Прерывистое отопление. Реконструкция систем отопления

солнечных коллекторов и аккумуляторов в схеме с тепловым насосом расход первичной энергии по сравнению с традиционным решением может быть сокращен в 3...4 раза.

§ 19.4. Экономия теплоты при автоматизации работы системы отопления

При работе распространенных систем водяного и воздушного отопления централизованные теплозатраты на отопление можно сократить, если использовать для обогревания помещений дополнительные местные теплопоступления. Существенной экономии теплозатрат достигают, применяя автоматическое регулирование теплового потока поступающего в систему отопления. Блоки автоматизации действия системы отопления включают в общую автоматизированную систему управления (АСУ) работой инженерного оборудования здания (см. § 19.1).

Теплопоступления от различных дополнительных источников можно считать избыточными, если они вызывают повышение температуры воздуха в рабочей (обслуживаемой) зоне сверх средней оптимальной, установленной по назначению помещения. Например, сверх 21 °С в обслуживаемой зоне жилых, общественных и административно-бытовых помещений, когда люди находятся в них более 2 ч непрерывно.

В отапливаемых жилых зданиях к дополнительным теплопоступлениям относятся:

часть теплолоступлений от систем водяного отопления при температуре наружного воздуха выше температуры точки излома графика регулирования температуры воды в теплофикационных сетях (см. рис. 17.3);

часть бытовых тепловыделений, вызывающих повышение температуры воздуха в жилых комнатах сверх 21 °С (обычно при температуре наружного воздуха выше расчетной для проектирования отопления);

теплопоступления от солнечной радиации.

В основных помещениях общественных зданий вместо бытовых тепловыделений имеются периодические теплопоступления от работающих людей и электрического освещения. В помещения производственных зданий в рабочее время поступает также теплота от электрического оборудования и технологических процессов, Мощность этих дополнительных теплоисточников изменяется во времени, понижаясь до минимального значения в ночное и нерабочее время. При нестационарном характере теплопоступлений часть теплоизбытков поглощают наружные и внутренние ограждения, а также оборудование помещений. Чем больше теплоемкость ограждений помещений, тем больше они поглощают теплоизбытков, что уменьшает амплитуду колебания температуры воздуха. При этом, как следствие, роль автоматического регулирования теплоподачи в систему отопления снижается.

Как известно, регулирование теплоподачи в систему отопления можно осуществлять в системе здания в целом, в пофасадных частях системы, в горизонтальных поэтажных ветвях или путем индивидуального регулирования теплоотдачи отдельных отопительных приборов и агрегатов.

Автоматизированное регулирование теплоподачи в систему водяного отопления здания в целом, осуществляемое в тепловом пункте при вводе наружных теплопроводов, позволяет корректировать график центрального качественного регулирования (см. рис. 17.3) и частично учитывать теплопоступления от солнечной радиации. Исследования, проведенные в системе водяного отопления 16-этажного жилого здания в Москве, показали, что теплоподача по скорректированному графику регулирования позволяет экономить 4,3 °/о

расхода теплоты за четыре последних месяца отопительного сезона. За весь сезон в условиях Москвы экономия при этом доходит до 6...8 %.

Автоматизированное пофасадное регулирование частей системы отопления сопровождается дальнейшим сокращением теплозатрат (до 12 %) по сравнению с теплозатратами при обычном центральном качественном регулировании. Об этом свидетельствуют результаты натурных наблюдений. В Москве обследована автоматизированная система водяного отопления 16-этажного жилого здания. В солнечный день при температуре наружного воздуха около -4 °С теплоподача в помещения юго-восточного фасада здания уменьшалась в 2,5 раза по сравнению с теплоподачей при центральном изменении температуры теплоносителя. Суточный расход теплоты сокращался на 25 %.

При пофасадном регулировании контроль работы частей системы отопления проводят по трем-четырем неблагоприятно расположенным (обычно недогревающимся) помещениям. Это вызывает перегревание других помещений.

Более эффективно в отношении экономии тепловой энергии автоматическое регулирование теплоподачи в отдельные крупные помещения горизонтальными поэтажными ветвями системы водяного отопления. При таком поэтажном регулировании температура воздуха в обслуживаемых помещениях поддерживается на заданном уровне с помощью регуляторов прямого действия с точностью ± 1,5 °С.

Аналогично по эффективности автоматическое регулирование теплоподачи индивидуальными регуляторами, устанавливаемыми на теплопроводах отопительных приборов или агрегатов (см. § 4.9). При таком способе регулирования полезно используются (в отношении экономии теплозатрат на отопление) теплопоступления в помещения от людей, бытовых приборов, солнечной радиации, электрического освещения и оборудования и других источников, а также учитывается неблагоприятное воздействие ветра.

Особенно существенная экономия теплоты достигается при прерывистом отоплении зданий с переменным режимом работы.

§ 19.5. Прерывистое отопление зданий

В зданиях и сооружениях с переменным тепловым режимом (см. § 15.3) прибегают к понижению температуры помещений в нерабочие периоды суток. Для этого применяют прерывистое отопление с понижением или полным отключением теплоподачи.

При сокращении теплопоступлений от системы отопления по сравнению с теплоподачей в рабочий период суток в помещениях наблюдаются колебания температуры воздуха и радиационной температуры. Охлаждение помещений при отключении отопления рассмотрено в .

В сухих производственных помещениях возможно понижение температуры в нерабочий период до 5 °С. В помещениях общественных зданий можно также допустить в нерабочий период суток понижение температуры, но до такого уровня, чтобы избежать конденсации водяного пара воздуха на внутренней поверхности наружных ограждающих конструкций (за исключением световых проемов).

Исходя из этого, найдем, что понижение температуры помещений в нерабочий период времени возможно до 8...10 °С. Примем (с запасом) минимально допустимую температуру таких помещений равной 12 °С.

Для переменного теплового режима рабочих помещений характерна суточная периодичность. В течение суток выделим рабочий период, когда внутренние теплопоступления (например, от людей, оборудования) в той или иной мере возмещают теплопотери и требуется главным образом вентиляция помещений (в помещениях преобладает режим вентилирования). Нерабочий период разделим на период естественного охлаждения помещений, когда отопление отключено, и отсутствуют какие-либо теплопоступления (режим охлаждения), и период усиленного нагревания помещений перед началом работы (режим нагревания или, как говорят, "натопа"). Продолжительность этих периодов различна. Если режим вентилирования длится 8 или 16 ч (две смены), то продолжительность режима натопа зависит от температуры наружного воздуха и тепловой мощности системы отопления. Соответственно увеличивается или уменьшается продолжительность периода охлаждения.

Устанавливается также недельная периодичность теплового режима, связанная с суб- ботне-воскресным (или только воскресным) перерывом в работе. Недельная периодичность нарушается только в дни праздников.

На рис. 19.6 показано изменение тепловыделений Qвыд температуры воздуха tв и радиационной температуры tR помещения, в котором работают от 9 до 18 ч пять дней в неделю, при условно постоянных теплопотерях Qпот . Принято, что теплопоступления несколько меньше теплопотерь (Qвыд

Продолжительность нагревания помещения отличается в рабочие дни и после воскресенья, так как исходная температура помещения различна.

