Промышленная кровля. Особенности промышленной кровли Крыши и покрытия классификация назначение их виды

Кровли промышленных зданий работают в тяжелых эксплуатационных условиях. Помимо воздействий внешней и внутренней среды на прочность и долговечность кровли оказывают влияние неравномерная осадка здания, температурные деформации, усадка железобетонных настилов, вибрация и др. Как ограждающая конструкция, кровля испытывает на себе воздействие разных температур. Как правило, температура ее нижней поверхности близка к температуре помещения, а температура наружной поверхности меняется в весьма широком диапазоне: от -50 о С зимой до +100 о С в солнечный летний день. При этом кровля должна надежно защищать внутреннее помещение от холода зимой и от жары летом.

Поэтому выбор материала и конструкции кровли является ответственным этапом проектирования при реконструкции промышленных зданий.

В отечественной и зарубежной практике наибольшее применение находят мягкие кровли.

В производственных зданиях обычно применяют совмещенные покрытия стандартной конструкции, которые экономически неприемлемы для использования из-за верхнего расположения гидроизоляционного ковра.

В качестве гидроизоляционного рулонного материала в плоских крышах еще не так давно самым доступным и наиболее дешевым считался рубероид. Как показала практика, физико-механические свойства рубероида совершенно не соответствуют российским климатическим условиям, его теплостойкость не превышает плюс 70 о С. Кроме того, ультрафиолетовое излучение и озон активизируют процессы старения рубероида, приводят к коксованию и растрескиванию поверхности материала. Под воздействием влаги, которая попадает через трещины, разрушается картонная основа рубероида, в результате чего через 3-5 лет вместо защитного покрытия образуется пропитанная водой смесь из битума и целлюлозы.

В результате на рулонной кровле образуются отслоения, вздутия, трещины и отверстия, которые требуют ремонта или полной замены кровельного покрытия.

Ремонт кровли представляет собой одну из важнейших проблем реконструкции зданий /82/.

Мелкие дефектыустраняют путем прорезания рулонного ковра, вскрытия и расчистки поврежденных участков до мест качественного сцепления склеенных слоев или до основания, просушки зоны повреждения и приклеивания дополнительного двухслойного гидроизоляционного слоя на горячей битумной или холодной изоловой мастике внахлест до 100-150 мм на неповрежденные участки кровли. Заплаты на ремонтные участки перед наклейкой покрывают мастикой по всей поверхности.

Впадины и углубления глубиной до 15 мм устраняют путем вырезания всего деформированного участка, ремонта стяжки и наклейки 2-3 слоя гидроизоляционного материала на изоловой мастике внахлест до 100 мм на неповрежденные участки кровли с последующей промазкой по периметру мастикой.

Материалы, используемые для ремонта, и материалы ремонтируемой кровли должны быть совместимы по химическому составу.

Полную замену кровельного рулонного покрытия производят при потере прочности или водопроницаемости гидроизоляционного ковра, а также при значительных отслоениях кровельного покрытия. При смене кровельного покрытия предусматривают мероприятия по предотвращению увлажнения утеплителя.

В том случае, когда требуется заменить утеплитель, его разбирают, осматривают стяжку и при необходимости ее восстанавливают или заменяют на новую. Пришедшую в негодность пароизоляцию заменяют на пленочную, которую укладывают свободно или приклеивают на мастике.

Разобранный утеплитель сортируют на пригодность для повторного применения и просушивают до норм, установленных СНиП. Необходимую толщину утепляющего слоя определяют теплотехническим расчетом. После укладки утеплителя по поверхности утепляющего слоя устраивают выравнивающую стяжку, а затем производят наклейку рулонного ковра или устраивают мастичную кровлю.

Перед наклейкой рулонного ковра необходимо осуществить грунтовку выравнивающей стяжки с помощью пневматической установки, которая состоит из нагревательного бачка и пистолета-распылителя. Для грунтовки используют битум, растворенный в бензине или керосине, а также битумно-полимерные или полимерные составы, которые увеличивают прочность сцепления гидроизоляционных материалов с основанием. Вид грунтовки зависит от используемого гидроизоляционного материала.

В настоящее время разработаны и применяются новые наиболее качественные изолирующие рулонные материалы, изготовленные из прочной не гниющей основы типа стеклоткани, стеклохолста или полиэстера с пропиткой высококачественным модифицированным битумным вяжущим (рубитекс, петрофлекс, биполь, бикрост, бикроэласт, линокром, экофлекс, мостопласт, различные разновидности техноэласта, унифлекс и другие современные материалы , приведенные в работах Ю.Н. Доможилова и др. /27/ и А.Н. Шихова и Д.А. Шихова /111/.

Новые материалы выдерживают перепады температур, отличаются биостойкостью, высокой прочностью и сопротивляемостью атмосферным явлениям.

Для изготовления этих материалов битум модифицируют полимерами СБС (стирол-бутадиен-стироловые эластомеры) или ИПП (изотактический полипропилен), что значительно увеличивает его эластичность и теплостойкость (до 85-120 о С), а также увеличивает долговечность изолирующих материалов на его основе (до 20-30 лет). Эти материалы выдерживают перепады температур, отличаются биостойкостью, высокой прочностью и сопротивляемостью атмосферным явлениям.

