Дыхательный аппарат замкнутой системы ида 54а. Ребризеры

Изолирующий дыхательный аппарат ИДА-59М (рис. 9) предс­тавляет собой автономный дыхательный аппарат регенеративного типа с замкнутым циклом дыхания. Аппарат изолирует органы дыхания подводника от окружающей среды и предназначен для обеспечения дыхания подводника при выходе из апл, а также для временного поддержания жизнедеятельности в отсеках аварийной пл. Основные составные части аппарата ИДА-59М показаны на рис. 9:

1. Нагрудник 1 с пришитым нижним брасом 6 и поясным ремнем 16.

3. Азотно-гелиево-кислородный баллон 3 с редуктором 5 и крестовиной 4.

4. Кислородный баллон 14 с редуктором 13 и переключателем 12.

5. Клапанная коробка 9 с гофрированными трубками вдоха и выдоха.

6. Кольцевой дыхательный мешок 10, на котором распо­лагается дыхательный автомат 8 и предохранительный клапан 11.

Нагрудник с поясным ремнем и нижним брасом служит для монтажа узлов аппарата и закрепления на туловище подводника. Регенеративный патрон (рис. 10). Его двустенный корпус вмещает 1,7…1,8 кг зернистого регенеративного вещества О-3. На верхней крышке имеются штуцера 1, 2 для присоединения к дыхательному мешку, на нижней – зарядный штуцер с колпачковой гайкой 8. Донышки внутреннего корпуса 6 оборудованы решетками 3, 7. Кольцевые полочки 5 препятствуют проходу выды­хаемой смеси вдоль стенок патрона. Выдыхаемая газовая смесь через штуцер выдоха 2 посту­пает в патрон, проходит через решетку 3 через слой вещества О-3, где ос­вобождается от углекислого газа и обогащается кислородом, за­тем через нижнюю решетку 7 поступает в зазор между внутрен­ней и наружной стенками и далее через штуцер вдоха 1 в ды­хательный мешок. Азотно-гелиево-кислородный баллон (рис. 9) емкостью 1 литр служит для хранения искусственно приготовленной газовой смеси, содержащей 60% азота, 15% гелия и 25% кислорода при давлении 180…200 кгс/см2 (при учебных спусках допускается давление не менее 100 кгс/см2). Баллон имеет трехцветную окраску: черную с буквой «А» (азот), коричневую с буквой «Г» (гелий) и голубую с буквой «К» (кислород). К баллону с помощью резьбовых соединений подсоединены редуктор 5 и крестовина 4. Азотно-гелиево-кислородный редуктор 5 предназначен для по-нижения давления азотно-гелиево-кислородной смеси, находящейся в баллоне, до давления на 5,3 ¸ 6,6 кгс/см2 большего, чем давление окружающей среды.


Рис. 9. Аппарат изолирующий дыхательный ИДА-59М

1 – нагрудник; 2 – регенеративный патрон; 3 – азотно-гелиево-кислородный баллон; 4 – крестовина; 5 – редуктор; 6 – брасовый ремень; 7 – ремень с карабином; 8 – дыхательный автомат; 9 – клапанная коробка; 10 – дыхательный мешок; 11 – предохранительный клапан; 12 – переключатель; 13 – редуктор; 14 – кислородный баллон; 15 – карабин;16 – поясной ремень

Рис.10. Регенеративный патрон

1 – штуцер вдоха; 2 – штуцер выдоха; 3, 7 – решетки; 4 – наружный корпус; 5 – кольцевая полочка; 6 – внутренний корпус; 8 – колпачковая гайка

Азотно-гелиево-кислородный редуктор

Азотно-гелиево-кислородный редуктор состоит из запорного вентиля и редуктора, размещенных в одном корпусе. Запорный вентиль с малым крутящим моментом открывается вращением про­тив часовой стрелки, закрывается по часовой стрелке. На корпусе редуктора имеются два штуцера: штуцер высокого давления, закрытый колпачковой гайкой и служащий для зарядки баллона АГК смесью, и штуцер низкого давления, который под­соединяется к соединительной трубке дыхательного автомата. Редуктор работает следующим образом (рис. 17). Через открытый кла­пан вентиля газовая смесь из баллона АГК попадает под кла­пан редуктора и через отверстие в седле клапана напол­няет камеру низкого давления 2. Камера редуктора сверху закрыта резиновой мембраной 6, над которой помещается ре­гулировочная пружина 7 и металлический колпачок с отверстиями. По мере наполнения камеры низкого давления резиновая мембрана 6 прогибается и сжимает регулировочную пружину 7, освобождая толкатель клапана, который в свою очередь дает возможность клапану 3 редуктора под дейст­вием пружины перемещаться вверх до полного перекрытия отверстия в седле клапана редуктора. Приток газа в камеру низ­кого давления прекращается, если газ из камеры низкого давле­ния не расходуется. При истечении газа мембрана 6 прогибается вниз, клапан 3 редуктора под действием толкателя снова открывается и пропускает газ в камеру низкого давления. Из камеры низкого давления через канал и фильтр газ попадает в крестовину 1. Крестовина служит для соединения камеры низкого давления азотно-гелиево-кислородного редуктора с пускателем 4 ДГБ и дыхательным (легочным) автоматом 13, для чего к крестовине присоединены соединительная трубка дыхательного автомата и шланг 10 с ниппелем байонетного замка 9 от ДГБ (см. рис. 16). В одном из штуцеров крестовины расположен предохраните­льный клапан, стравливающий азотно-гелиево-кислородную смесь из камеры низкого давления редуктора АГК при давлении на 14…17 кгс/см2 больше окружающего. Кислородный баллон емкостью 1 литр служит для хранения медицинского кислорода (99%, не более 1% азота) при давлении 180…200 кгс/см2 (при учебных спусках допускается дав­ление не ниже 100 кгс/см2). На баллоне имеются редуктор 23 с запорным вентилем и переключатель 20 (см. рис. 17). Кислородный редуктор по устройству аналогичен азотно-гелиево-кислородному редуктору, но в отличие от него имеет гер­метичный колпачок. Поэтому под колпачком на любой глубине сохраняется атмосферное давление в 1 кгс/см2. В связи с этим давление в камере низкого давления кислородного редуктора также остается постоянным – 5,5 ¸ 6,5 кгс/см2 – в течение все­го периода работы редуктора и не зависит от величины окружаю­щего давления. На глубине 55…65 м, когда давление окру­жающей среды становится равным давлению в камере редуктора, истечение кислорода в дыхательный мешок полностью прекращает­ся.

