

Полипропилен получил наибольшее распространение в системах холодного и горячего водоснабжения, внутренней и наружной канализации.

Армированные полипропиленовые трубы производятся поэтапно. Первоначально экструзией изготавливают однородную полипропиленовую трубу. Затем в непрерывном процессе твёрдую наружную поверхность трубы плотно охватывают сплошной или перфорированной алюминиевой лентой, кольцевую форму которой придают обкатывающими роликами. Существуют две технологии сварки алюминиевой ленты на трубе - внахлест и встык. Наиболее передовая технология сшивки - встык (как при производстве армированных труб PRO AQUA). Фиксация краёв ленты относительно друг друга производится ультразвуковой сваркой. Далее полученную трубную конструкцию вновь экструдируют (поверх алюминиевой оболочки наносят новый слой полипропилена).

Армирование трубы преследует одну из главных целей, заключающуюся в резком снижении температурных удлинений термопластичной трубы, которые у однородных полипропиленовых труб проявляются в значительной мере.

Не случайно разработчики армированных полипропиленовых труб, добившись промышленной реализации такой армированной конструкции, называют её термином «стабильная». Под этим подразумевается малая зависимость изменения первоначальной длины трубы при её нагреве или охлаждении.

Коэффициент линейного теплового расширения а (мм/м^°С) для PPR трубы а = 0,15, а для армированной PPR трубы а = 0,03.

Схема армирования и конструктивное исполнение PPR трубы

Рис. 5.1. а - разрез армированной трубы PPR;

1 - слой алюминия. б - конструкция армированной трубы PPR; 1 - слой перфорированного алюминия; 2, 3 - полипропилен.

Исходя из технологии раструбной сварки, при которой наружный диаметр трубы при нормальной температуре должен соответствовать внутреннему диаметру соединительной детали, стенку трубы наращивают на 2 - 3 мм и в этот размер вписывают алюминиевую оболочку и внешний полимерный слой облицовки, который перед сваркой удаляется при помощи специального инструмента.

Армированные трубы PRO AQUA производятся двух типов: перфорированные и гладкие. Отличие перфорированной оболочки армированной PPR трубы от гладкой заключается в том, что алюминиевая оболочка имеет частую перфорацию - сетку отверстий малого диаметра.

В процессе экструдирования полипропиленовой трубы, вязкотекучий материал затекает в эти отверстия и тем самым создаёт сцепление полимера и металла. На поверхности труб такого типа остаются заметные на глаз «утяжины», повторяющие структуру применённой перфорации.

Армирование PPR труб кроме температурной стабилизирующей способности несёт и ещё одну важную функцию - создание антидиффузионного барьера, предотвращающего проникновение молекул кислорода через стенку трубы в теплоноситель.

Проектирование PPR трубопроводов

Проектирование трубопроводов из PPR для систем холодного и горячего водоснабжения осуществляется в соответствии с регламентами строительных норм и правил 2.04.01-85 «Внутренний водопровод и канализация зданий» с учетом специфики полипропиленовых труб и Сводом правил по проектированию и монтажу трубопроводов из полипропилена рандом сополимера СП 40-101-96.

Гидравлический расчёт

Гидравлический расчёт трубопроводов из PPR 80 заключается в определении потерь напора (или давления) на преодоление гидравлических сопротивлений, возникающих в трубе, в соединительных деталях, в местах резких поворотов и изменений диаметра трубопровода.

Коэффициент гидравлического сопротивления

Гидравлические потери напора на местные сопротивления в соединительных деталях рекомендуется определять по следующей таблице:

Коэффициент местного гидравлического сопротивления для соединительных деталей из полипропилена PP-R 80

Компенсация линейного расширения

Поскольку полимерные материалы имеют увеличенный по сравнению с металлами коэффициент линейного удлинения, то при проектировании систем отопления, холодного и горячего водоснабжения, производят расчёт удлинений или укорочений трубопроводов при возникающих перепадах температур.

Проектирование и монтаж трубопроводов необходимо выполнять так, чтобы труба могла свободно двигаться в пределах величины расчетного расширения. Это достигается за счет компенсирующей способности элементов трубопровода, установкой температурных компенсаторов и правильной расстановкой опор (креплений). Неподвижные крепления труб должны направлять удлинения трубопроводов в сторону этих элементов.