Рис. 19.6. Изменение теплового и температурного режимов рабочего помещения в течение четырех дней недели в зимнее время: а - изменение теплопоступлений; б - изменение температурных параметров

Прерывистая теплоподача вызывает периодические изменения температуры помещения, зависящие от теплотехнических свойств его ограждений, величины и продолжительности теплопоступлений. Конвективная теплота от отопительной установки поступает в воздух помещения и от него передается внутренней поверхности ограждений. Температура воздуха и радиационная температура несколько отличаются, и их изменение не совпадает во времени (см. рис. 19.6, б).

Для расчета изменения температуры воздуха и радиационной температуры ограждений помещения определяют показатели теплоусвоения Yпом и теплопоглощения Рпом помещения.

Показатель теплоусвоения помещения Yпом , Вт/°С, характеризующий изменение температуры внутренней поверхности всех ограждений, находят в зависимости от коэффициента теплоусвоения Yx , Вт/(м2 ·°С), для поверхности отдельных ограждений

где Аi - площадь i-того ограждения помещения.

Показатель теплопоглощения ограждений Рогр , Вт/°С, выражающий изменение температуры воздуха помещения, вычисляют с учетом коэффициента теплопоглощения для каждого ограждения, а также коэффициента прерывистости теплового потока Ω :

Коэффициент прерывистости определяют в зависимости от отношения продолжительности нагревания (натопа) к общей продолжительности не рабочего периода (например, 16 ч при односменной работе).

В формулу (19.10) входит также величина Λпом , Вт/°С - показатель интенсивности конвективного теплообмена на всей площади поверхности ограждений помещения, вычисляемый по формуле

где αк ср - осредненный по поверхности всех ограждений коэффициент конвективного теплообмена (в зимних условиях - 4,0 Вт/(м2 ·°С)).

Таким образом, теплоустойчивость помещения можно характеризовать отношением показателей Yпом и Λпом , входящих в уравнение (19.10). Установим возможные значения пока-

зателя теплоустойчивости помещения Yпом /Λпом при его ограждающих конструкциях из различных распространенных материалов (табл. 19.2).

Таблица 19.2. Показатель теплоустойчивости помещения при использовании различных материалов в его ограждающих конструкциях

При прерывистом отоплении минимальная температура помещения, которая устанавливается к концу периода отключения отопления (режима охлаждения), зависит от теплоустойчивости, а также теплозащитных свойств наружных ограждений этого помещения.

На рис. 19.7 даны обобщенные результаты расчетов минимальной температуры воздуха в четырех помещениях площадью около 50 м2 с тремя окнами (с двойным и тройным остеклением) и ограждениями, выполненными по вариантам, приведенным в табл. 19.2. При расчетах принято: температура наружного воздуха tн =-20 °C, работа в помещениях односменная, помещения рядовые на среднем этаже здания, отопление помещений отключено в конце работы.

Видно, что минимальная температура воздуха после прекращения отопления в течение 16 ч существенно зависит как от теплоустойчивости помещений, так и их теплозащиты. По мере возрастания этих показателей повышается и минимальная температура воздуха, т.е. замедляется охлаждение помещений. Можно также установить, что для обеспечения в режиме охлаждения минимальной температуры 12 °С следует стремиться к повышению теплоустойчивости и теплозащитных свойств ограждений помещений.

С другой стороны, при повышении теплоустойчивости помещений экономия теплоты в условиях прерывистого отопления будет сокращаться. Это объясняется сохранением в режиме охлаждения повышенного уровня теплопотерь через ограждения вследствие более высокой температуры помещений. Кроме того, при повышении теплоустойчивости (увеличении показателя Yпом /Λпом ) придется прибегать к более продолжительному нагреванию

помещений перед началом работы с соответствующим сокращением продолжительности периода охлаждения. Расчеты показывают, что при прерывистом отоплении помещений повышенной теплоустойчивости теплозатраты возрастут на 4...5 % по сравнению с затратами на отопление помещений пониженной теплоустойчивости.

Экономия теплоты, получаемая при переменном тепловом режиме, зависит не только от теплозащитных свойств ограждающих конструкций помещений, но и от тепловой мощности системы отопления. Применение переменного теплового режима при повышенных теплозащитных свойствах ограждений обеспечивает дополнительную экономию теплоты вследствие сокращения продолжительности натопов и даже устранения промежуточных натопов (см. рис. 19.6) в условиях длительного охлаждения помещений в воскресные и праздничные дни. Продолжительность периода охлаждения может быть в этих случаях увеличена вследствие относительного повышения минимальной температуры воздуха в помещениях (на рис. 19.7 на 2,5...3°С).

Повышение тепловой мощности системы прерывистого отопления (по сравнению с мощностью постоянно действующей системы) при прочих равных условиях позволяет в еще большей мере экономить теплоту. Расчеты для крупного административного здания в климатических условиях Москвы показывают, что при увеличении тепловой мощности системы отопления (коэффициента натопа) от 1,3 до 1,7 раза сокращается продолжительность натопа и экономия теплоты в год повышается, соответственно, с 15,4 до 19%.

Рис. 19.7. Зависимость минимальной температуры воздуха после ночного охлаждения (без отопления) от теплоустойчивости помещений, имеющих окна с двойным (сплошная линия) и тройным (пунктирная линия) остеклением, при tH =-20 °С

Дополнительные затраты на увеличение тепловой мощности системы прерывистого отопления окупаются за счет уменьшения эксплуатационных расходов достаточно быстро, особенно при повышенной стоимости тепловой энергии и продолжительном отопительном сезоне.

Коэффициент натопа целесообразно увеличивать до 2...2,2 и выше, ограничивая его величину располагаемой мощностью теплового ввода в здание, рассчитанной на покрытие теплозатрат как на отопление, так и на вентиляцию в рабочее время. При этом мощность теплоисточника останется без изменения. Изменится лишь суточный график отпуска теплоты с общей экономией ее в течение отопительного сезона. Общая экономия теплоты в течение отопительного сезона при прерывистом отоплении различных зданий составляет 20...30 % по сравнению с теплозатратами на постоянное отопление.

Система прерывистого отопления может быть чисто воздушной, когда установки приточной вентиляции используются в предрабочий период времени для натопа в рециркуляционном режиме. Более гибкой в эксплуатации является двухкомпонентная система комбинированного отопления (см. § 18.4). Такая система состоит из базисной (фоновой) части в виде водяного отопления (особенно при расположении рабочих мест близ световых проемов) и догревающей части - воздушного отопления для натопа. Водяное нерегулируемое отопление предназначено для постоянного использования с выравниванием теплонедостатка в различно расположенных помещениях здания. Воздушное отопление осуществляется установкой приточной вентиляции в рециркуляционном режиме, что ограничивает ее тепловую мощность при натопе.

Расчет двухкомпонентной системы прерывистого отопления заключается не только в определении тепловой мощности ее частей, но и в выявлении расчетного режима ее работы. Такой расчет проводят в суточном разрезе при различной температуре (через 5 °С) наружного воздуха в течение отопительного сезона.