Клапанная коробка (рис. 11) с гофрированными трубками вдоха и выдоха служит для:

– присоединения дыхательного аппарата к гидрокомбинезону;

– обеспечения во время дыхания циркуляции газовой смеси в аппарате по замкнутому циклу;

– для включения на дыхание в аппарат и переключения на дыхание в атмосферу.

Клапанная коробка состоит из корпуса, слюдяных клапанов вдоха 5 и выдоха 3, прижимаемых пружинами, и пробкового крана 8.


Рис.11. Клапанная коробка:

1 – патрубок выдоха; 2 – направляющая клапана; 3 – клапан выдоха; 4 – прокладка; 5 – клапан вдоха; 6 – патрубок вдоха; 7 – штуцер; 8 – пробковый кран

Клапанная коробка трубкой вдоха с патрубком 6 соеди­нена с дыхательным мешком, трубкой выдоха с патрубком 1 с регенеративным патроном. При вдохе в клапанной коробке создается разряжение, вследствие чего клапан выдоха 3 закрывается, а клапан вдо­ха 5 открывается и дыхательная смесь поступает в легкие. При выдохе в клапанной коробке давление повышается, клапан вдоха 5 закрывается, а клапан выдоха 3 открывается и пропускает выдыхаемую газовую смесь в регенеративный патрон. С помощью пробкового крана 8 производится включение в ап­парат (ручка крана при этом поворачивается в сторону кислородного баллона) или переключение на дыхание в атмосферу (ручка крана при этом поворачивается в сторону АГК-баллона). Клапанная коробка имеет штуцер 7 для подсоединения к маске с переговорным устройством или гидрокомбинезону СГП-К при помощи накидной гайки.

Дыхательный мешок (рис. 12) имеет кольцевую форму и выполнен в виде воротника, облегающего шею подводника. Такая форма дыхательного мешка улучшает остойчивость, что особенно важно при свободном всплытии, и поддерживает голову подводника над поверхностью воды после всплытия. Вместимость дыхательного мешка 6…8 л. Изготовлен он из мягкой прорезиненной ткани и крепится к нагруднику с помощью шлевок. В верхней части дыхательного мешка (на тыльной стенке) размещен автоматический пускатель (дыхательный автомат) 3. В нижней части закреплены гофрированные трубки выдоха 5 и вдоха 1, предохранительный клапан 6, два штуцера 8 с накидными гайками для присоединения регенеративного патро­на, штуцера 7 и 9 для присоединения кислородного и азотно-гелиево-кислород-ного баллонов. Внутри мешка имеется тройник 10, соединяющий трубку вдоха 1 с отрезком трубки от регене­ративного патрона и дыхательной трубкой 4, имеющей боковые отверстия по всей длине. Эти отверстия обеспечивают поступле­ние газовой смеси на вдох из мешка при любом положении под­водника. Соединительная трубка 2 подводит газовую смесь из АГК-баллона под клапан дыхательного автомата. Дыхательный автомат (автоматический пускатель) (рис. 13) обеспечивает автоматическое пополнение дыхательного мешка азотно-гелиево-кислородной смесью при погружении или вырав-нивании давления с окружающим в необходимом для дыхания подводника объеме.

Рис. 12. Дыхательный мешок:

1 – трубка вдоха; 2 – соединительная трубка; 3 – дыхательный автомат; 4 – дыхательная трубка; 5 – трубка выдоха; 6 – предохранительный клапан; 7, 8, 9 – штуцеры; 10 – тройник

Внутренняя полость дыхательного автомата изолируется от окружающей среды эластичной мембраной 1, прижимаемой к корпусу защитной крышкой 2 с резьбовым кольцом 3. Газовая смесь через штуцер 6 с фильтром 7 подводится к клапану 5, который прижимается к седлу пружиной 8. Усилие на шток клапана передается рычагами 11 и 12, высота расположения которых регулируется винтом 4 и гайкой 13. Усилие открытия регулируется винтом 9, сжимающим пружину 10. В дыхательный мешок газовая смесь поступает через вырезы в днище корпуса. Дыхательный автомат перепускает газовую смесь при разря-жении в мешке 110…160 мм вод.ст. Предохранительный клапан (рис. 14) обеспечивает сброс избытка газовой смеси из дыхательного мешка аппарата как в процессе его использования, так и при хранении на подводной лодке.