Достаточно большая толщина новых гидроизолирующих материалов (от 3 и более мм) позволяет существенно снизить слойность кровли по сравнению с рубероидной, а также существенно повысить безопасность работ, так как приклеивание этих материалов производится при помощи пропановой горелки путем подплавления нижней поверхности материала и плотного его прижатия к основанию (рис.4.15).

При газоплавленном способе наклейки наплавляемых рулонных материалов используют пропан-бутановые трехфакельные горелки и сжиженную пропан-бутановую смесь, которая при горении образует устойчивый факел пламени и разогревает битумно-полимерный слой наплавленного материала, который разжижается и приобретает клеящие свойства. Сначала конец рулонного материала приклеивают к подготовленному основанию на длину 0,5 м, после чего рулон заправляют в каток-раскатчик и приклеивают по ходу подплавления покровного слоя к подогретой до температуры 120 о С поверхности основания и прикатывают катком массой 80-100 кг. При наклейке способом подплавления необходимо следить, чтобы тепло от горелки равномерно распределялось по ширине рулона.

Рис.4.15. Установки для механизированной наклейки наплавляемых рулонных материалов

а) с пластификацией клеящего слоя нагреванием: 1- каток; 2- рулон наплавляемого кровельного материала; 3- горелка на жидком или газообразном топливе; 4- емкость для топлива; 5- направление движения; б) с пластификацией клеящего слоя растворителем: 1- бачок с раствором; 2- валики, смачивающие клеящий слой; 3- рулон наплавляемого кровельного материала; 4- каток; 5- рама установки; 6- фиксатор установки на стоянке

Наклейку кровельных материалов с пластификацией клеящего слоя растворителем (рис.4.15, б) осуществляют, нанося на поверхность рулонного материала растворитель (толуол, бензин, керосин, уайт-спирит и т.п.). Растворитель наносят по мере наклеивания самотеком через растекатель. Подачу растворителя регулируют специальным краном. Окончательная прикатка, разглаживание и притирание приклеенного полотнища происходит через 6-15 мин после наклеивания.

В настоящее время в качестве расплавления гидроизоляционных кровельных материалов применяются кровельные установки инфракрасного излучения , которые создают равномерный нагрев наклеиваемых полотен по всей ширине без участков перегрева и недогрева. Для производства работ используется специальная кровельная машина, которая механизирует процесс разогрева, укладки и прикатки нового слоя материала (рис.5.82). Прикатка рулонных материалов осуществляется в процессе производства кровельных работ, что обеспечивает высокое качество работ. В кровельной машине излучатель (2) генерирует ИК- излучение, которое разогревает поверхность основания (6) и покровный слой матери ала (3). В процессе движения машины образуется расплавленная масса битумной мастики в виде валика (4), который заполняет все полости при приклейке гидроизоляционного ковра и основания, а выход расплава по краям рулона герметизирует швы и позволяет судить о качестве приклейки. Прикаточный вал (1) создает требуемое давление для приклейки гидроизоляционного материала обеспечивает качественное выполнение работ по устройству кровельного ковра.

Рис. 5.82. Кровельная машина (а) и процесс наплавления гидроизоляционного ковра (б):

1 - прикаточный вал; 2 - инфракрасный излучатель; 3 - покровный слой гидроизоляционного материала; 4 - расплавленная масса битумной мастики в виде валика; 5 - корпус кровельной машины; 6 - разогреваемая поверхность основания

Использование наплавляемой технологии обеспечивает возможность укладки рулонной кровли круглогодично.

С разработкой рулонного наплавляемого СБС-модифицированного битумно-полимерного материала (Унифлек «ВЕНТ»), предназначенного для изготовления нижнего слоя, появилась возможность устройства «дышашего» кровельного ковра (рис. 5.83).

Рис. 5.83. Схема отвода водяных паров из под кровельного

материала - Унифлек «ВЕНТ»

При наплавлении такого материала под новым кровельным ковром образуются каналы, которые обеспечивают распределение образующегося под кровлей пара и уменьшается вероятность образования вздутия кровельного ковра. Отвод водяных паров осуществляется через парапетные выпуски или флюгарки (рис. 5.84).

Рис. 5.84. Устройство отвода водяных паров через парапетные выпуски (а)

и флюгарки (б)

Через флюгарки отводятся водяные пары, попадающие в утеплитель в зимний период времени из внутреннего объема помещения за счет разности давления внутреннего и наружного воздуха. Эта технология зарекомендовала себя при реконструкции существующих рулонных кровель, когда требуется установка дополнительного слоя утеплителя.

При реконструкции рулонных кровель с внутренними водостоками рекомендуется вместо старых водосливных воронок, выступающих из плоскости кровли, устанавливать водосливные воронки в плоскости кровли (рис. 5.85).

При этом новую водосливную воронку устанавливают на место старой по слою цементно-песчаной стяжки, поверх которой укладывают слой СБС-модифицированного битумно-полимерного рулонного материала (Унифлек «ВЕНТ»). Затем на слой рулонного материала (Унифлек «ВЕНТ») наплавляют два слоя гидроизоляции из Техноэласта (нижнего слоя марки ЭПП и верхнего слоя марки ЭКП).