Работу догревающей части системы отопления автоматизируют с программным управлением для выдерживания расчетного режима. На случай неожиданного резкого понижения температуры наружного воздуха в контрольных помещениях устанавливают датчики минимальной температуры. По сигналу от них включается допревающая часть системы отопления в дополнительный режим натопа помещений (например, на 10 °С). Эти же датчики используются в воскресные и праздничные дни.

Для примера приведем расчетные режимы работы двух различных по мощности комбинированных водовоздушных систем отопления учебного здания (при тройном остеклении окоп и показателе теплоустойчивости учебных помещений Yпом /Λпом =l,95).

1-я система с коэффициентом натопа 1,5. Базисная (водяная) часть системы отопления работает только при отрицательной температуре наружного воздуха. Догревающая (воздушная) часть с коэффициентом натопа 1,5 включается ежедневно при tн =-20 °С на 5 ч (на 13 ч после воскресенья), а пря tн =0 °С - на 1 ч (на 3 ч после воскресенья).

2-я система с коэффициентом натопа 3,0. Базисная (водяная) часть системы работает только при tн =-l О °С и ниже. Догревающая (воздушная) часть включается ежедневно при tн =-20 °С на 2 ч (на 6 ч после воскресенья), при tн =-l 1,5 °С - на 1 ч (на 4 ч после воскресенья), при tн =0 °C и отключенной базисной части - на 2 ч (на 5 ч после воскресенья).

§ 19.6. Нормирование отопления жилых зданий

Жилые здания в городах страны являются одним из основных потребителей теплоты в системах централизованного теплоснабжения. Важной технико-экономической и социальной задачей становится нормирование теплозатрат на отопление этих зданий при обеспечении теплового комфорта в помещениях.

Нормирование теплоподачи в жилые здания делают с целью упорядочения расхода теплоты на отопление и обеспечения экономии теплоты в течение отопительного сезона путем сокращения бесполезных теплопотерь. Нормирование можно проводить на основе существующей структуры управления жилищным хозяйством городов, используя ее основные элементы: информационно-вычислительный центр, центральный, районные и оперативные диспетчерские пункты жилы%микрорайонов.

При проведении нормирования теплоподачи сравнивают фактическое теплопотребление на отопление жилых зданий за некоторый установленный предшествующий период времени с расчетной теплопотребностью зданий. Сравнение делают с учетом действительных климатических условий в течение контрольного периода времени и теплотехнических особенностей жилых зданий в микрорайоне. При этом выявляют и устраняют причины несогласования фактических теплозатрат и нормы теплопотребления. Расчет нормы теплопотребления за контрольный период отопительного сезона (не менее месяца) для группы жилых домов, обслуживаемых одним центральным тепловым пунктом (ЦТП), выполняют в информационно-вычислительном центре (ИВЦ), При этом используют данные об обогреваемом объеме жилых зданий, числе людей, проживающих в этих зданиях, расчетной мощности системы горячего водоснабжения, времени работы нежилых объектов в микрорайоне и др., а также о фактических климатических условиях.

Норма теплопотребления складывается из расходов теплоты на отопление и горячее водоснабжение. Норму теплоподачи на отопление зданий устанавливают, исходя из суточной нормы, определяемой по формуле

где N - число групп жилых зданий с отличающимися теплотехническими характеристиками; qот.N - удельный показатель теплозатрат на отопление данной группы зданий, кДж/(сутм3·°С); VN - общий отапливаемый объем зданий данной группы, м3; tв.опт - оптимальная температура внутреннего воздуха в жилых зданиях, принимаемая по главе СниП ; tн.ср - среднесуточная температура наружного воздуха по данным срочных измерений на ближайшей к ДТП городской метеостанции, °С.

Показатель qo.N , кДж/(сут·м3 ·°С), учитывает отдельные составляющие теплового баланса здания

где qo.N , qБ.N - удельные показатели теплопотерь через ограждающие конструкции зданий и на нагревание инфильтрующегося воздуха через окна и двери здания; qб.N - удельный показатель теплопоступленнй от внутренних бытовых теплоисточников.

Составляющие формулы (19.13) рассчитывают по зависимостям, получаемым с учетом теплотехнических свойств и особенностей воздушно-теплового режима зданий, входящих в разные группы.

Фактические теплозатраты зданий за контрольный период времени определяют по показателям теплосчетчиков (тепломеров), установленных на вводах городских теплопроводов в ЦТП. Контрольный период выбирают в начале отопительного сезона при температуре наружного воздуха выше расчетной для отопления. Проведению измерений должна пред-

шествовать тщательная наладка системы отопления в ходе подготовки зданий к работе в условиях отопительного сезона.

При недоиспользовании расчетной нормы теплопотребления (при отсутствии жалоб населения на недогревание помещений) устанавливают источники дополнительной экономии теплоты. Опыт экономной эксплуатации может быть распространен на другие жилые микрорайоны.

Превышение фактических теплозатрат за контрольный период времени над расчетной нормой теплопотребления будет свидетельствовать о перерасходе теплоты и имеющихся в жилых зданиях скрытых резервах для ее экономии. Тогда на основании обследований и последующего анализа состояния наружных ограждений, тепловыделяющего и теплопотребляющего оборудования составляют перечень мероприятий по сокращению теплозатрат на отопление зданий микрорайона.

В ходе обследования зданий устанавливают состояние оборудования ЦТП, внутриквартальных тепловых сетей, индивидуальных тепловых пунктов, тепловой изоляции в зданиях, их ограждающих конструкций (стен, окон, перекрытий), входных дверей и лестничных клеток.

При обследовании систем отопления зданий после их приведения в проектное состояние необходимо проверить:

исправность регулятора расхода теплоносителя на тепловом вводе;

состояние тепловой изоляции труб в технических подвалах и на чердаках;

размеры горловины и сопла элеватора и их соответствие рассчитанным при наладке системы отопления значениям;

исправность действия регулирующей арматуры у отопительных приборов;

наличие самовольно установленных жителями дополнительных отопительных приборов;

технические показатели циркуляционных насосов;

наличие воздуха в верхних магистралях и отопительных приборах;

плотность соединений в оборудовании, арматуре и фасонных частях труб;

уровень температуры возвращаемой из системы отопления воды (см. § П.2);

наличие горизонтальной и вертикальной разрегулировки системы;

недогревание или перегревание отдельных помещений путем массового термографирования внутреннего воздуха в квартирах.

В ходе обследования учитывают, что перерасход теплоты может сопровождаться сверхнормативным снижением температуры в отдельных помещениях, причинами чего может быть вертикальная и горизонтальная разрегулировка систем отопления.

Подтверждением эффективности мероприятий, проводимых эксплуатирующими организациями по сокращению бесполезных теплопотерь, служит последовательное сокращение фактических теплозатрат по сравнению с нормируемой теплоподачей на отопление зданий.

КОНТРОЛЬНЫЕ ЗАДАНИЯ И УПРАЖНЕНИЯ

1. Какие градоустроительные приемы снижают затраты на отопление здания?