Расчёт изменения длины трубопровода при изменении его температуры производится по формуле:

AL = аЧ^ At,

  • DL - изменение длины трубопровода при его нагреве или охлаждении;
  • a - коэффициент теплового расширения мм/м.“С;
  • L - расчётная длина трубопровода;
  • At - разница температуры трубопровода при монтаже и эксплуатации °С(°К).

Величину температурных изменений длины трубы можно также определить по таблицам 6.2 и 6.3.

Таблица линейного расширения (в мм): труба PP-R 80 PN10 и PN20 - (a = 0,15 мм/м^°С)

Длина трубы, м Разница температур At, °C
10 20 30 40 50 60 70 80
0,1 0,15 0,30 0,45 0,60 0,75 0,90 1,05 1,20
0,2 0,30 0,60 0,90 1,20 1,50 1,80 2,10 2,40
0,3 0,45 0,90 1,35 1,80 2,25 2,70 3,15 3,60
0,4 0,60 1,20 1,80 2,40 3,00 3,60 4,20 4,80
0,5 0,75 1,50 2,25 3,00 3,75 4,50 5,25 6,00
0,6 0,90 1,80 2,70 3,60 4,50 5,40 6,30 7,20
0,7 1,05 2,10 3,15 4,20 5,25 6,30 7,35 8,40
8,0 1,20 2,40 3,60 4,80 6,00 7,20 8,40 9,60
0,9 1,35 2,70 4,05 5,40 6,75 8,10 9,45 10,80
1,0 1,50 3,00 4,50 6,00 7,50 9,00 10,50 12,00
2,0 3,00 6,00 9,00 12,00 15,00 18,00 21,00 24,00
3,0 4,50 9,00 13,50 18,00 22,50 27,00 31,50 36,00
4,0 6,00 12,00 18,00 24,00 30,00 36,00 42,00 48,00
5,0 7,50 15,00 22,50 30,00 37,50 45,00 52,50 60,00
6,0 9,00 18,00 27,00 36,00 45,00 54,00 63,00 72,00
7,0 10,50 21,00 31,50 42,00 52,50 63,00 73,50 84,00
, 0 8 12,00 24,00 36,00 48,00 60,00 72,00 84,00 96,00
9,0 13,50 27,00 40,50 54,00 67,50 81,00 94,50 108,00
10,0 15,00 30,00 45,00 60,00 75,00 90,00 105,00 120,00

Таблица линейного расширения (в мм): армированная труба PP-R 80 PN 25

(а = 0,03 мм/м. °С)

Длина трубы, м Разница температур At, °C
10 20 30 40 50 60 70 80
0,1 0,03 0,06 0,09 0,12 0,15 0,18 0,21 0,24
0,2 0,06 0,12 0,18 0,24 0,30 0,36 0,42 0,48
0,3 0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72
0,4 0,12 0,24 0,36 0,48 0,60 0,72 0,84 0,96
0,5 0,15 0,30 0,45 0,60 0,75 0,90 1,05 1,20
0,6 0,18 0,36 0,54 0,72 0,90 1,08 1,28 1,44
0,7 0,21 0,42 0,63 0,84 1,05 1,26 1,47 1,68
, 8 0 , 0,24 0,48 0,72 0,96 1,20 1,44 1,68 1,92
0,9 0,27 0,54 0,81 1,08 1,35 1,62 1,89 2,16
1,0 0,30 0,60 0,90 1,20 1,50 1,80 2,10 2,40
2,0 0,60 1,20 1,80 2,40 3,00 3,60 4,20 4,80
3,0 0,90 1,80 2,70 3,60 4,50 5,40 6,30 7,20
4,0 1,20 2,40 3,60 4,80 6,00 7,20 8,40 9,60
5,0 1,50 3,00 4,50 6,00 7,50 9,00 10,50 12,00
6,0 1,80 3,60 5,40 7,20 9,00 10,80 12,80 14,40
7,0 2,10 4,20 6,30 8,40 10,50 12,60 14,70 16,80
, 0 8 2,40 4,80 7,20 9,60 12,00 14,40 16,80 19,20
9,0 2,70 5,40 8,10 10,80 13,50 16,20 18,90 21,60
10,0 3,00 6,00 9,00 12,00 15,00 18,00 21,00 24,00