Рис. 5.85. Схема установки водосливной воронки в плоскости кровли

Такое сочетание кровельных материалов обеспечивает распределение образующегося под гидроизоляционной кровлей пара и уменьшает вероятность образования вздутия кровельного ковра, что особенно важно в местах установки водосливных воронок, которые подвергаются воздействию воды.

Значительное внимание при реконструкции рулонной кровли следует уделять примыкании к трубам, которые должны выступать не менее 500 мм от поверхности кровли. Для герметизации кровли на трубы, в местах их установки, одевают конические уплотнители, которые с помощью герметика и обжимного хомута плотно прилегают к трубе. Вариант устройства примыкания кровли к трубе приведен на рис.4.19.

Рис. 4.19. Устройство примыкания рулонной кровли к трубе: 1- железобетонная плита покрытия; 2- пароизоляция; 3- утеплитель;

4- цементная стяжка; 5- нижний слой кровли (унифлекс ВЕНТ)

6- дополнительный слой кровли уложенный посыпкой вниз; 7- уплотнитель для труб; 8- обжимной хомут; 9- герметик

При реконструкции плоских покрытий помимо рулонных материалов используют мастичные кровли, армированные стекломатериалом, и безрулонные кровельные покрытия из холодных мастик, применение которых позволяет осуществить комплексную механизацию работ, сократить затраты материалов и денежных средств в 2-6 раз по сравнению с устройством рулонных кровель.

Для устройства безрулонных кровель используют перхлорвиниловые полимерные составы, а также эмульсионные битумные или битумно-полимерные мастики. К ним относятся: полиуретанбитумная мастика «Тиобит», 2-х композиционная холодная полимерная мастика «Битурэл», битумно-каучуковые мастики «Ребакс» и «Вента», хлорсульфо-полиэтиленовая мастика «Кровелит» и др. Эти мастики сохраняют эластичность в диапазоне температур от минус 50 до плюс 100 0 С и обладают пределом прочности на разрыв более 3,5 МПа.

Кровельное безрулонное мастичное покрытие состоит из грунтового, гидроизоляционного и защитного слоев при общей толщине 10-15 мм. Холодные мастики можно наносить на влажные основания, которые должны быть прочными и недеформируемыми. При выполнении мастичных кровель особое внимание следует уделять устройству деформационных швов, расстояние между которыми определяют расчетом.

К новым кровельным гидроизолирующим материалам относятся полимерные рулонные мембраны , которые изготавливают из ЭПДМ (этилен-пропиленового каучука), ТПО (термопластичных олефинов) или ПВХ

(поливинилхлорида). Они отличаются высокой надежностью и долговечностью и не теряют эластичности до температуры -50 о С. Срок эксплуатации мембран более 30 лет.

Некоторые мембраны имеют подложку из искусственного войлока толщиной 1 мм и клеящую кромку по длине, с помощью которой мембраны склеивают между собой. Подложка из войлока пропускает воздух и обеспечивает удаление конденсата из утепляющего слоя кровли, а также защищает покрытие от повреждения в период эксплуатации. Наличие клеящей кромки у мембран делает склейку швов чрезвычайно простой операцией и создает прочное и долговечное соединение.

Общая толщина полимерных мембран составляет 2,5 мм при толщине самой мембраны 1,5 мм. Полимерные мембраны настилают, как правило, в один слой. Покрытие полимерными мембранами обеспечивает высокую скорость монтажа, независимо от конфигурации кровли и погодных условий.

Для случаев, когда требуется особая надежность и абсолютная гарантия по гидроизоляции кровли, применятся двухслойная полиэтиленовая мембрана со слоем бентонитовой глины. Бентонитовая глина в замкнутом пространстве не пропускает воду даже под давлением. Полиэтиленовая мембрана обеспечивает прочность системы и препятствует размыванию бентонита.

Кровельные мембраны имеют группу горючести Г1, что позволяет применять их на кровлях без ограничений по площади без противопожарных рассечек. Мембраны могут быть изготовлены в любом цвете, что позволяет удовлетворить практически любые архитектурные замыслы.

При укладке полимерных мембран используется механическое или балластное крепление к утепляющему слою, как это показано на рис.5.86.

Рис. 5.86. Крепление полимерных гидроизоляционных мембран с механическим (а) или балластным (б) креплением

Механическое крепление осуществляется с помощью специальных крепежных элементов (телескопические дюбели, саморезы, металлические оцинкованные шайбы и другие крепежные элементы), длина которых выбирается таким образом, чтобы между нижним концом крепления и конструкцией основания оставался зазор для отпруживания сжатого теплоизоляционного материала (рис.5.87).

Рис. 5.87. Варианты крепежных элементов для гидроизоляционных мембран

Применение телескопических дюбелей предотвращает разрыв мембраны при вертикальных деформациях кровельного покрытия.

Для сварки кровельных мембран применяют автоматические сварочные аппараты «Liester Varimat» (220 В-4000 Вт или 380 В-5000 Вт), которые могут регулировать температуру (рис. 5.88).

Рис. 5.88. Автоматические сварочные аппараты «Liester Varimat»

При балластном креплении (рис.5.86,б ) сначала свободно уложенное покрытие из полимерной мембраны по периметру крыши приклеивают на полосу полимерной мастики шириной 100 мм, а затем пригружают слоем гравийной смеси, которая защищает кровлю от механических повреждений, воздействия снега, ветра и солнца в период эксплуатации.