2. Как изменением объемно-планировочного решения здания можно сэкономить тепловую энергию?

3. Какими мерами можно уменьшить теплопотери через наружные стены, окна, перекрытия здания?

4. В чем смысл теплового экрана в наружном ограждении? Предложите возможные схемы решения.

5. В чем сущность оптимизации вариантов отопления здания с учетом эффективности системы?

6. Что такое АСУ теплового режима здания?

7. Изобразите принципиальные схемы регулирования температуры воды, поступающей в систему отопления "по возмущению" и "по отклонению".

8. Перечислите факторы, способствующие экономии теплоты при проведении прерывистого отопления зданий,

ГЛАВА 20. ИСПОЛЬЗОВАНИЕ ПРИРОДНОЙ ТЕПЛОТЫ В СИСТЕМАХ ОТОПЛЕНИЯ

§ 20.1. Системы низкотемпературного отопления

Низкотемпературными называются системы отопления, температура теплоносителя на входе в которые не превышает 70 °С. В таких системах могут использоваться как традиционные, так и нетрадиционные теплоисточники, среди которых могут быть солнечная радиация, теплота уходящих газов и воздуха, низкопотенциальных сред (воды, воздуха).

Низкотемпературные системы отопления до сих пор не получили широкого распространения в России, несмотря на их экономические преимущества. Препятствием для распространения является увеличенный расход металла вследствие развития площади нагревательных поверхностей.

Системы низкотемпературного отопления подразделяют в зависимости от способа нагревания теплоносителя на однокомпонентные, имеющие однотипные теплоприготовительные установки, и комбинированные (см. § 18.4), имеющие две разнотипные теплоприготовительные установки (например, солнечная теплонасосная установка и электрический теплообменник).

Системы низкотемпературного отопления по виду применяемого теплоносителя могут быть водяными, паровыми и воздушными.

Низкотемпературные системы водяного отопления выполняют, как правило, насосны-

ми из-за незначительности действующего гравитационного давления. По своей конструкции они не отличаются от обычных систем водяного отопления. Из-за малого перепада температуры воды низкотемпературные системы водяного отопления устраивают, как правило, только двухтрубными и желательно с открытым расширительным баком, который хорошо изолируют и снабжают циркуляционной линией (см. рис. 3.19). При отсутствии чердака возможна также установка закрытого расширительного бака (см. рис. 3.20). Для удаления воздуха из систем с нижней разводкой предусматривают воздушную линию (см. рис. 6.4, б) или воздушные краны непосредственно у отопительных приборов (см,

При использовании нетрадиционных теплоисточников периодического действия (солнечная энергия, сбросная теплота технологического процесса) в систему низкотемпературного водяного отопления включают теплоаккумуляторы с жидкими и твердыми заполнителями, а также теплоаккумуляторы, использующие теплоту фазовых превращений, или термохимические. В теплоаккумуляторах с жидкими и твердыми заполнителями (вода, незамерзающие жидкости - водный раствор этиленгликоля, глизаптин, гравий и др.) теп-

Экономия тепловой энергии 25-40%. Простота установки и эксплуатации. Окупаемость - 1 сезон.

Введение

Общеизвестно, что в межсезонье, (особенно это ощущается весной) в системах отопления большинства жилых зданий происходит «перетоп», что не только создает дискомфорт, но и обходится в существенную «копеечку». Это, конечно, касается не только жилых зданий, а любых, имеющих «зависимую» схему подключения, например, через элеватор.

Технически причина этого «перетопа» может быть устранена только регулированием потребления в самом здании. Для этого сейчас активно предлагаются к внедрению индивидуальные тепловые пункты (ИТП) - решение, скажем прямо, не дешевое. Другой вариант - насосное смешение - тоже не лишен недостатков, поскольку требует не только затрат на насос и автоматику, но и постоянного расхода электроэнергии (а это постоянные затраты), кроме того схема зависима от электроэнергии, при ее отключении отопления в здании не будет. Самое главное - насосная схема требует капитальных затрат, которые при небольшом теплопотреблении будет окупаться очень долго.

Как раз для зданий с небольшим потреблением (до 0,3 Гкал/ч) есть недорогое и качественное решение проблемы - регулятор отопления, который регулирует потребление тепловой энергии здания позиционно (т.е. обеспечивая прерывистое отопление) - метод давно известный и описанный во всех учебниках, но несколько забытый, поскольку большинство известных регуляторов работало по параметру температуры теплоносителя из системы отопления, что приводило по ряду причин к разрегулировке системы отопления по стоякам. Предлагаемый регулятор имеет совершенно другой метод регулирования. Программное обеспечение вычисляет по температуре наружного воздуха необходимое количество тепловой энергии для здания и не дает ему потреблять лишнего.

При непродолжительных (до 30 мин) перерывах циркуляции теплоносителя в системе отопления температура в помещении практически не будет отличаться от начального значения. Даже при сильных морозах (-20 О С) шестиминутный перерыв в циркуляции теплоносителя приведет к понижению температуры помещения в панельном здании всего на 0,1 °С поскольку инерционность водяной системы отопления и самого здания весьма велики. Кратковременный перерыв циркуляции в особенности оправдан тогда, когда он обусловлен избыточной в данный момент времени тепловой мощностью, которая фиксируется приборами автоматического регулирования. В этом случае позиционное регулирование будет столь же эффективно, как и регулирование пропорциональное, которое обеспечивает, например, ИТП (независимое подключение).

Технические средства, реализующие позиционное регулирование, не требуют применения сложной и дорогой техники. Не нужны циркуляционные насосы, требующие постоянного электропитания, существующие элеваторы могут остаться на своих местах, а стоимость исполнительных механизмов позиционного типа, например, электромагнитных клапанов, существенно ниже стоимости клапанов пропорционального регулирования.

О регуляторе отопления здания

Регулятор предназначен для управления процессом потребления тепловой энергии в зданиях с зависимым подключением с нагрузкой не более 0,3 Гкал/ч.

По показаниям датчиков температуры наружного воздуха и температуры в обратном трубопроводе (см. рис.) контроллер оценивает количество избыточного тепла, поступающего в здание. Для поддержания комфортной температуры в помещениях поток теплоносителя периодически прерывается с помощью клапана, устраняя «перетопы». Во время кратковременного отключения протопленное здание экономит тепло, а температура в помещениях остается стабильной за счет теплоаккумуляторного свойства здания.

Экономия

В среднем типовое 5-этажное или 9-этажное здание потребляет на отопление 70-100 Гкал тепловой энергии (март). Даже при минимальной экономии в 25% и средней стоимости 1 Гкал в 2000 руб. экономия составит 35-50 тыс. руб. в месяц. Регулятор окупается сразу, за первый же отопительный сезон!

Настройка и управление

Для настройки и управления контроллером не требуется специальных программ. Его обслуживание осуществляется через встроенный WEB-сервер с помощью мобильных устройств (ноутбук, планшет, смартфон).

Более того, встроенный модем может осуществлять рассылку SMS сообщений при возникновении аварийных и нештатных ситуаций. При подключении пакета услуг «экономь» возможна организация удаленного доступа к контроллеру через сеть Интернет.