Рис.13. Дыхательный автомат:

1 – мембрана; 2 – крышка; 3 – резьбовое кольцо; 4, 9 – винты; 5 – клапан; 6 – штуцер; 7 – фильтр; 8, 10 – пружины; 11, 12 – рычаги; 13 – гайка

Рис.14.Предохранительный клапан

1 – крышка; 2, 3 – пружины; 4 – шток; 5 – клапан-мембрана; 6 – обратный клапан; 7 – корпус; 8, 9 – гайки

Он устанавливается в нижней части дыхательного мешка и закрепляется накидной гайкой 8. Конструктивно он представляет собой сочетание двух клапанов: основного – клапана-мембраны 5 и обратного резинового клапана 6. При повышении давления в дыхательном мешке мембрана 5, преодолевая усилия пружин 2, 3, отходит от седла и открывает выход избыточной газовой смеси через боковые отверстия в корпусе 7. Дыхание подводника в аппарате (см. рис. 9) осуществляется через клапанную коробку 9, которая присоединяется к ниппелю шлема гидрокомбинезона СГП-К. Необходимый для дыхания состав газов в дыхательном мешке 10 обеспечивается за счет поглощения уг­лекислого газа и выделения кислорода химическим веществом регенеративного патрона 2, подачи кислорода через кислородный переключатель 12, а также подачи азотно-гелиево-кислородной сме­си через легочный автомат 8. Все узлы аппарата ИДА-59М смонтированы на нагруднике 1, с помощью которого аппарат закрепляется на туловище подвод­ника поверх гидрокомбинезона СГП-К. На брасовом ремне 6 наг­рудника закрепляется ремень с карабином 7, который служит для удержания подводника в люке подводной лодки в процессе шлюзования при выходе свободным всплытием через спасательные люки, оснащенные блоком подачи воздуха. Карабин аппарата 15 предназначен для удержания подводника при выходе из подводной лодки на буйрепе около мусинга. Ремень карабина 15 закреплен на поясном ремне 16 аппарата. С помощью штуцера крестовины 4 аппарат ИДА-59М сое­диняется с ДГБ (см. рис. 16). Предварительно со штуцера отвертывается колпачковая гайка.

В комплекте аппарата имеется маска (рис. 15), предназ­начен-ная для использования аппарата ИДА-59М без гидрокомби­незона СГП-К в сухих и частично затопленных отсеках подводной лодки. Маска позволяет дышать в аппарате и обеспечивает изоляцию органов дыхания и глаз от окружающей газовой или водной среды.


Рис. 15. Маска:

1 – лямки; 2 – очки; 3 – переговорное устройство; 4 – угольник; 5 – накидная гайка; 6 – прокладка

С помощью угольника 4 и накидной гайки 5 с прокладкой 6 маска присоединяется к клапанной коробке аппарата. Для крепления и плотного прилежания маски по контуру лица она имеет лямки 1, которые позволяют подогнать маску по размеру головы. Маска выпускается трех размеров:

1 – малый,

2 – средний,

3 – большой.

Дополнительный гелиевый баллон (рис. 16) используется совместно с аппаратом ИДА-59М для выхода подводников с глубин более 100 м при обеспечении силами. Поисково-спасательной службы ВМФ. Баллоны ДГБ поставляются в сборе с редуктором, пускателем, соединительными шлангами и арматурой. Баллон 1 с гелием заключен в чехол 7. В кармане 6 чехла размещен пускатель, соединенный шлангом 5 с тройником 3 ре­дуктора. Шлангом 10 с байонетным замком 9 и накидной гайкой 8

Рис. 16. Дополнительный гелиевый баллон:

1 – баллон; 2 – редуктор; 3 – тройник; 4 – карабин; 5, 10 – шланги; 6 – карман чехла; 7 – чехол; 8 – накидная гайка; 9 – байонетный замок

Баллон ДГБ подсоединяется к крестовине азотно-гелиево-кислород-ного баллона. Редуктор 2 с запорным вентилем ввернут в горловину баллона. Карабином 4 баллон закрепляется к поясному ремню аппара­та. Габаритные размеры ДГБ и его деталей в сборе не превышают 330×160×110 мм, масса баллона 3,2 кг, вместимость 1,3 л, рабочее давление 20 МПа (200 кгс/см2). Редуктор гелиевого баллона по устройству и принципу дей­ствия аналогичен редуктору азотно-гелиево-кислородного бал­лона, но в отличие от него отрегулирован на установочное давление 1…1,2 МПа (10…12 кгс/см2).