Основными преимуществами полимерных мембран являются:

Долговечность, надежность и высокая ремонтопригодность;

Возможность проведения кровельных работ практически круглый год;

Быстрый, удобный и экономичный монтаж; - морозостойкость, высокие технические и противопожарные характеристики;

Износостойкость, водонепроницаемость с высокой степенью паропроницаемости;

Устойчивость к воздействию атмосферных воздействий и бактерий;

Небольшой вес мембраны (1,6 кг/м 2).

В последние годы для устройства и восстановления рулонных кровель находят применение эластичные гидроизоляционные покрытия, изготовленные из модифицированной битумно-полимерной эмульсии на водной основе (жидкая резина) (рис.5.89). При ремонте старых мягких кровель может наносится без снятия изношенного гидроизоляционного ковра. Толщина слоя составляет 2 мм и соответствует руберойдной кровле из 4-х слоев. Технология позволяет за одну смену выполнить гидроизоляционные работы площадью до 1000 м 2 . Главное достоинство такой гидроизоляции заключается в отсутствии швов и стыков выполнять работы на поверхностях любых уклонов с многочисленными примыканиями.

Рис. 5.89. Нанесение бесшовной гидроизоляции на основе «жидкой резины»

. Быстротвердеющие одно- и двухкомпонентные системы в процессе холодного нанесения на защищаемую поверхность сразу приобретают свойства высококачественной бесшовной гидроизоляции, устойчивой к ультрафиолету и резким перепадам температур. Материал имеет высокую эластичность и адгезию к бетонным и металлическим поверхностям, предназначен для быстрого распыления, характеризуется простотой устройства примыканий к вертикальным поверхностям. Может наноситься на влажное основание. Методика нанесения покрытия проста. Основной элемент из водной эмульсии битума с добавлением полимера смешивается со вторым компонентом из водного раствора хлористого кальция, который ускоряет твердение основного компонента. Составы наносятся через распыляющее устройство в виде двухканальной удочки, смешиваясь на выходе, и затвердевают через 5-20 сек, превращаясь в бесшовную резиновую мембрану. Толщина гидроизоляционного покрытия в 2 мм соответствует руберойдной кровле из 4-х слоев.

В отапливаемых производственных помещениях применяют утепленные совмещенные покрытия. Правильно подобранная теплоизоляция увеличивает термическое сопротивление покрытия, что позволяет снизить расходы на отопление за счет уменьшения теплопотерь.

В связи с тем, что утепленные совмещенные покрытия построены по старым теплотехническим нормам и не отвечают современным требованиям по тепловой защите зданий, поэтому проблема повышения уровня теплозащиты этих зданий стоит особенно остро, так как реальные потери тепловой энергии через эти конструкции обычно в 2-4 раза превышают установленные нормы.

Для того, чтобы установить необходимую дополнительную толщину утепляющего слоя, необходимо провести теплотехнический расчет в соответствии с требованиями СП 50.1330. 2012 Актуализированная редакция СНиП 23-02-03 «Тепловая защита зданий».

В настоящее время для утепления кровель применяют разнообразные теплоизоляционные материалы на основе стекловаты, минеральной ваты, пенополистирола (прежде всего–экструзированного), пенополиуретана и др.

Важным является тот факт, что плитные теплоизоляционные изделия могут применяться в виде двух изоляционных слоев разной плотности. Верхний слой, благодаря вертикальному направлению волокон, обладает высокой устойчивостью к механическим нагрузкам. Он по длинным сторонам плит имеет шпунтовые кромки «паз-гребень» и облицованную верхнюю поверхность стеклохолстом, что является отличной основой для гидроизоляционного ковра. Размеры верхнего и нижнего слоев теплоизоляционного материала различаются, что исключает возможность возникновения сквозных швов в изоляционном слое. Для дополнительной вентиляции в качестве верхнего слоя могут применяться плиты с вентиляционными бороздками, которые при укладке должны быть направлены к краю кровли (рис. 5.90).

Рис. 5.90. Укладка верхнего слоя теплоизоляционных плит с вентиляционными бороздками

Современные теплоизоляционные плиты используют как в новом, так и при дополнительном утеплении уже существующих кровель при укладке их на старую гидроизоляцию. Благодаря специфическим свойствам материала, механические напряжения и термические деформации старой конструкции кровли не переносятся на новый теплоизоляционный слой. Кроме того, новый теплоизоляционный слой закрывает все неровности старого гидроизоляционного слоя.

На крышах стандартной конструкции теплоизоляционные плиты укладывают ниже гидроизоляционного слоя, который принимает на себя все механические и климатические воздействия, подвергаясь риску повреждения, вследствие чего быстро выходят из строя. Для защиты гидроизоляционного слоя и повышения долговечности совмещенного покрытия промышленных зданий целесообразно при реконструкции кровли использовать технологию инверсионной кровли.

По концепции инверсионной кровли теплоизоляционные плиты располагаются поверх гидроизоляционного слоя и накрывают балластным слоем. Такая конструкция кровли является безопасной и долговечной, так как гидроизоляционный слой защищен от воздействия внешних температур и ультрафиолетового излучения; он не подвергается механическому воздействию и срок эксплуатации такой кровли составляет более 50 лет (рис. 5.91, а).