Компенсацию тепловых удлинений решают конструктивно, используя углы поворота, скользящие и неподвижные опоры, а также готовые компенсаторы. В неподвижных опорах труба жёстко крепится хомутом через резиновую прокладку, а в скользящих опорах фиксаторы позволяют трубе перемещаться в осевом направлении. На примере проектного решения трассировки трубопровода в виде угла поворота приведем расчёт тепловой компенсации горизонтального участка полипропиленового трубопровода, определив нужную длину вертикального участка, который с учётом упругих свойств трубы будет “пружинить” без разрушения в интервале величины удлинения равной AL.

Рис 6.1. Расчетная схема Г-образного компенсатора:

  • НО - неподвижная опора;
  • СО - скользящая опора;
  • L n pyx.уч. - длина пружинящего участка от оси трубы до края неподвижной опоры, мм;
  • DL - увеличение длины горизонтального участка трубопровода при нагреве, мм;
  • L C0 - расстояние между краем неподвижной и центром скользящей опоры, а также между центрами скользящих опор, мм.

В целях устранения разночтений предлагается производить отсчёт пружинящей длины от оси горизонтального участка до края неподвижной опоры на вертикальном участке. Формула длины пружинящего участка трубопровода имеет вид:

L n pyx.уч. = К * D * AL+ D,

  • L n pyx.уч. - длина пружинящего участка, мм;
  • k - константа, характеризующая упругие свойства трубы = 30;
  • D - наружный диаметр трубы, мм;
  • DL - увеличение длины участка трубопровода при его нагреве, мм.

Расчёт Г-образного компенсатора выполняется в следующей последовательности: сначала определяется величина теплового удлинения расчётного участка, затем вычисляется необходимая длина перпендикулярного к нему пружинящего участка.

Рис 6.2. Расчетная схема П- и U-образного компенсаторов :

  • НО - неподвижная опора; СО - скользящая опора;
  • Lnpyxyn - длина пружинящего участка от оси трубы до края неподвижной опоры, мм;
  • b - ширина компенсатора (вставка), расстояние между осями колеи, мм;
  • AL 1 , D L 2 - увеличение длин горизонтальных участков трубопроводов при их нагреве, мм;
  • L H0 - расстояние между краями неподвижных опор, мм;
  • L C0 - расстояние между центром скользящей опоры и осью колена трубы, мм;
  • L C01 , L C02 - расстояния между краем неподвижной опоры и краем скользящей опоры, мм.

При решении тепловой компенсации участка трубопровода с использованием трубного П-образного компенсатора, можно применить 2 приёма его расположения между неподвижными опорами:

  • срединное (точно посередине) размещение между опорами, при котором длины обеих равнорасположенных в обе стороны от него ветвей трубопроводов равны, т.е. получается конструкция равноплечевого компенсатора;
  • смещённое размещение, возникающее при проектных решениях, когда длины ветвей трубопроводов в силу конструктивных особенностей объекта и трассировки трубопровода оказываются различными, т.е. получается конструкция разноплечевого компенсатора.

В первом случае расчёта, величина AL равна для обеих ветвей трубопровода и общее удлинение равняется: AL, = 2AL.

Во втором случае величина AL рассчитывается независимо для каждой ветви и удлинение составляет сумму вычисленных удлинений: AL, = AL + AL,

  • AL = L 1 + L ;
  • лев сої со’
  • AL = L 2 + L
  • прав со2 со

Ширина компенсатора b (вставка), независимо от длины его ветвей, назначается конструктивно и составляет величину равную 11 - 13 D. Вставка всегда крепится посередине хомутом (жесткое крепление).

Тепловое удлинение A L расчётных участков трубопроводов плюс некоторый гарантированный зазор между сблизившимися верхними деталями компенсатора (порядка 150 мм) не должны превышать ширину компенсатора. В противном случае следует уменьшить расстояние между неподвижными опорами расчётных участков.