Принципиальная схема действия

При вдохе (рис. 17) газовая смесь из дыхательного меш­ка 17 через гофрированную трубку 8 и клапан вдоха 9 посту­пает в органы дыхания. При выходе газовая смесь через клапан выдоха 14 и гофрированную трубку 16 поступает в регенератив­ный патрон 27 с химическим веществом О-3. Очищенная от угле­кислого газа и обогащенная кислородом газовая смесь поступает в дыхательный мешок 17, где смешивается с газами, поступающи­ми из баллонов аппарата и ДГБ через механизмы подачи газовых смесей 13 и 20. Кислородный редуктор 23 и переключатель 20 на глубинах от 0 до 55…65 м обеспечивают непрерывную подачу кислорода в дыхательный мешок 17 из кислородного баллона. Подача кислорода зависит от глубины и режимов работы аппарата «погружение-всплытие». B период повышения давления окружающей среды на глуби­нах от 0 до 20 м клапан 21 переключателя открыт, седло 24 перекрыто мембраной 26, кислород через дюзы Д1, Д2 и Д3 пос­тупает в дыхательный мешок. Подача кислорода определяется тарировкой дюзы Д1 и сос­тавляет 0,3…0,6 л/мин. На глубине 20…24 м давление в полости воздействует на мембрану 19 прогибает ее, преодолевая усилие пружины 18, вследствие чего клапан 21 под воздействи­ем пружины 22 закрывается, подача кислорода осуществляется через дюзы Д1 и Д3 (около 1 л). На глубинах 25…30 м мембрана 26 под воздействием этого давления, преодолевая уси­лие пружины 25, открывает седло 24, кислород из редуктора поступает через отверстие седла 24. Так как проходное сечение отверстия седла 24 намного больше проходного сечения дюз Д2 и Д3, то давление, действующее на мембрану 26, возрастает до значения давления кислорода на выходе из редуктора. Усилие от воздействия давления на поверхность мембраны 26 становится значительно больше усилия пружины 25, и седло 24 остается открытым в процессе дальнейшего погружения и всплытия. При подъеме на поверхность подача кислорода из кислород­ного баллона возобновляется на глубине 55…65 м. Подача кис­лорода осуществляется через дюзу Д3 (около 1 л/мин). По мере подъема подача кислорода увеличивается. На глубине 20…24 м усилие пружины 18 преодолевает газовое давление на мембрану 19, клапан 21 открывается, начинается поступление кислорода в дыхательный мешок через дюзы Д2 и Д3 (3,0…4,4 л/мин). Такая подача кисло­рода остается и после подъема на поверхность. При повышении окружающего давления или при возникновении разрежения в дыхательном мешке 17 мембрана 2 дыхательного автомата 3, прогибаясь, через систему рычагов открывает кла­пан 11 и обеспечивает поступление газовой смеси в дыхатель­ный мешок. Таким образом, при выходе с глубин менее 100 м при компрессии в шлюзовом устройстве дыхатель­ный мешок 17 пополняется 25%-ой азотно-гелиево-кислородной сме­сью, поступающей из АГК-баллона через редуктор, тройник 1 и клапан 11 дыхательного автомата 13. В случае выхода с глубин более 100 м дыхательный аппарат работает совместно с ДГБ. В этом случае в дыхательный мешок 17 подается гелий, по­ступающий из ДГБ через редуктор 5, пускатель 4 и дыха­тельный автомат 13. Так как давление на выходе из редуктора 5 (10…11 гс/см2) больше давления, создаваемого редуктором АГК-баллона (5,3…6,6 кгс/см2), то мембрана 6 под воздействием давления поступаю­щего гелия, преодолевая усилие пружины 7, прогибается и обес­печивает закрытие клапана 3. Подача азотно-гелиево-кислородной смеси к дыхательному автомату 13 прекращается на глубинах 75…90 м, и взамен ее в дыхательный мешок подается гелий.


Рис. 17. Принципиальная схема действия аппарата ИДА-59М:

1 – крестовина; 2 – камера редуктора; 3,11,21 – клапаны; 4 – пускатель ДГБ; 5,23 – редукторы; 6,12,19,26 – мембраны; 7,18,22,25 – пружины; 8 – трубка вдоха; 9 – клапан вдоха; 10 – клапанная коробка; 13 – дыхательный автомат; 14 – клапан выдоха; 15 – предохранительный клапан; 16 – трубка выдоха; 17 – дыхательный мешок; 20 – кислородный переключатель; 24 – седло клапана; 27 – регенеративный патрон

Характеристика регенеративных веществ и газов, применяемых для дыхания в аппарате ИДА-59М

Для регенерации газовой среды в изолирующем дыхательном аппарате ИДА-59М используют гранулированное регенеративное вещество О-3 на основе надперекиси калия К 2 О 4 . Химическая реакция поглощения углекислого газа и влаги из выдыхаемой подводником газовой смеси и насыщения ее кислородом может быть представлена в следующем виде:

К снаряжению регенеративных патронов допускают регенера-тивные вещества, содержащие кислорода не менее 130 л/кг и двуокиси углерода – не более 15 л/кг. В качестве поглотителя двуокиси углерода используется химический поглотитель известковый (ХПИ). Вещество ХПИ используется в основном при отработке личным составом учебных задач в условиях учебно-трениро­вочных станций и комплексов. Процесс поглощения двуокиси углерода может быть представлен в виде:

К использованию допускается поглотитель с содержанием двуокиси углерода не более 20 л/кг. Вещество О-3 является химически активным. Оно бурно реагирует с водой, маслом, спиртом и жидким топливом. Поэтому при работе с веществом О-3, а также при хранении заряженных аппаратов на пл следует соблюдать строжайшие меры предос­торожности во избежание взрывов и пожаров. Для анализа регенеративного вещества О-3 на содержание кислорода и двуокиси углерода и поглотителя ХПИ на содер­жание двуокиси углерода применяется прибор кальциметр. Пробы на анализ гранулированного регенеративного вещест­ва или химического поглотителя отбираются из каждого вновь вскрываемого барабана (емкость для транспортировки и хране­ния вещества). Из трех различных мест барабана отбирают не менее трех проб. Для дыхания в аппарате ИДА-59М используется меди­цинский газообразный кислород (99% О2 и 1% N2), ГОСТ 5583−78. Пользоваться техническим кислородом для дыхания водолазов запрещается. Кислород получают с завода и в транспортных бал­лонах доставляют на учебно-тренировочные станции и комплек­сы, где им набивают кислородные баллоны аппаратов ИДА-59М. Для набивки АГК-баллонов используют 25% азотно-гелиево-кислородную смесь, которая содержит 25% кислорода, 15% гелия и 60% азота. При этом максимальное парциальное давление кислорода, приме­няемое при спасении подводников из аварийной подводной лодки, несколько превышает установленное для водолаз-ных спусков (1,3…1,8 ата). Поэтому сроки пребывания на глубинах 80…100 м при дыхании 25% азотно-гелиево-кислородной смесью для предупреждения кислородного отравления ограничены 15…20 мин. Использование 25% АГК-смеси благодаря повышенному пар­циальному давлению кислорода обеспечивает некоторое увеличение сроков пребывания под водой под наибольшим давлением при выходе с глубин до 100 м включительно без опасности возникновения у под­водников декомпрессионной болезни. В то же время выход лично­го состава из аварийной подводной лодки на этой смеси методом подъема по буйрепу позволяет применить более короткие ре­жимы. При выходе с глубины более 100 м эта смесь для дыхания непригодна из-за опасности кислородного отравления и должна разбавляться в дыхательном мешке аппарата чистым гелием из ДГБ. Проведение анализов воздуха на содержание вредных веществ, проверка состава газовых смесей по кислороду произ­водится через каждые три месяца эксплуатации компрессорных установок, перед началом эксплуатации вновь установленных или отремонтированных компрессоров, воздушных магистралей и баллонов. Заключение о пригодности регенеративных веществ, химпогло-тителя, газовых смесей и воздуха для дыхания водолазов не­зависимо от места выполнения анализов дает врач-спецфизио­лог (врач) корабля (организации ВМФ) или лицо, осуществляющее медицинское обеспечение водолазных спусков.