Рис. 5.91. Устройство инверсионной кровли (а) и дополнительного утепляющего слоя в существующих покрытиях:

1 – пригрузочный слой из гравия; 2 – предохранительный слой из геотекстиля; 3 – утеплитель; 4–гидроизоляционный ковер из битумно-полимерных рулонных материалов; 5 – уклонообразующий слой из легкого бетона; 6 – железобетонная плита покрытия; 7-новый кровельный ковер; 8- новый слой утеплителя; 9- существующий кровельный ковер; 10- цементно- песчаная стяжка; 11- существующая теплоизоляция

Укладка дополнительного слоя плит утеплителя осуществляется непосредственно на старую кровлю (рис.5.91, б ), что позволяет отказаться от трудоемких процессов снятия старого гидроизоляционного ковра и ремонта стяжки. Вновь уложенные жесткие минераловатные плиты с втопвленной в верхнюю поверхность стеклотканью (например, URSA XPS) образуют идеальное основание под новое кровельное гидроизоляционное покрытие, которое приклеивается к дополнительному слою утеплителя методом наплавления.

В случае применения в качестве дополнительного теплоизоляционного слоя экструзионного пенополистирола вместо приклейки гидроизоляционного ковра можно использовать пригрузочный слой из щебня.

В последние годы при реконструкции кровли используют металлическую фальцевую кровлю /72/ , обеспечивающую полную надежность и герметичность. Для ее изготовления используют тонкостенную оцинкованную сталь толщиной 0,55-0,65 мм с защитным покрытием из полиуретановой мастики (рис. 5.92, а ).

Оцинкованная сталь поступает в виде рулонов и с помощью специального электромеханического фальцезакаточного инструмента непосредственно на крыше превращается в панель-картины. Крепление кровельных картин осуществляется с помощью кляммер, которые скрыты под швом и не требуют отверстий в самой кровле (рис. 5.92, б ).

Различают фальцевые соединения лежачие и стоячие, одинарные и двойные. Боковые длинные края полос стали, идущие вдоль ската фальцевой кровли, соединяют стоячими фальцами, а горизонтальные - лежачими.

Рис.5.92. Устройство кровли из оцинкованного листа (а) и крепление

кровельных карт с помощью кляммер (б)

Кровельные картины производят из рулонного металла, в качестве которого могут использоваться оцинкованная сталь с полимерным покрытием, медь, алюминий, алюцинк, цинк-титан и другие сплавы металлов, которые могут иметь любую длину, что позволяет полностью избавиться от поперечных швов (единая панель-карта на весь скат). В случае большой длины ската используются плавающие кляммеры, позволяющие учитывать температурные деформации металла.

Монтаж металлической кровли производится с установки несущих стоек кровли. Стойки выполняют из одиночных или спаренных гнутых профилей С-образного сечения высотой 100-150 мм и устанавливают с шагом 2,5-3,0 м. Базы стоек изготавливают из прокатных уголков, которые крепятся к бетонному слою или плитам покрытия с помощью анкерных болтов длиной 150-200 мм.

Высоту стоек принимают в зависимости от требуемой толщины слоя утеплителя и зазора 30-50 мм, предусмотренного для естественной вентиляции пространства между кровлей и поверхностью утеплителя.

По стойкам крепят тетивы из спаренных гнутых профилей швеллерного сечения высотой 100 мм из стали толщиной 0,8-1,0 мм, которые располагают вдоль ската кровли с шагом 1,0-1,5 м. По тетивам крепят элементы обрешетки из гнутых профилей П-образного сечения высотой 40 мм с шагом 300-500 мм, кроме участков шириной 1,0 м по периметру кровли, где шаг снижают до 250 мм, так как на этих участках расчетная нагрузка от ветрового отсоса удваивается в соответствии с нормами.

Кровельные листы соединяют между собой по продольным краям с помощью фальцегибочной машинки, образующей двойной фальц в стыке, одновременно закрепляя в нем кляммеры. Такой стык обеспечивает полную водонепроницаемость соединения листов без герметизирующего материала при уклоне кровли не менее 7%. При меньших уклонах в продольные стыки листов вводят герметик в виде пасты или мастики.

В строительной практике известны примеры, когда длина скатов кровли, выполненной по этой технологии, достигала без поперечных стыков 108 м.

Главное, что отличает кровлю, выполненную из металла - ее долговечность, которая для кровли из меди составляет более 100 лет, из алюминия и его сплавов - не менее 80 лет и из оцинкованной стали с полимерным покрытием - не менее 50 лет.

При реконструкции промышленных зданий для дополнительного освещения внутреннего пространства вместо традиционных зенитных фонарей используют сотовые поликарбонатные системы, например, замковые системы типа «АКРИСЕТ» (рис. 5.93).

.

Рис. 5.93. Варианты крепления поликарбонатной системы «АКРИСЕТ» (а) и детали

крепления (б-д):

1-поликарбонатная крышка пластиковая; 2- профиль стыковочный; 3- резиновый уплотнитель;

4-подкладка пластиковая; 5- опора из алюминиевого профиля

Сотовая поликарбонатная система «АКРИСЕТ» состоит из несущего алюминиевого профиля и резиновых уплотнителей из термосветоозоностойкой резины, позволяющих осуществлять крепление поликарбоната толщиной от 6 до 23 мм.