Кроме того, вычислитель регулятора сертифицирован как средство измерения (тепловычислитель узла учета). Таким образом, если к нему подключить расходомер, то получится полноценный узел учета тепловой энергии без дополнительных затрат.

Частые вопросы и ответы

  1. Регулятор можно устанавливать только потребителям с зависимой схемой подключения?

Ответ: достаточно существенные перетопы в осенний и весенний периоды (а для теплых климатических зон - практически весь отопительный сезон) присущи как раз зависимой схеме присоединения. Если схема независимая, то тепловая энергия передается через теплообменник и соответствующая автоматика должна регулировать величину потребления (соблюдение температурного графика, исключающего перетопы).

  1. Почему регулятор рекомендуется устанавливать при потреблении зданием до 0,3 Гкал/ч

Ответ: известно несколько схем, позволяющих регулировать потребление тепловой энергии зданием на нужды отопления. Наиболее часто применяется насосная схема, которая позволяет плавно регулировать потребление тепловой энергии зданием. Но внедрение такой схемы требует затрат на покупку насоса и соответствующего клапана, что при малом потреблении (соответственно и сравнительно небольших объемах экономии) будет окупаться достаточно продолжительное время. Специально для таких потребителей и был разработан наш Регулятор, который показал на практике окупаемость от 2 месяцев до 2 отопительных сезонов. Для зданий с потреблением больше 0,3 Гкал/ч традиционная насосная схема окупается в приемлемые сроки.

  1. Не вызовет ли работа Регулятора шума или гидроударов в системе отопления здания?

Ответ: при потреблении зданием до 0,2 Гкал (и менее) расход теплоносителя составляет около 2 л/с (при скорости теплоносителя в трубе порядка 1 м/с), при таких расходах возникновение гидроудара не возможно. Если используется соленоидный клапан, регулирующий расход, то при его закрытии/открытии (где-то 2 раза в полчаса) слышен характерный щелчок. В офисных зданиях его, конечно, не слышно. Если рядом жилые помещения, то лучше использовать клапан шаровой с сервоприводом, он работает бесшумно, но его стоимость немного выше.

  1. Не вызовет ли работа Регулятора завоздушивания системы отопления здания?

Ответ: нет. Клапан будет регулировать подачу тепловой энергии кратковременным перекрыванием подающего трубопровода. Обратный трубопровод ничем не перекрывается. Именно давлением в обратном трубопроводе теплосеть обеспечивает нормальную работу зависимых систем потребителей без завоздушивания.

  1. Можно ли поставить один Регулятор на несколько зданий?

Ответ: На каждое здание нужно ставить свой Регулятор, поскольку он рассчитывает индивидуальное потребление зданием тепловой энергии. Если подключить несколько зданий, то из-за индивидуальных особенностей одни из них будут перегреваться, а другие недогреваться. При индивидуальной установке регулятора он будет учитывать особенности конкретного здания и обеспечивать ему необходимое количество тепловой энергии для поддержания комфортной температуры в помещении.

  1. Сложно ли настраивать Регулятор?

Ответ: Регулятор настраивается очень просто: ему задается температурный график тепловой сети и температура, которую необходимо поддерживать в помещениях здания. Остальное он вычислит сам. Кроме того, если здание офисное или промышленное, можно указывать периоды, когда температура в помещениях может быть пониженной (выходные дни и ночные часы). В этом случае экономия будет еще больше. Если Регулятор подключен к сети Интернет, то настройка может быть осуществлена удаленно с любого компьютера (по логину и паролю).

  1. Насколько сложен монтаж Регулятора?

Ответ: Монтаж сводится к установке монтажного модуля с уже установленной на нем необходимой арматурой (на резьбовом или фланцевом соединении - операция доступная любому слесарю). Операция требующая сварки - установка гильзы в трубопровод для датчика температуры. Крепление второго датчика температуры (воздуха) на северный (желательно) фасад здания - не представляет сложности. Шкаф управления монтируется на стену. Если подключение к интернету через мобильную связь, то возможно потребуется вывести антенну на фасад здания.

  1. Есть ли практический опыт внедрения Регулятора?

Ответ: В качестве примера приведем данные работы регулятора в здании офиса теплоснабжающей компании в Москве. На рис. 1 виден исполнительный механизм (шаровой клапан с сервоприводом), установленный после теплосчетчика (по ходу теплоносителя). На рис. 2 представлен график температуры в подающем и обратном трубопроводе системы отопления, которые фиксировал теплосчетчик. На рис. 3. график потребления тепловой энергии зданием (данные теплосчетчика). На рис. 2 и 3 примеры работы системы диспетчеризации и учета данных.

Рисунок 1. Исполнительный механизм регулятора отопления (слева) и смонтированный в шкафу регулятор (контроллер) (справа).

Рисунок 2. График температур в офисном здании после установки регулятора (по данным теплосчетчика)

Рисунок 3. Потребление тепловой энергии зданием после установки регулятора отопления (данные теплосчетчика)

Ответ: достаточно существенные перетопы в осенний и весенний периоды (а для теплых климатических зон – практически весь отопительный сезон) присущи как раз зависимой схеме присоединения. Если схема независимая, то тепловая энергия передается через теплообменник и соответствующая автоматика должна регулировать величину потребления (соблюдение температурного графика, исключающего перетопы).

В отдельных случаях, когда теплоснабжающая организация ведет себя некорректно и с ней трудно найти общий язык – регулятор может помочь избежать излишнего навязываемого объема потребления и при независимой схеме, но это - «экзотика».

Ответ: известно несколько схем, позволяющих регулировать потребление тепловой энергии зданием на нужды отопления. Наиболее часто применяется насосная схема, которая позволяет плавно регулировать потребление тепловой энергии зданием. Но внедрение такой схемы требует затрат на покупку насоса и соответствующего клапана, что при малом потреблении (соответственно и сравнительно небольших объемах экономии) будет окупаться достаточно продолжительное время. Специально для таких потребителей и был разработан наш Регулятор, который показал на практике окупаемость 1-2 месяца. Для зданий с потреблением больше 0,2 Гкал/ч традиционная насосная схема окупается в приемлемые сроки.

Ответ: установку Регулятора нужно согласовывать с теплоснабжающей организацией. Хотя прямых указаний на необходимость согласования в нормативных документах нет, большинство теплоснабжающих организаций придерживаются мнения, что любые узлы регулирования у потребителей влияют на гидравлику всей сети и поэтому требуют согласования. Справедливости ради, надо сказать, что процедура получения техусловий и согласования формальны и не требуют, как правило, много времени и сил.

Ответ: при потреблении зданием до 0,2 Гкал (и менее) расход теплоносителя составляет около 2 л/с (при скорости теплоносителя в трубе порядка 1 м/с), при таких расходах возникновение гидроудара не возможно. Если используется соленоидный клапан, регулирующий расход, то при его закрытии/открытии (где-то 2 раза в полчаса) слышен характерный щелчок. В офисных зданиях его, конечно, не слышно. Если рядом жилые помещения, то лучше использовать клапан шаровой с сервоприводом, он работает бесшумно, но его стоимость несколько выше.