Inspiration - первый сертифицированный в странах ЕС дыхательный аппарат замкнутого цикла. Глубина применения - до 50 м (рекомендуемая - до 40 м) с воздухом в качестве разжижающего газа и до 100 м с гелиоксом

Акроним SCUBA расшифровывается как Self-Contained Underwater Breathing Apparatus (автономный подводный дыхательный аппарат ). При пользовании системой с открытым циклом дыхания большую часть вдыхаемого кислорода мы просто выдыхаем в воду.

Слева. Дайвер готовится использовать регенератор при прохождении курса Try-a-Rebreather в британском клубе BS-AC
В центре. Рекреационным регенератором Drager Dolphin Rebreather полузамкнутого цикла на найтроксе пользоваться легче, чем аппаратами замкнутого цикла.
Справа. Вот что скрыто под футуристическим корпусом регенератора замкнутого цикла Ambient Pressure (Buddy) Inspiration

Некоторые компании трансформировали регенераторы замкнутого и полузамкнутого цикла дтя нужд рекреационного дайвинга . Выдыхаемый дайвером углекислый газ химическим способом извлекается из выдыхаемого газа в результате пропускания последнею через известково-содовый скруббер с выделением смеси гидроксидов кальция и натрия. В очищенный таким образом газ добавляется некоторое количество кислорода, и получаемая в итоге смесь вновь вдыхается.

Акваланг открытого дыхательного цикла
1. Баллон с дыхательным газом
2. Вентиль баллона
3. Первая ступень регулятора
4. Вторая ступень регулятора
5.Манометр

Дыхательный аппарат полузамкнутого цикла
1. Загубник
2. Запорный клапан загубника
3. Нижний обратный клапан
4. Верхний обратный клапан
5. Поглотитель СО2
6. Контрланг
7. Предохранительный клапан
8. Баллон с дыхательным газом
9. Вентиль баллона
10. Регулятор
11. Байпас подачи дыхательного газа с ручной регулировкой
12. Манометр
Дыхательный аппарат замкнутого цикла
1. Загубник
2. Запорный клапан загубника
3. Нижний обратный клапан
4. Верхний обратный клапан
5. Поглотитель СО2
6. Контрланг
7. Клапан подачи разжижающего газа
8. Предохранительный клапан
9. Баллон с разжижающим газом
10. Запорный вентиль
11. Регулятор разжижающего газа
12. Байпас подачи разжижающего газа с ручной регулировкой
13. Манометр разжижающего газа
14. Баллон с кислородом
15. Запорный вентиль
16. Кислородный регулятор
17. Байпас подачи кислорода с ручной регулировкой
18. Кислородный манометр
19. Кислородные датчики
20. Кабели кислородных датчиков
21. Электронный блок
22. Кислородный электромагнитный клапан
23. Основной дисплей
24. Вспомогательный дисплей

Поскольку химическая реакция, в результате которой поглощается двуокись углерода, ваяется экзотермической, идет с выделением тепла и влаги, вдыхаемый газ теплый и влажный. Регенераторы замкнутого цикла не выбрасывают в воду никакого газа. Регенераторы полузамкнутого цикла выбрасывают малую часть выдыхаемого газа при каждом выдохе. В итоге дайверы могут длительное время оставаться под водой, располагая лишь небольшим объемом дыхательной смеси. Регенераторы могут работать на найтроксе, а для более глубоких погружений - на граймиксе или гелиоксе.

Дыхательные аппараты подобною типа требуют тщательной подготовки и проверки работоспособности. Они нуждаются в довольно сложном обслуживании, требуют постоянного контроля за показаниями измерительных приборов.

Преимущества использования регенератора

  • Эффективность использования газа, что существенно, когда дело касается дорогих газов, в особенности гелия.
  • Лучшая видимость в замкнутом пространстве из-за меньшего количества взвешенных твердых частиц в воде.
  • Тихая работа, благодаря чему дайвер может ближе подойти к особенно осторожным морским обитателям.

Недостатки

  • Высокая стоимость - регенераторы в целом дороже обычных аквалангов.
  • Сложность эксплуатации требует дополнительной подготовки, неукоснительного внимания к деталям, так как аппараты включают большое число компонентов, способных выйти из строя. Теплая и влажная среда внутри шлангов и контр-ланга идеальна для развития бактерий - эти элементы необходимо разбирать и чистить после каждого дня погружений.
  • Большинство производителей отказываются продавать регенераторы тем. кто не прошел специального курса подготовки но эксплуатации подобных аппаратов.