Расчёт П-образного компенсатора ведётся аналогично расчёту Г-образного.

Если конструктивные размеры трубных Г и П - образных компенсаторов принимаются по расчёту, то О-образные компенсаторы для различных диаметров пластмассовых труб выпускаются с вычисленными фиксированными значениями их геометрических размеров.

О-образный компенсатор

Рис 6.3. Схема О-образного, петлеобразного компенсатора:

  • НО - неподвижная опора; СО - скользящая опора; D - наружный диаметр трубы, мм;
  • b - расстояние между стенками компенсатора по внутреннему диаметру, мм;
  • L hq - расстояние между краями неподвижных опор, мм.

Основные принципы прокладки трубопроводов из полипропилена

В местах обеспечивающих их защиту от механических повреждений (шахтах, штробах, каналах и т.д.), при этом должна обеспечиваться возможность их теплового удлинения. При невозможности скрытой прокладки трубопроводов их следует защищать от механических повреждений и огня.

Подводки к сантехприборам допускается прокладывать открыто.

Расстояние между трубами и строительными конструкциями должно быть не менее 20 мм.

В местах прохода через строительные конструкции стен и перегородок, полипропиленовые трубы следует прокладывать в футлярах или гильзах из металла.

Внутренний диаметр гильзы должен быть больше на 20 - 30 мм наружного диаметра проходящего в ней трубопровода. Этот зазор заполняется мягким негорючим материалом, способствующим свободному перемещению трубопровода, вдоль оси. Край гильзы должен выступать за пределы строительной конструкции на 30 - 50мм.

Запрещается располагать в гильзе стыковые соединения как разъёмного, так и не разъёмного характера.

В случае прокладки трубопроводов в слое бетона или цементно-песчаного раствора запрещается замоноличивать разъёмные резьбовые соединения.

Крепление PPR трубопроводов

При разделяются на отдельные участки, путем распределения точек жёсткого крепления. Таким образом, предотвращается не контролируемое перемещение трубопроводов и гарантируется их надёжная фиксация. Точки жёсткого крепления рассчитываются и выполняются с учётом действия сил, возникающих при расширении трубопроводов, а так же дополнительных нагрузок.

Скользящие или направляющие крепления должны позволять перемещения трубы в осевом направлении, исключая при этом механические повреждения трубы.

Расстояние между скользящими опорами при горизонтальной прокладке трубопровода определяется по таблице 6.4:

Расстояние между опорами в зависимости от температуры воды в трубопроводе

Номинальный наружный диаметр трубы, мм Расстояние в мм
20°C 30°C 40°C 50°C 60°C 70°C 80°C
16 500 500 500 500 500 500 500
20 600 600 600 600 550 500 500
25 750 750 700 700 650 600 550
32 900 900 8 О о 8 О о 750 700 650
40 1050 1050 900 900 850 8 О о 750
50 1200 1200 1100 1100 1000 950 900
63 1400 1400 1300 1300 1150 1150 1000
75 1500 1500 1400 1400 1250 1150 1100
90 1800 1600 1500 1500 1400 1250 1200

Неподвижные опоры необходимо размещать так, чтобы температурные изменения длины участка трубопровода между ними не превышали компенсирующей способности отводов и компенсаторов, расположенных на этом участке и распределялись пропорционально их компенсирующей способности.

В тех случаях, когда температурные изменения длины участка трубопровода превышают компенсирующую способность ограничивающих его элементов, на нём необходимо установить дополнительный компенсатор.

Запорную и водоразборную арматуру во избежание передачи их веса трубопроводу необходимо жёстко закреплять на строительных конструкциях.

Монтаж PPR трубопроводов

Традиционным способом соединения напорных трубопроводов из полипропилена является сварка, заключающаяся в нагреве деталей до вязкотекучего состояния, соединении их под некоторым давлением, и последующем охлаждении деталей до образования неразъёмного соединения - сварного шва.

Наиболее часто применяющимся методом сварки является раструбная сварка, при которой производится соединение концов труб через промежуточную деталь в раструб.