Ответ: нет. Клапан будет регулировать подачу тепловой энергии кратковременным перекрыванием подающего трубопровода. Обратный трубопровод ничем не перекрывается. Именно давлением в обратном трубопроводе теплосети обеспечивает нормальную работу зависимых систем потребителей без завоздушивания.

Ответ: На каждое здание нужно ставить свой Регулятор, поскольку он рассчитывает индивидуальное потребление зданием тепловой энергии. Если подключить несколько зданий, то из-за индивидуальных особенностей одни из них будут перегреваться, а другие недогреваться. При индивидуальной установке регулятора он будет учитывать особенности конкретного здания и обеспечивать ему необходимое количество тепловой энергии для поддержания комфортной температуры в помещении.

Ответ: Регулятор настраивается очень просто: ему задается температурный график тепловой сети и температура, которую необходимо поддерживать в помещениях здания. Остальное он вычислит сам. Кроме того, если здание офисное или промышленное, можно указывать периоды, когда температура в помещениях может быть пониженной (выходные дни и ночные часы). В этом случае экономия будет еще больше. Если Регулятор подключен к сети Интернет, то настройка может быть осуществлена с любого компьютера (по логину и паролю).

Ответ: Монтаж сводится к установке клапана (на резьбовом или фланцевом соединении - операция доступная любому слесарю). Операция требующая сварки – установка гильзы в трубопровод для датчика температуры. Крепление второго датчика температуры (воздуха) на северный (желательно) фасад здания – не представляет сложности. Сам Регулятор монтируется на стену (можно в шкафчик). Если подключение к интернету через мобильную связь, то возможно потребуется вывести антенку на фасад здания.

Ответ: В качестве примера приведем данные работы регулятора в здании офиса теплоснабжающей компании в Москве. На рис. 1 виден исполнительный механизм (шаровой клапан с сервоприводом), установленный после теплосчетчика (по ходу теплоносителя). На рис. 2 представлен график температуры в подающем и обратном трубопроводе системы отопления, которые фиксировал теплосчетчик. На рис. 3. график потребления тепловой энергии зданием (данные теплосчетчика). На рис. 2 и 3 примеры работы системы диспетчеризации и учета данных, которые доступны при подключении этой услуги.

Рисунок 1. Исполнительный механизм регулятора отопления.

Рисунок 2. График температур в офисном здании после установки регулятора (по данным теплосчетчика)

Рисунок 3. Потребление тепловой энергии зданием после установки регулятора отопления (данные теплосчетчика)

Гершкович В.Ф.- к.т.н., руководитель Центра

энергосбережения, «Киев ЗНИИЭП»

Несмотря на то, что во всех городах Украины системы централизованного теплоснабжения подают в последние годы недостаточное для нормального обогрева зданий количество тепловой энергии, все еще существует возможность существенного уменьшения теплопотребления без ухудшения и без того неудовлетворительного температурного режима зданий. Эта возможность может быть реализована при оборудовании тепловых пунктов общественных зданий средствами программного уменьшения тепловой мощности в нерабочее время.

Для решения этой задачи необязательно оснащать тепловые пункты сложной зарубежной техникой. Можно использовать имеющиеся в Украине технические средства и микропроцессорные приборы, способные реализовать прерывистое отопление зданий.

После реализации программного уменьшения тепловой мощности в общественных зданиях Украины потребление природного газа сократится на 1,5 млрд. куб. м в год, что равно годовому потреблению газа всеми теплоснабжающими организациями города Киева.

Реализация полномасштабной программы модернизации тепловых пунктов общественных зданий по Украине в целом потребует 250 млн. долларов со сроком окупаемости около 2 лет.

Немного теории

Теория прерывистого отопления восходит ко временам , когда непрерывное водяное отопление было редкостью, а печи топили обычно только поутру, хотя в стужу приходилось топить и под вечер. Проблемы нестационарного теплообмена применительно к отопительным системам современных зданий также не оставались без внимания исследователей, а метод прерывистого отопления, или регулирования пропусками всегда упоминался в учебниках как возможный для применения, однако реально этот метод практически не применялся.

Если прекратить на время подачу теплоносителя в систему водяного отопления, то помещения начнут остывать. Темп остывания зависит от теплоемкости строительных конструкций, термического сопротивления наружных ограждений, температуры наружного воздуха, скорости ветра. Остывание происходит по экспоненте. Температуру воздуха в помещении t через z часов остывания можно определить по уравнению

(- z / B )

t = tn + (tвн.р - tn) e

где tn - температура наружного воздуха во время отключения системы отопления,

tвн.р - температура внутреннего воздуха перед отключением,

В - коэффициент аккумуляции тепловой энергии отапливаемым помещением. Этот коэффициент имеет размерность (час), и потому его называют еще постоянной времени помещения.

Значение коэффициента аккумуляции для каждого здания или помещения может определяться опытным путем или расчетом. В этой работе не ставится задача определения величин В. Для нас важно знать лишь возможный диапазон, внутри которого находятся эти величины, с тем, чтобы, принимая во внимание характерные значения, оценить возможности реализации регулирования теплопотребления зданий методом периодического прерывания потока теплоносителя. Из литературы известно, что постоянная времени для жилых и общественных зданий массового строительства, построенных по нормативам теплозащиты 60 - 80-х годов, находится в интервале значений 50

На рис. 1 построены кривые охлаждения воздуха в помещениях из

легких конструкций, характеризующихся значением В 162 ч.

Рисунок показывает, что при нулевой температуре на улице воздух помещения охладится от начальной температуры + 18 ОС до + 10 ОС почти за десять часов, и примерно столько же времени потребуется для охлаждения внутреннего воздуха до отрицательной температуры при двадцатиградусном морозе.

Резерв энергосбережения, реально у нас пока не задействованный

В большинстве общественных зданий рабочий день начинается в 9, а заканчивается в 18 часов. Ночью и в выходные дни там никого нет, а отопление работает, как днем.

Контроллеры, обеспечивающие программное уменьшение тепловой мощности систем теплопотребления в нерабочее время, на западе применяются повсеместно. Некоторое количество систем с возможностью автоматического ночного понижения температуры смонтировано и у нас. Вместе с тем, можно предположить, что системы эти практически не задействованы, потому что куплены они за немалую цену богатыми заказчиками, которые не станут экономить деньги на тепло, если при этом предполагается возможность некоторого дискомфорта, пусть и во внеурочный час.

Стоимость современного теплового пункта со смесительными насосами системы отопления, современной регулирующей и запорной арматурой, пластинчатыми водоподогревателями горячего водоснабжения и автоматикой составляет от 10 до 15 тыс. долларов. Потребитель массовый (школы, детские сады, поликлиники, клубы, проектные организации, районные и городские администрации, различного рода конторы и пр.) не в состоянии приобрести столь дорогое оборудование, и по этой причине возможность реализации программного снижения теплопотребления общественных зданий массовой застройки в ближайшие годы становится маловероятной.