Рост популярности.

Современные дыхательные аппараты открытого цикла, или обычные акваланги, начали активно использоваться после 1943 года, когда их изобрёл Жак Ив Кусто и Эмиль Гальяно. Аппараты замкнутого цикла долгое время оставались невостребованными.

В 1987 году в рамках проекта «Wakulla springs» под руководством доктора наук Вильяма Стоуна при исследовании пещерной системы длиной в 5 км был опробован CisLunar Mark I - аппарат замкнутого типа, который продемонстрировал определённые преимущества перед аквалангами. С этого времени интерес к данному виду дыхательных аппаратов стал возрастать.

Ребризеры и их основные типы
Дыхательные аппараты замкнутого типа называют обычно ребризерами, от английского слова «rebreather», то есть «перевдыхатель». Отработанный дыхательный газ в них не отводится в воду, а, освобождаясь от углекислого газа, обогащается кислородом, затем вновь подаётся для дыхания. Поэтому устроены ребризеры сложнее аквалангов.

Помимо шланга, соединяющего баллон с загубником, имеется второй - для возврата отработанной смеси в контур. Обязательно присутствует полужесткий или мягкий мешок с ловушкой для воды для приёма выдыхаемой смеси, давление которой должно быть равно внешнему давлению воды. Далее смесь подаётся в канистру, в которой углекислый газ из неё удаляется химическим поглотителем. Последующее добавление кислорода осуществляется в каждом типе аппарата своим способом.

Основным критерием классификации ребризеров является степень замкнутости дыхательного цикла. Есть аппараты полностью замкнутого цикла, или CCR-ребрирезы, в которых выдыхаемая смесь полностью идёт на переработку. Газ в них отводится в воду, но лишь при всплытии, через травящий клапан. Уменьшающееся давление приводит к расширению смеси, поэтому её излишки удаляются.

Полузамкнутые аппараты, называемые SCR-ребризерами, предусматривают использование искусственных дыхательных смесей (Trimix, Nitrox, Heliox), а не чистого кислорода, поэтому появляющуюся избыточную часть азота и гелия необходимо периодически удалять из дыхательного контура.

Ребризеры замкнутого цикла

Конструкция ребризера, работающего на чистом кислороде, наиболее проста и легка, аппарат не оставляет пузырьков в воде, поэтому популярен у биологов и военных. Однако использование одного кислорода вносит ограничения. При увеличении давления он становится токсичным, негативно воздействуя на дыхательную и нервную системы. В связи с этим глубина для погружений не должна превышать 7-10 м. Кислород, к тому же, способствует быстрому развитию кариеса.

Одна из разновидностей кислородного ребризера - аппарат с химической регенерацией смеси для дыхания. В поглотительной канистре происходит выделение объёма кислорода, равного поглощённому углекислому газу, что позволяет пробыть под водой рекордное количество времени - до 6 часов. Из-за опасности регенерирующего вещества, выделяющего щёлочь при попадании в него воды, такие аппараты уже почти не используются.

Существуют ребризеры, позволяющие работать с искусственными смесями для дыхания, что позволяет погружаться на довольно большие глубины. В одних аппаратах используется электронная система управления подачей кислорода в дыхательный контур, слабым местом которой являются электрохимические датчики, требующие регулярной замены, и электромагнитный клапан. Известные представители - CIS Lunar, Buddy Inspiration. В других управление полуавтоматическое, где поступление кислорода контролируется дайвером.

Полузамкнутые ребризеры

Различие в конструкции ребризеров полузамкнутого цикла заключается в том, как происходит подача дыхательной смеси. В аппаратах с активной подачей дыхательная смесь при открытии вентиля на баллоне непрерывно подаётся в дыхательный контур через дюзу с пропускной способностью, меняющейся с глубиной и от применяемой смеси. Такие ребризеры просты конструктивно и в обслуживании, рассчитать план погружения с ними легко, так как расход смеси на любой глубине примерно одинаков. Возможно, поэтому они и получили наибольшую популярность среди других типов ребризеров. Известные аппараты этого типа - Ray и Draeger Dolphin, Atlantis и Azimuth.

В аппаратах с пассивной подачей смеси количество удаляемого и поступающего газа не регулируется в зависимости от давления, то есть от глубины, поэтому рассчитывать расход газовой смеси приходится как для обычного акваланга. Но у ребризера, в отличие от акваланга, запас времени нахождения под водой в несколько раз больше, так как в нём стравливается не весь объём выдыхаемого газа, а примерно от 10 до 30 процентов. Известные аппараты данного типа - это Halcyon RB-80 (аналог - европейский RB2000).

Ребризер или акваланг?

Ребризеры выигрывают у обычных аквалангов меньшей шумностью и меньшим количеством пузырей, неизменной плавучестью при вдохе и выдохе, так как объём смеси не уменьшается, или почти не уменьшается на выдохе. Поглощение углекислого газа приводит к выделению влаги и теплоты, которые делают вдыхаемый дайвером воздух более приятным, что повышает устойчивость к декомпрессионной болезни. Кроме того, время нахождения под водой с ребризером увеличивается, а доставка газовых смесей к месту погружения за счёт снижения их требуемого объёма не доставляет столько хлопот. Ребризеры замкнутого цикла на смесях позволяют достичь больших глубин, чем пороговые 40 м для остальных аппаратов.

Почему же ребризеры не вытеснили обычные акваланги? У них имеются свои недостатки. Эти аппараты дороже стоят, сложнее в обслуживании, имеют больший вес и размеры, они неудобны для использования двумя дайверами в критических ситуациях, требуют обеспечения расходными материалами, такими как поглотитель и различные датчики. Кроме того, ребризер удобнее использовать в команде.