Сварочный аппарат

Для сварки труб небольшого диаметра используется комплект сварочного оборудования (представлен на рис. 7.1), в состав которого входят:

  • сварочный аппарат со струбциной (мощность 1500 Вт);
  • сменные нагреватели (D 20, 25, 32 и 40 мм);
  • резак для резки труб до 40 мм;
  • уровень;
  • рулетка;
  • металлический чемодан; инструкция по применению.

Для сварки пластмассовых деталей диаметрами больше 40 мм используют специальный сварочный аппарат, который поставляется в специальном чемоданчике. Общий вид сварочного аппарата (мощностью 1500 Вт) представлен на рисунке 7.2.

Подготовка инструмента

В зависимости от температуры окружающей среды нагрев нагревательного элемента длится 10 - 15 минут. Рабочая температура на поверхности достигается автоматически. Процесс нагрева закончен, когда гаснет или загорается (в зависимости от типа сварочного аппарата) лампочка контроля температуры.

ВНИМАНИЕ:

Сварочные инструменты должны содержаться в чистоте. При необходимости наргеватель- ные гильзу и дорн прочистить растворителем с помощью грубой салфетки.

Сварка деталей в раструб

Процесс раструбной сварки включает одновременный нагрев соединяемых деталей, технологическую выдержку, снятие деталей с насадок, их сопряжение и последующее естественное охлаждение сваренных деталей. Для каждого наружного диаметра подобраны соответствующие пары насадок. Порядок сварки:

На сварочный аппарат устанавливаются насадки соответствующего диаметра, при этом рабочие поверхности насадок должны быть обезжирены ацетоном или водным раствором спирта. В случаях налипания на насадки остатков полимеров от предыдущей сварки, необходимо провести очистку рабочих поверхностей.

  1. Сварочный аппарат подключается к сети и ожидается его готовность к работе.
  2. Соответствующая технологии температура сварки для PPR составляет 260 - 270 °С.
  3. Труба обрезается под прямым углом к оси трубы при помощи специального резака.
  4. Конец трубы и раструб фитинга перед сваркой при необходимости очищаются от влаги, пыли и грязи и обезжириваются.
  5. На трубу наносится метка на расстоянии, равном глубине раструба плюс 2 мм.
  6. Концы деталей, осевым перемещением, не вращая, плавно вводятся в насадки.
  7. Выдерживается регламентированное время прогрева до вязкотекучего состояния (согласно таблице 7.1).
  8. Детали снимаются с насадок, и в течении 1 - 2 секунд сопрягаются друг с другом. При этой операции не допускаются вращательные движения деталей относительно друг друга, возможна лишь небольшая корректировка окончательного расположения деталей в конечной стадии сварки.
  9. Охлаждение сварного соединения и деталей производится естественным путём.

Для армированных полипропиленовых труб перед сваркой конец трубы зачищается зачисткой, при этом происходит снятие тонкого полимерного слоя вместе с фольгой. В результате этого получившийся наружный диаметр трубы должен соответствовать в пределах допусков стандартному наружному диаметру данного типоразмера.

ВНИМАНИЕ:

  • При работе, в случае необходимости, сменные нагреватель очищаются от налипшего материала;
  • для обеспечения качественного соединения деталей, следует избегать повреждения покрытия насадок;
  • категорически запрещается охлаждать прибор водой, иначе могут быть испорчены термосопротивления.

Технологические параметры раструбной сварки деталей из ПП рандомсополимер (температура наружного воздуха 20 °С)

Наружный диаметр трубы, мм Длина сварного участка, мм Время
нагрева деталей, с сопряжения деталей, с охлаждения деталей, мин
16 13 5 - 8 4 2
20 14 6 - 8 4 2
25 15 7 - 11 4 2
32 16,5 8 - 12 6 4
40 18 12 - 18 6 4
50 20 18 - 27 6 4
63 24 24 - 36 8 6
90 29 40 - 60 8 8

Сварка термопластов сопровождается обязательным выдавливанием в месте сварного шва расплава материала называемого гратом. При раструбной сварке грат выходит на наружную поверхность трубы и внутреннюю поверхность соединительной детали

Необходимо отметить, что марки полипропилена различных производителей различаются между собой по композиционному составу, поэтому в случае сварки труб и деталей разных производителей для получения гарантированного соединения перед началом основных работ необходимо провести пробную сварку.