Поликарбонатные панели размером 1500 х 6000 и 3000 х 6000 мм устанавливают через пластиковые подкладки на опоры из алюминиевого профиля и в местах стыковки закрывают пластиковыми поликарбонатными крышками

Другой разновидностью горизонтальных светопрозрачных конструкций является замковая поликарбонатная система, состоящих из панелей в виде лотков шириной 600 мм, длиной 12000 мм и U-образного замкового соединительного элемента (рис. 5.94).

Рис. 5.94. Замковая поликарбонатная система:

1-поликарбонатная лотковая панель; 2- U- образный замок; 3- крепежный анкер;

4- металлический прогон; 5- торцовая заглушка; 6- шурупы

Замковая система монтируется на металлические прогоны с помощью анкеров из нержавеющей стали. В собранном виде покрытие представляет собой единую мембрану, не имеющую сквозных отверстий.

5.6.34. Ремонт и реконструкция полов

Полы промышленных зданий должны удовлетворять следующим требованиям: обладать высокой механической прочностью, ровной и гладкой поверхностью, не скользить, мало истираться и не пылить, быть бесшумными, иметь высокую химическую стойкость и стойкость против возгорания, быть водонепроницаемыми, не проводить электроток, легко ремонтироваться и быть индустриальными.

При ремонте полов производственных зданий необходимо обращать внимание на поиск покрытий, обладающих более высокими эксплуатационными характеристиками или особыми техническими свойствами (антискользящие, со звукопоглощающей основой, с антистатическими свойствами и т.д.).

Ремонт цементных, бетонных и мозаичных полов заключается, как правило, в частичной или полной смене покрытия.

В последние годы разработана технология устройства высокопрочных пыленеобразующих цементных и бетонных полов, которая может применяться при ремонте обычных цементных и бетонных полов. Особенностью их устройства заключается в нанесении на свежеуложенный поверхностный слой цементного раствора или бетонной смеси специального уплотнителя в виде порошка и вшлифовывания его в период схватывания раствора или бетона. В результате создается пол, прочность поверхностного слоя которого возрастает в два и более раза.

В настоящее время находят применение, не требующие специального ухода, полы на основе полимерных или цементно-полимерных композиций.

Полимербетонные и пластобетонные полы наносят на бетонные или железобетонные основания, предварительно очищенные, обеспыленные и огрунтованные раствором поливинилацетатной дисперсии.

Полимербетонную смесь готовят из портланцемента, пластифицированной поливинилацеттной дисперсии, песка, щебня, пигмента и воды. После укладки полимербетонное покрытие через 3 часа закрывают мешковиной или рулонным материалом и увлажняют в течение 3 суток.

Для изготовления цементно-полимерных полов применяют сухие цементно-полимерные композиции, которые создают в заводских условиях и поставляют заказчикам в мешках. Подготовка к нанесению цементно-полимерных составов заключается в очистке поверхности основания, обеспыливания его и грунтовке водным раствором латексных или поливинилацетатных эмульсий. На свежую грунтовку цементно-полимерный состав наносят толщиной слоя 4-10 мм. При устройстве полов полимерный состав укладывают по маякам. Толщина укладываемого слоя 6-10 мм. Поверхность пола при укладке разглаживают до получения ровной однородной поверхности. Для получения нескользящей поверхности свежеуложенное покрытие прокатывают валиком и посыпают сухим кварцевым песком. Полная полимеризация покрытия происходит через 24-48 часов, после чего его можно эксплуатировать. При правильной эксплуатации полимерные полы могут эксплуатироваться 15 и более лет.

В местах большого скопления людей, а также попадания на них химических реагентов или механического воздействия лучше всего использовать эпоксидные (пласобетонные) полы .

Пластобетонные полы содержат эпоксидную смолу, заполнитель (песок, маршалит или каменную крошку), пластификатор (дибутилфталат), растворитель (ацетон) и отвердитель (полиэтиленполиамин). Хорошо высушенный песок и эпоксидную смолу с пластификатором подогревают до 60 0 С, тщательно перемешивают и охлаждают до 20-30 0 С. Затем в полученную смесь при постоянном перемешивании вводят отвердитель. Приготовленную смесь наносят слоем 2-15 мм на поверхность основания, огрунтованную эпоксидной смолой, сильно разведенной ацетоном.

Наливные полы - это универсальные самовыравнивающиеся системы с различной цветовой гаммой с покрытием толщиной 0,5-1 мм или 1,5-3 мм. Для их изготовления применяют композициционные составы, которые состоят из двух компонентов - основного и отверждающего. Основной компонент представляет собой вязкожидкую массу заданного цвета, который получают введением в полимерный состав нитроэмалей или тонкомолотых пигментов. Наливные полы наносят на подготовленную бетонную поверхность, которую промазывают специальной грунтовкой - праймером. Затем наносят первый слой полимерного состава, представляющий собой двухкомпонентный состав, смешанный в определенной пропорции с кварцевым песком. Через 12 часов наносят еще один слой самовыравнивающегося наливного пола, который скрывает шероховатости первого слоя и является своеобразным закрепителем. Далее наносится финишный слой наливного пола. При изготовлении полимерного пола не остается стыков и швов, что важно для поддержания чистоты в помещении (рис.5.95).