Как видно, преимущества каждого типа дыхательных аппаратов уравновешиваются его недостатками, поэтому и ребризеры, и акваланги достойны того, чтобы находить своё применение. При выборе следует чётко знать, для чего будет использоваться аппарат, какого типа аппараты используются в команде. Выбор в пользу ребризера не заставит разочароваться в нём. Они не зря начинают завоёвывать в последнее время популярность в России

по материалам сайта aqua-globus.ru

В аппарате с замкнутым циклом дыхания

Я должен сознаться, что пессимистические высказывания Джуда Вандевера, здесь, на борту „Оршиллы“, в нескольких милях от станции Гопкинса, были подобны холодному душу.

Но все же это лучше, чем отступить. Не всегда борьба венчается поражением.

Экологическая битва - дело сложное: тысячу раз потеряешь, тысячу раз начнешь сначала, однако во имя будущих поколений мы должны вести ее беспроигрышно. Мы должны сделать это для самих себя.

Джуд Вандевер согласен с этим полностью. Большая часть его жизни ушла на поиски средств спасения последних каланов, и уж его-то никак не упрекнешь в пораженчестве… Попросту ученый не может опираться только на свои чувства: реалисты должны смотреть правде в лицо.

Интересно, что же хочет сказать мне, именно сейчас, пока я объясняю все это, калан, который смотрит на меня из водорослей метрах в двух от нас…

Ныряльщики „Калипсо“, которые были уже наготове, спускаются в воду. Мгновенная реакция: каланы, еще секунду назад настроенные вполне добродушно, разбегаются в разные стороны. Действительно, до сих пор ныряльщик был их заклятым врагом - он приходил со своим подводным ружьем, чтобы истреблять их. Первый раз каланы имеют дело с посетителями без оружия - но их право на недоверие к человеку вполне законно.

До определенного момента, однако. Есть еще одно обстоятельство.

Нам понадобилось некоторое время, чтобы понять, что вид и шум пузырьков воздуха из наших аквалангов привлекает их и отпугивает одновременно. Если мы действительно хотим приблизиться к каланам в их среде, нам следует найти для этого какой-то другой, более спокойный способ.

Пока пловцы поднимаются на поверхность с пустыми раковинами морского уха - каланы отбросили их, после того как оторвали моллюсков от подводных скал и съели их плоть, - я говорю себе, что существуют лишь два способа приблизиться к каланам, поиграть в прятки среди морских водорослей с этими застенчивыми клоунами - либо аппарат с замкнутым циклом дыхания либо ничего.

Кислородный аппарат с замкнутым циклом дыхания, основным достоинством которого являются отсутствие пузырьков воздуха и полная бесшумность, был создан военными для своих собственных нужд. Благодаря ему бойцы-подводники не выдают себя дыханием и становятся неразличимыми с поверхности.

Мы применяли эту хитрую систему в тех случаях, когда имели дело с дикими зверями, которых гирлянды серебристых пузырьков и шум дыхания пловцов в обыкновенных скафандрах приводили в ужас.

Но я не скрываю, что от этого я ничего не выигрываю. Хотя пловцы „Калипсо“ имеют большой опыт работы со всевозможными подводными аппаратами, я не люблю, когда они пользуются кислородными аппаратами. Кислородный аппарат доставляет многочисленные неприятности даже хорошо подготовленным пловцам. С подобным аппаратом любая ошибка может стать роковой.

Суть аппарата заключается в том, что он снабжен гранулированным веществом, которое регенерирует воздух, выдыхаемый пловцом в дыхательный мешок. Если из системы ничего и не выходит наружу, то следует внимательно следить за тем, чтобы ни одна капля воды туда не проникла: эффективность очистительного резервуара будет нарушена, и это чревато для человека серьезными и болезненными ожогами полости рта.

Каланиха укусила Филиппа Кусто, потому что он ей нравится.

Но основная опасность таится в использовании чистого кислорода. Этот газ, когда он поступает в большом количестве в кровь, - что происходит при увеличении давления воды соответственно глубине погружения, - вызывает серьезные органические нарушения. Он действует на нервную систему, вызывая знаменитое „глубинное опьянение“, которое ведет к судорогам и коме - и в последнем случае к печальному концу.

Пловцы и каланы в заливе Стилуотер.

Глубина, на которой ощущаются первые признаки „кислородного опьянения“, в среднем равняется всего 7 метрам: серьезное ограничение…

Из книги Антисемитизм в Советском Союзе автора Шварц Соломон Меерович

Из книги Владимир Путин автора Медведев Рой Александрович

Из книги Люди молчаливого подвига автора Василевский Александр Михайлович

3. До последнего дыхания Когда в Москве решался вопрос о составе организации «Рамзай», Зорге остановил свой выбор на Вукеличе. Выбор не был случайностью или результатом спешки. Рихард основательно взвесил все, что имело отношение к жизненному пути Вукелича.Бранко

Из книги Сугубо доверительно [Посол в Вашингтоне при шести президентах США (1962-1986 гг.)] автора Добрынин Анатолий Фёдорович

Работа в центральном аппарате МИД После защиты диссертации меня назначили на работу в МИД в качестве помощника заведующего Учебным отделом, поскольку у меня была теперь ученая степень. Отдел был далек от практической дипломатической деятельности, поскольку занимался

Из книги Абд-аль-Кадир автора Оганисьян Юлий

Не переводя дыхания Эта внутренняя война давалась Абд-аль-Кадиру не менее трудно, чем борьба против французов. И победы и поражения в этой войне имели одинаково горький привкус, потому что в любом случае приходилось сражаться со своими земляками и единоверцами. Но это