А между тем, другой возможности существенно уменьшить теплопотребление существующих зданий у нас практически не осталось. Еще недавно надежды на достижение заметной экономии топлива связывались у нас с погодным регулированием. Предполагалось, что тепловые сети не успевают следить за погодой и временами подают теплоноситель с более высокой, чем нужно для отопления температурой. Теперь, после административного понижения температурного графика тепловой сети, когда предельно высокая температура в подающем трубопроводе уствилась на уровне 80 ОС вместо положенных 150 ОС, а фактическая продолжительность отопительного сезона сократилась на 2-3 недели по сравнению с нормативом, возможности погодного регулирования сведены практически к нулю.

На рис. 2 показаны фактические и расчетные температуры теплоносителя в подающем трубопроводе Киевской ТЭЦ - 5 за 1999 год.

Синей линией обозначены среднесуточные температуры наружного воздуха, значения которых для города Киева приняты по данным Гидрометцентра Украины за 1999 год. Зима в том году не была суровой, однако большая часть отопительного сезона пришлась на область недостаточного отопления, при котором температура теплоносителя была ниже расчетного значения. И только в течение нескольких дней в марте и октябре шел перегрев, который можно было бы устранить средствами погодного регулирования. В то же время, в эти несколько теплых дней, несмотря на перетоп, тепло расходовалось в небольших количествах, и погодное регулирование могло бы сэкономить совсем немного тепловой энергии. Это хорошо видно на графике, в котором функцией является не температура, а величина теплопотребления одного из общественных зданий, присоединенных к Киевской ТЭЦ - 5 (рис. 3).

Из рисунка видно, что в области избыточного отопления расположена лишь незначительная часть общего теплопотребления. Применительно к исследуемому зданию, для отопления которого было израсходовано 2294 Гкал в год тепловой энергии, область избыточного отопления вмещает в себя лишь 32,5 Гкал, что составляет только 1,4 % от общего теплопотребления. Как видим, немного можно было бы сэкономить средствами погодного регулирования тепловой мощности.

Значительно больше можно было бы сэкономить энергии, если бы осуществить в рассматриваемом здании программное снижение тепловой мощности в нерабочее время. Если допустить ночное понижение температуры помещений до + 10 ОС, то относительно этой температуры область избыточного отопления существенно расширилась бы. Даже несмотря на недостаточную температуру теплоносителя. Расчеты показывают, для того же общественного здания можно было бы сэкономить 360 Гкал за отопительный сезон, что составляет 15,7 % от годового теплопотребления (рис. 4).

На рисунке зафиксированы величины суточного, то есть суммарного дневного и ночного теплопотребления. График показывает, что тепло можно экономить почти ежедневно, точнее еженочно. Это не исключает однако проблем, связанных с недостаточностью дневного отопления, вызванного низкой температурой теплоносителя. Если бы рисунок отражал величины дневного теплопотребления, то область недостаточного отопления была бы столь же обширна, как и на рис. 3. Эта область и на рис. 4 достаточно заметна, - она покрывает ту зону, в которой внутренние температуры реально не превышали + 10 ОС. Тут и ночью ничего сэкономить невозможно.

Тем не менее, в течение большей части отопительного периода суточное теплопотребление в общественных зданиях может существенно снижаться даже при нынешнем недостаточном теплоснабжении. Если к вычисленному по графикам рис. 4 потенциалу ночного снижения внутренних температур (15,5%) добавить потенциал возможного снижения темпера тур в выходные дни, то общий энергетический потенциал программного уменьшения тепловой мощности в общественных зданиях может быть оценен величиной 18 - 20 %.

Динамика ночного теплопотребления

Средняя наружная температура в течение отопительного периода для большинства районов Украины близка к 0 ОС. Это дает основание воспользоваться кривой охлаждения tn = 0 ОС. (рис. 1) в качестве исходной для построения температурного графика в помещении общественного здания, отапливаемого нестационарно с возможностью ночного понижения температуры до значения + 10 ОС (рис. 5).

| скачать бесплатно О возможности практической реализации регулирования теплопотребления зданий методом периодического прерывания потока теплоносителя , Гершкович В.Ф,

2014-01-15

Вопрос экономии энергии, потребляемой для поддержания комфортного микроклимата в отапливаемых помещениях, становится все актуальнее. Снижение температуры воздуха в период отсутствия людей или остановки технологического оборудования дает возможность уменьшить потребление энергоресурсов.





По результатам численного моделирования выполнен расчет экономии тепловой энергии при прерывистом отоплении в условиях применения четырех видов отопительных приборов. Установлено, что наибольшая экономия теплоты наблюдается при использовании конвектора или радиатора, поскольку они обеспечивают самый быстрый темп разогрева.

Панельные отопительные приборы непригодны для прерывистого отопления, так как характеризуются значительной тепловой инерцией. Вопрос сокращения количества энергии, потребляемой для поддержания требуемых условий микроклимата в отапливаемых помещениях, приобретает все большую актуальность.

Снижение температуры воздуха в помещениях в период отсутствия людей или остановки технологического оборудования дает возможность уменьшить потребление энергетических ресурсов. Имеющиеся исследования, связанные с анализом прерывистого отопления (переменного режима работы отопления), как правило, не имеют системного характера.

В математических моделях акцент сделан на переносе теплоты в массиве ограждающих конструкций, не принимаются во внимание процессы конвекции в воздушной среде помещения. Такой подход не позволяет адекватно учесть влияние месторасположения и вида нагревателя на тепловой режим помещения. В разработанной автором под руководством д.т.н., проф. П. И. Дячека нестационарной двумерной физико-математической модели учтена сопряженность различных видов теплообмена в ограждениях и в свободном пространстве отапливаемых помещений, влияние вида отопительных приборов на процессы переноса.

Приняты во внимание геометрические и конструктивные особенности ограждений и заполнений световых проемов. Удовлетворительная степень соответствия двумерной модели реальным трехмерным процессам проверена в экспериментах. Дифференциальные уравнения переноса, входящие в разработанную модель, приведены в работе . Проанализируем задачу о прерывистом отоплении общественного помещения.

Расчетная область представляет собой вертикальный разрез помещения, расположенного на нижнем этаже, по центру окна. Снизу находится подвал. Высота помещения составляет 2,5 м, длина — 6 м. Наружные и внутренние ограждения выполнены с использованием железобетонных конструкций. Подробная информация о конструкции ограждений, внешний вид расчетной области, а также характер распределений полей температуры и скорости при различных вариантах работы отопительных приборов представлены в материале .

Предполагая, что помещение не эксплуатируется в субботу и воскресенье, рассмотрим несколько вариантов применения прерывистого отопления с четырьмя видами приборов (радиатор, конвектор, подоконная отопительная панель и напольное отопление). Для исключения влияния на результат прочих нестационарных факторов задаем постоянную температуру наружного воздуха на уровне -24 °C (условия Минска).