Рис.5.95. Внешний вид самовыравнивающего наливного пола

В случае необходимости получения эластичной поверхности пола, лучше использовать полиуретановое покрытие, а при изготовлении износоустойчивых и высокопрочных поверхностей применяют эпоксидные соединения. Очень важная особенность наливных полов - отсутствие искр от удара по ним металлических предметов, поэтому они применяются на взрывоопасных производствах.

В настоящее время для ремонта полов промышленных зданий применяют полимерные покрытия:

Водно-дисперсные на основе эпоксидных смол;

На основе полиуретановых смол.

Полимерные покрытия полов /47/ обладают высокой химической стойкостью, гигиеничностью, эстетическими качествами и простотой нанесения и низкой стоимостью эксплуатации. Полимерные полы обладают достаточно высокой эластичностью. Они выдерживают сильные термические нагрузки, связанные с проливом кипятка.

Полы на основе эпоксидных смол устраивают на очищенную поверхность существующего цементного или бетонного пола, на которую методом «окраски» с применением велюрового или полиамидного валика нанесена эпоксидная грунтовка. Могут наносится на свежеуложенный бетон. Они имеют толщину 1,5-2,0 мм и обладают высокой механической прочностью и химической стойкостью. Являются самонивелирующими покрытиями, обеспечивают выравнивание микрорельефа поверхности и защиту основания от износа. Самонивилирующиеся эпоксидное покрытие наносится вручную с распределением шпателем и с последующей прокаткой игольчатым валиком.

Покрытия на основе полиуретановых смол обладают эффективным сопротивлением абразивному износу, высоким сопротивлением динамическим и вибрационным нагрузкам, способностью к перекрытию трещин в бетонном основании до 0,7 мм.

Высокопрочные полимерные покрытия, армированные кварцевым песком толщиной 2-3,5 мм, устойчивы к жестким условиям эксплуатации (шипы автомобилей, волочение по поверхности различных предметов и т.д.). Долговечность покрытия составляет 12-15 лет. Полы обладают максимальной стойкостью ко всему спектру разрушающих воздействий на пол. Выдерживают перемещение тяжелой техники и грузов (рис.5.96).

Рис. 5.96. Состав пола на основе эпоксидных смол

1 - эпоксидное покрытие; 2 - кварцевый песок; 3 - эпоксидная грунтовка; 4 - существующий цементный пол; 5 - стяжка из бетона; 6 - бетонная подготовка; 7 - грунт основания

Срок службы при интенсивном износе до 30 лет. При использовании цветного кварцевого песка имеют декоративную поверхность.

Основные операции по нанесению полимерных по

К атегория: Кровли

Конструкции покрытий промышленных зданий с кровлями из рулонных и мастичных материалов

В одноэтажных промышленных зданиях с кровлями из рулонных и мастичных материалов покрытия устраивают совмещенными (бесчердачными); в многоэтажных зданиях могут быть устроены и чердачные крыши.

Покрытия выполняют одновременно функции несущих и ограждающих конструкций промышленных зданий, служат для защиты помещений зданий от атмосферных осадков, от перегрева солнцем и зашищают от холода.

Покрытия в зависимости от степени утепления разделяются на теплые, полутеплые и холодные.

Над помещениями с нормальным или сухим температурно-влажностным режимом и относительной влажностью воздуха не свыше 60% при наличии внутренних водостоков покрытия устраивают теплыми или полутеплыми.

Теплые покрытия устраивают также над помещениями с повышенной влажностью воздуха (свыше 60%) для предотвращения образования конденсата водяных паров на поверхности потолка помещений, расположенных под покрытием.

Над неотапливаемыми помещениями зданий или над помещениями цехов с избыточными тепловыделениями покрытия устраивают холодные.

Покрытие (рис. 1) здания с кровлями из рулонных материалов состоит обычно из следующих элементов, расположенных один над другим:
а) основание (несущая конструкция);
б) пароизоляционный слой - из одного- двух слоев руберойда или известково-битум- ной мастики - защищает теплоизоляцию от увлажнения парами воздуха со стороны помещения;
в) теплоизоляция - из газобетона и других материалов - обеспечивает необходимую степень утепления покрытия;
г) выравнивающий слой (стяжка) служит основанием для гидроизоляционного слоя;
д) гидроизоляционный слой - из рулонных или мастичных материалов - обеспечивает водонепроницаемость покрытия;
е) защитный слой - посыпка из гравия или шлака - защищает гидроизоляцию от влияния атмосферных факторов и от механических повреждений.

Рис. 1. Схема расположения отдельных слоев в покрытии 1 -защитный слой; 2 - гидроизоляционный ковер: 3 - выравнивающий слой (стяжка): 4 - теплоизоляция; 5 - пароизоляция; 6 - несущая основа из железобетонных плит; 7 - каналы для осушающей вентиляции

В ряде конструкций покрытий зданий отдельные элементы могут отсутствовать. Так, например, в покрытиях из газо-, пепо- или керамзитобетонных панелей над помещениями с нормальным температурно-влажностным режимом пароизоляционный слой можно не устраивать.