Испытания трубопроводов c истемы водоснабжения

Системы внутреннего холодного и горячего водоснабжения должны быть испытаны гидростатическим или манометрическим методом с соблюдением требований ГОСТ 24054-80, ГОСТ 25136-82 и настоящих правил.

Величину пробного давления при гидростатическом методе испытания следует принимать равной 1,5 величины избыточного рабочего давления.

Гидростатические и манометрические испытания систем холодного и горячего водоснабжения должны производиться до установки водоразборной арматуры.

Выдержавшими испытания считаются системы, если в течение 10 мин нахождения под пробным давлением при гидростатическом методе испытаний не обнаружено падения давления более

0,05 МПа (0,5 кгс/см 2) и капель в сварных швах, трубах, резьбовых соединениях, арматуре и утечки воды через смывные устройства.

По окончании испытаний гидростатическим методом необходимо выпустить воду из систем внутреннего холодного и горячего водоснабжения.

Манометрические испытания системы внутреннего холодного и горячего водоснабжения следует производить в следующей последовательности:

  • систему заполнить воздухом пробным избыточным давлением 0,15 МПа (1,5 кгс/см 2);
  • при обнаружении дефектов монтажа на слух следует снизить давление до атмосферного и устранить дефекты;
  • затем систему заполнить воздухом давлением 0,1 МПа (1 кгс/см 2),
  • выдержать ее под пробным давлением в течение 5 мин.

Система признается выдержавшей испытание, если при нахождении ее под пробным давлением падение давления не превысит 0,01 МПа (0,1 кгс/см 2) .

Системы отопления

Испытание водяных систем отопления и теплоснабжения должно производиться при отключенных котлах и расширительных сосудах гидростатическим методом давлением, равным 1,5 рабочего давления, но не менее 0,2 МПа (2 кгс/см 2) в самой нижней точке системы.

Система признается выдержавшей испытание, если в течение 5 мин нахождения ее под пробным давлением падение давления не превысит 0,02 МПа (0,2 кгс/см 2) и отсутствуют течи в сварных швах, трубах, резьбовых соединениях, арматуре, отопительных приборах и оборудовании.

Величина пробного давления при гидростатическом методе испытания для систем отопления и теплоснабжения, присоединенных к теплоцентралям, не должна превышать предельного пробного давления для установленных в системе отопительных приборов и отопительно-вентиляционного оборудования.

Манометрические испытания систем отопления и теплоснабжения соответствуют манометрическим испытаниям систем внутреннего холодного и горячего водоснабжения и производятся в той же последовательности (пункт 8.1).

Системы панельного отопления должны быть испытаны, как правило, гидростатическим методом. Манометрическое испытание допускается производить при отрицательной температуре наружного воздуха.

Гидростатическое испытание систем панельного отопления должно производиться (до заделки монтажных окон) давлением 1 МПа (10кгс/см 2) в течение 15 мин, при этом падение давлении допускается не более 0,01 МПа (0,1 кгс/см 2).

Для систем панельного отопления, совмещенных с отопительными приборами, величина пробного давления не должна превышать предельного пробного давления для установленных в системе отопительных приборов.

Величина пробного давления систем панельного отопления, паровых систем отопления и теплоснабжения при манометрических испытаниях должна составлять 0,1 МПа (1 кгс/см 2). Продолжительность испытания -5 мин. Падение давления должно быть не более 0,01 МПа (0,1 кгс/см 2).

Система признается выдержавшей испытание давлением, если в течение 5 мин нахождения ее под пробным давлением падение давления не превысит 0,02 МПа (0,2 кгс/см 2 ] и отсутствуют течи в сварных швах, трубах, резьбовых соединениях, арматуре, отопительных приборах.

Изоляция трубопроводов

Теплоизоляция трубопроводов водоснабжения выполняется в соответствии с требованиями СНиП 2.04.14-88 (раздел 3).