В смежных помещениях назначена температура воздуха 20 °C, в подвале температура задана на уровне 5 °C. Отопительная нагрузка помещения Q расч определена по традиционной методике. Связь между текущим значением мощности прибора Q тек и его расчетной нагрузкой Q расч задаем с помощью коэффициента мощности K, итого эта связь запишется как: Q тек = KQ расч. (1)

При наступлении выходных в течение первых суток задаем полное отключение системы отопления (K = 0) или снижение мощности в два раза (K = 0,5). Во вторые сутки включаем отопление, задаваясь одним из следующих значений коэффициента мощности K = 1; 1,5 или 2. Для сопоставления динамики повышения температуры в условиях применения различных режимов и отопительных приборов моделируем разогрев помещения в течение более длительного периода, чем одни сутки.

На рис. 1 представлены кривые изменения средней температуры воздуха обслуживаемой зоны для группы расчетов с полным отключением отопления в первые сутки. Рис. 2 содержит аналогичные графики для расчетов, в которых в период 0-24 ч коэффициент мощности задан 0,5. В начальный момент (0 ч) средняя температура воздуха в помещении соответствует стационарной задаче и зависит от вида прибора.

Основной причиной отличия температуры воздуха в начальный момент является различие фактических потерь теплоты вследствие неодинаковой интенсивности прогрева ограждающих конструкций, расположенных вблизи отопительных элементов . Рис. 1 и рис. 2 показывают, что динамика изменения температуры воздуха во многом зависит от вида отопительного прибора. Наиболее высока скорость изменения в расчетах с конвектором и радиатором.

Варианты с подоконной отопительной панелью и, особенно, с напольным отоплением, демонстрируют более низкую динамику снижения и увеличения температуры. Количественное сопоставление результатов удобно выполнять, используя величины, представленные в табл. 1-4. Курсивом выделены значения для режимов, не обеспечивающих своевременное достижение исходной температуры внутренней среды после периода снижения температуры.

В табл. 1 приведено время повышения температуры воздуха до исходного значения, считая от начала разогрева. Допустим, что к концу вторых суток (то есть на момент времени 48 ч) в помещении должна быть восстановлена исходная температура воздушной среды. По данным табл. 1 видно, что разогрев помещения необходимо проводить с повышенной мощностью (K > 1), так как при коэффициенте K = 1 ни один из приборов не обеспечивает достаточного темпа разогрева.

Инерционность панельных отопительных приборов является причиной того, что при K = 1 время разогрева составит более шести суток. Таким образом, к началу следующих выходных температура воздуха не достигнет значения, которое наблюдалось до начала отключения отопления (или снижения) мощности. При полном отключении в первые сутки и последующем разогреве с K = 1,5 только напольное отопление не обеспечит своевременного разогрева, поскольку является наиболее инерционным.

Табл. 2 содержит значения дополнительных затрат теплоты (из расчета на 1 м 2 площади помещения) в период разогрева до исходной температуры. Данные затраты имеют место при разогреве с коэффициентом мощности K > 1 до момента достижения исходной температуры воздуха. Далее следует перевести систему отопления в режим постоянной работы с K = 1.

Чем более длительный период времени требует разогрев помещения и чем более высокая отопительная мощность при этом используется, по сравнению с расчетной мощностью, тем значительнее дополнительные затраты. Экономия теплоты за счет прерывистого режима работы отопления за рабочий цикл, длящийся одну неделю, указана в табл. 3. Максимально возможное значение экономии для исследуемых вариантов определяется количеством теплоты, которое не использовано в период суточного отключения отопления (3170 кДж на 1 м 2 площади помещения) или снижения мощности в два раза (1580 кДж/м 2). При последующем разогреве помещения с K > 1 дополнительные затраты (табл. 2) определяют итоговое, более низкое значение экономии теплоты.

В табл. 4 представлена экономия теплоты в условиях прерывистого отопления, выраженная в процентах. Значения определены относительно затрат теплоты на отопление в течение недельного периода работы при постоянном режиме с коэффициентом мощности K = 1, составляющих 22 180 кДж/м 2 . В рассмотренных режимах для всех видов приборов полное отключение отопления в первые сутки выходных является более выгодным, чем снижение мощности на 50 %.

При отключении происходит более интенсивное и глубокое снижение температуры воздуха, за счет этого более значительно уменьшаются потери теплоты. Однако полное отключение не следует допускать при опасности замерзания теплоносителя в системе или в случае понижения температуры воздуха до значения, которое приведет к нарушению исправности технологического или иного оборудования.

Максимальная экономия среди вариантов, обеспечивающих своевременный разогрев помещения, наблюдается при использовании конвектора или радиатора, поскольку указанные приборы обеспечивают самый быстрый темп разогрева внутренней воздушной среды. Результаты других исследователей также свидетельствуют об этом . Значительно меньшая экономия обеспечивается при использовании подоконной отопительной панели.

Напольное отопление практически не дает экономии при прерывистом режиме работы по причине чрезмерной инерционности. Результаты проведенного исследования полностью подтверждают предположение о непригодности панельных отопительных приборов для использования в условиях прерывистого отопления. Для предварительного сопоставления различных отопительных приборов можно порекомендовать следующее соображение.

Чем более массивным является отопительный прибор, и чем больше его емкость по теплоносителю, тем выше тепловая инерция данного нагревателя и тем меньше выгоды можно получить от применения прерывистого отопления. Анализ результатов позволяет сделать вывод, что при использовании прерывистого отопления следует по возможности максимально удлинить период отключения (или снижения мощности), а на разогрев оставить время, необходимое для повышения температуры воздуха до требуемого значения при включении нагревателей с максимальной мощностью.

Практика показывает, что наиболее быстро обеспечить разогрев внутреннего воздуха можно, используя отопительные приборы с принудительной циркуляцией воздуха (например, конвекторы со встроенными вентиляторами). Длительность периода разогрева зависит от большого числа факторов: вида прибора, его мощности и места размещения, исходной температуры внутреннего воздуха, исходной температуры ограждений и оборудования, а также их тепловой инерции.

Применение программно реализованных математических моделей дает возможность наиболее полно учесть все факторы, определяющие процессы охлаждения и нагрева помещения, и спроектировать систему отопления, максимально подходящую для прерывистого режима работы. В рамках существующего объекта численные эксперименты позволяют разработать оптимальный режим функционирования имеющейся отопительной системы.

  1. Захаревич А.Э. Особенности формирования микроклимата в многосветных пространствах // Вестник МГСУ, №7/2011.
  2. Захаревич А.Э. Особенности формирования микроклимата отапливаемых помещений // Энергетика, №5/2009.
  3. Захаревич А.Э. Формирование параметров микроклимата в отапливаемых помещениях в условиях естественной конвекции: Автореф. дисс. на соиск. уч. ст. к.т.н. - Минск: БНТУ, 2012.
  4. Асатов P.P. Факторы, влияющие на экономию теплоты при прерывистом отоплении зданий // Теоретические основы теплогазоснабжения и вентиляции: Сб. докл. III Межд. науч.-техн. конф. МГСУ, 2009.
  5. Табунщиков Ю.А., Бродач М.М. Экспериментальное исследование оптимального управления расходом энергии // Теоретические основы теплогазоснабжения и вентиляции: Сб. докл. III Межд. науч.-техн. конф. МГСУ, 2009.