Из книги Явка до востребования автора Окулов Василий Николаевич

1. РАБОТА В ЦЕНТРАЛЬНОМ АППАРАТЕ РАЗВЕДКИ В Москву мы вернулись в праздник - 9 мая 1959 года, и рано утром следующего дня я вылетел в Архангельск к больному отцу.По возвращении был отчет у заместителя начальника Главка. Все прошло гладко. Похвалили, объявили о повышении в

Из книги Революция Гайдара автора Кох Альфред Рейнгольдович

Сергей Шахрай: «После этих событий Ельцин стал более замкнутым, более злым и мстительным» Сергей Шахрай, как и Андрей Козырев, не был членом гайдаровской команды. В публичную политику он пришел на полтора года раньше и к ноябрю 1991 года уже был, как теперь модно выражаться,

Из книги Беспокойное сердце автора Семичастный Владимир Ефимович

В аппарате ЦК КПСС Известие о том, что мне собираются доверить отдел ЦК партии по кадрам союзных республик, было для меня неожиданным. Я весь был поглощен работой в комсомоле. Проектов было много, контакт с работниками ЦК ВЛКСМ хороший, так что вроде бы ничто не предвещало

Из книги Мерецков автора Великанов Николай Тимофеевич

В окружном аппарате Когда началась военная реформа, Мерецков не раз высказывал желание поработать в аппарате военного округа. Объяснял это тем, что «не обладал опытом штабной работы в масштабе военного округа и не участвовал в достаточно крупных организационных

Из книги Роман с Бузовой. История самой красивой любви автора Третьяков Роман

БЕЗ ДЫХАНИЯ РомаМы с радостью примеряли гидрокостюмы для погружения под воду. Я с трудом выбрал себе костюм, а ей, как всегда, было все к лицу, «Она великолепна!» - постоянно крутилось у меня в голове. Я так хочу ее! Мы прикасаемся друг к другу, и нас просто трясет от страсти.

Из книги Женское лицо СМЕРШа автора Терещенко Анатолий Степанович

В ЦЕНТРАЛЬНОМ АППАРАТЕ Лейтенант госбезопасности в отставке Анна Степановна Швагерева - оперуполномоченный отдела кадров ГУКР СМЕРШ НКО СССР.- Анна Степановна, что для вас война?- Интересный вопрос. Простой и сложный - одновременно. Прежде всего - бедствие,

Из книги Чекист Вася Исаев автора Маркевич Михаил Андреевич

До последнего дыхания В 1929 году, когда участились нарушения границы белогвардейскими бандами, Вася стал добиваться, чтобы его отправили в один из пограничных отрядов. И настоял на своем. Тепло прощались чекисты со своим товарищем....Ранним августовским утром советскую

Из книги Время Путина автора Медведев Рой Александрович

Перед новым политическим циклом Осенью 2003 года завершался пятый в истории новой России и первый в новом столетии политический цикл, начало которому было положено событиями и выборами 1999–2000 годов. Остались позади выборы в десяти регионах страны, которые показали нам

Из книги Подвиг 1972 № 06 (Приложение к журналу «Сельская молодежь») автора Лиханов Альберт Анатольевич

6. НЕ ПЕРЕВОДЯ ДЫХАНИЯ В воздухе закружились немецкие бомбардировщики - снова прилетели обрабатывать район метизного завода, мясокомбината и бензохранилища. Мы уже изучили тактику гитлеровских летчиков и знали, что в первом заходе они будут сыпать крупнокалиберные

Из книги Сергей Круглов [Два десятилетия в руководстве органов госбезопасности и внутренних дел СССР] автора Богданов Юрий Николаевич

Аппарат соответствует требованиям ГОСТ Р 53256-2009. Автономный дыхательный аппарат замкнутого цикла, работающий на сжатом кислороде с избыточным подмасочным давлением предназначен для защиты органов дыхания и зрения человека при долгосрочном использовании в задымленной или токсичной газовой среде. Применяется при спасательных работах в шахтах, на пожарах, в замкнутом пространстве, во время спасательных работ в тоннелях и работе с вредными веществами.

Все модификации АП "Альфа" выполнены в виде ранца, нагрузка от которого при ношении распределяется на плечи и бедра. Аппарат снабжен манометром, который показывает оставшееся количество кислорода и производит два визуальных тревожных сигнала и один звуковой сигнал, показывающие состояние системы.

Система замкнутого цикла обеспечивает переработку выдыхаемого воздуха, устраняет двуокись углерода, возмещает потребленный кислород, поглощает конденсат и охлаждает вдыхаемый и выдыхаемый воздух.

Избыточное давление обеспечивает внутреннее давление под маской немного выше наружного атмосферного давления. Это обеспечивает 100% защиту органов дыхания и зрения от попадания внешней атмосферы под маску.


Технические характеристики
Тип респиратора Автономный, замкнутого цикла, со сжатым кислородом.
Время защитного действия До 4 часов
Габариты 584 x439 x178 мм
Масса снаряженного аппарата
(без заряда хладоагента
и защитных чехлов)
Не более 14 кг
Условия работы
Температура от минус 40°С до +60°С
Относительная влажность 0 -100%
Аккумулятор
Срок службы 200 часов или 6 месяцев
Тип могут применяться только типы, приведенные ниже:
  • Powerrizer A9VE
Поглотитель углекислого газа
  1. Двойные одноразовые емкости с твердым заполнителем.
    Беспыльный, безусадочный, без каналообразования.
  2. 3асыпные картриджи (по выбору заказчика).
Дыхательный объем > 6,0 литров