При монтаже систем холодного водоснабжения необходимо защитить трубопроводы от образования конденсата. Определение величины минимальной толщины изоляции для полипропиленовых труб можно произвести по таблице 9.1:

Определение толщины изоляции для холодного водоснабжения

Вид прокладки трубопроводов Толщина слоя изоляции при X = 0,040 ВТ(м)*, мм
Трубопровод прокладывается открыто в неотапливаемом помещении (подвал) 4
Трубопровод прокладывается открыто в отапливаемом помещении 9
Трубопровод прокладывается в канале, без горячих трубопроводов 4
Трубопровод прокладывается в канале, рядом с горячими трубопроводами 13
Трубопровод прокладывается в щели каменной стены, стояке 4
Трубопровод прокладывается в прорези стены, рядом с горячими трубопроводами 13
Трубопровод прокладывается на бетонном потолке 4

Транспортирование и хранение PPR труб

Согласно СП 40-101-96 Транспортирование, погрузка и разгрузка полипропиленовых труб должны проводиться при температуре наружного воздуха не ниже - 10 °С. Их транспортирование при температуре до - 20 °С допускается только при использовании специальных устройств, обеспечивающих фиксацию труб, а также принятии особых мер предосторожности.

Трубы и соединительные детали необходимо оберегать от ударов и механических нагрузок, а их поверхности - от нанесения царапин. При перевозке трубы из PPRCнеобходимо укладывать на ровную поверхность транспортных средств, предохраняя от острых металлических углов и ребер платформы.

Трубы и соединительные детали из PPRC, доставленные на объект в зимнее время, перед их применением в зданиях должны быть предварительно выдержаны при положительной температуре не менее 2 ч.

Трубы должны храниться на стеллажах в закрытых помещениях или под навесом. Высота штабеля не должна превышать 2 м. Складировать трубы и соединительные детали следует не ближе 1 м от нагревательных приборов.

Требования по технике безопасности

При контакте с открытым огнем материал труб горит коптящим пламенем с образованием расплава и выделением углекислого газа, паров воды, непредельных углеводородов и газообразных продуктов.

Сварку трубосоединительных деталей следует производить в проветриваемом помещении.

При работе со сварочным аппаратом следует соблюдать правила работы с электроинструментом.

Нормативные ссылки

  1. ГОСТ Р 52134-2003 «Трубы напорные из термопластов и соединительные детали к ним для систем теплоснабжения и отопления. Общие технические условия». В нем перечисляются все необходимые зарубежные стандарты. ГОСТ содержит требования к трубам из полиэтилена, непластифицированного и хлорированного поливинилхлорида, полипропилена и его сополимеров, сшитого полиэтилена (отнесен в настоящем стандарте к термопластам) и по- либутена.
  2. СНиП 2.04.05-91* «Отопление. Вентиляция и кондиционирование», Приложения к нему, а - также СП 41-102-98 «Проектирование и монтаж трубопроводов систем отопления с использованием металлополимерных труб» и СП 40-101-96 «Проектирование и монтаж трубопроводов из полипропилена «Рандом сополимер».
  3. СНиП 41-01-2003 в действие введен с 1 января 2004 г., разработчики постарались учесть требования основных зарубежных стандартов и произошедшие на рынке изменения.
  4. ТУ 2248-039-00284581-99 - общие требования к напорным трубам из сшитого полиэтилена определены в России.
  5. ТУ 2248-032-00284581-98 - общие требования для труб из сополимеров полипропилена.

Зарубежная нормативная база:

В связи с тем, что закон «О техническом регулировании» привел к нестабильности в области нормативной базы и отнесению целого ряда положений и документов в разряд рекомендательных, есть смысл привести ряд международных стандартов, регламентирующих важнейшие параметры термопластов. Эти нормы, как правило, находят отражение и в новых российских нормативных документах.

Международный стандарт 1ЭО 15874 определяет требования к трубопроводам для горячего и холодного водоснабжения из полипропилена, ISO 161-1:1996 - номинальные наружные диаметры и номинальные давления для труб из термопластов, ISO 4065:1996 - толщину стенок; ISO 9080:2003 содержит методику определения длительной гидростатической прочности, ISO 10508:19995 - требования к трубам и фитингам.