Рис. 2. Схемы конструкций невентилируемых покрытий а - с теплоизоляцией, раздельной от несущей конструкции; б - с теплоизоляцией, являющейся одновременно и несущей конструкцией покрытия; 1 - защитный слой; 2 - гидроизоляция; 3 - выравнивающая стяжка; 4 - теплоизоляция; 5 - пароизоляция; 6 - несущие железобетонные плиты; 7 - отделочный слой

В практике отечественного строительства применяют следующие конструкции покрытий с несущими конструкциями из сборных железобетонных или ячеистых армированных бетонов:
1) с теплоизоляцией, раздельной от несущих конструкций (рис. 2, а), находящейся под действием нагрузки вышележащих слоев покрытия и снега и выполняемой из жестких плитных материалов (мало изменяющих свою плотность во времени);
2) с теплоизоляцией, совмещенной с несущей конструкцией (рис. 2,6), - плиты из армированных ячеистых или легких бетонов (газо-пенобетон, керамзитобетон, шлакобетон, термозитобетон, пемзобетон).

Гидроизоляционный слой в этом случае можно устраивать из рулонных материалов, наклеиваемых непосредственно по плитам, или из мастичного слоя без устройства выравнивающих стяжек. Оклеивать эти плиты слоем рулонного материала или наносить мастичный слой рекомендуется в заводских условиях (остальные слои ковра наклеивают на месте работ).

Несущие конструкции покрытий следует выполнять из сборных железобетонных крупноразмерных элементов, отвечающих требованиям индустриализации строительства. Для несущих конструкций покрытий в некоторых случаях можно применять и сборно-монолитный железобетон. Несущие конструкции должны удовлетворять требованиям прочности, жесткости и пожарной безопасности, а также соответствовать долговечности других частей зданий; в местах стыков сборных плит должен обеспечиваться равный прогиб с целью исключения возможности разрыва гидроизоляционного ковра. Стыки плит рекомендуется замоноличивать цементным раствором марки не ниже 100. Уклоны кровель целесообразнее осуществлять за счет наклонного расположения несущего основания.

Покрытия большой протяженности разрезают на отдельные участки температурными швами, расстояние между которыми при сборных Железобетонных конструкциях должно быть не более 60 м, а при монолитных - 40 м.

Пароизоляция. Конструкция пароизоля- ционного слоя покрытий назначается по проекту в зависимости от влажности воздуха в помещениях в зимних условиях. Над помещениями с нормальным влажностным режимом (относительная влажность воздуха до 60%) пароизоляционный слой в покрытиях не устраивают, при относительной влажности воздуха до 75% пароизоляция состоит из одного слоя рулонного материала, наклеенного на мастике, а при влажности свыше 75% - из двух слоев рулонного материала с наклейкой на мастике. Пароизоляционный слой выполняют также из известково-битумной мастики, количество слоев мастичного слоя принимается по проекту.

Для оклеечной пароизоляции применяют толь беспокровный (толь-кожа), пергамин, руберойд. Поверхность пароизоляции из беспокровных материалов (толь, пергамин) должна быть сверху окрашена мастикой. Беспокровный толь приклеивают на дегтевой мастике, а пергамин и руберойд - на битумной. Основание покрытия перед наклейкой материалов пароизоляционного слоя должно быть выровнено раствором, а также очищено от грязи и пыли.

Пароизоляционный слой устраивают сплошным с подъемом в местах примыканий к стенам на высоту не менее 100 мм. Напуск полотнищ рулонных материалов в швах смежных полотнищ составляет 50-70 мм.

Теплоизоляция. Для утепления покрытий рекомендуется применять плиты из пеностекла, пенокералита, ячеистого бетона (газо-пе- нобетон или пеносиликат), из керамзитобето- на, цементного фибролита и других подобных материалов. Использовать для теплоизоляции материалы в засыпке (шлаки, пемза) допускается лишь в исключительных случаях, когда невозможно использовать плитные утеплители.

Теплоизоляционные материалы укладывают в дело в во (душно-сухом состоянии и предохраняют от увлажнения атмосферными осадками, главным образом за счет немедленного устройства поверх теплоизоляции гидроизоляционного слоя. Для временной защиты от увлажнения атмосферными осадками во время производства работ теплоизоляцию можно покрывать рулонными материалами, полиамидной пленкой, брезентом и т. п.

Наиболее прогрессивными конструкциями, применяемыми в настоящее время при устройстве покрытий промышленных зданий, являются комплексные кровельные панели, совмещающие одновременно несущие и теплоизоляционные функции, на них в заводских условиях устраивают гидроизоляцию из одного слоя рулонного материала (остальные слои ковра наклеивают непосредственно на. месте строительства).

НИИ по строительству Министерства монтажных и специальных строительных работ РСФСР предложена и внедрена в строительство конструкция покрытия из комплексных кровельных панелей.

Ендовы покрытия приняты сборными из предварительно напряженных железобетонных тонкостенных панелей, имеющих лотковую форму, с наклонной плитой-днищем, образующим 2-3%-ный продольный уклон к воронкам внутренних водостоков. Панели бывают длиной 6-12 м при ширине 1 м в зависимости от шага колонн. На поверхность панелей в заводских условиях наклеивают один слон рулонного ковра.

Выравнивающий слой (стяжка). В покрытиях с плитными или сыпучими, утеплителями для получения ровного и жесткого основания под гидроизоляцию из рулонных материалов устраивают выравнивающий слой в виде стяжки из цементно-песчаного раствора, литого песчаного асфальтобетона или из сбор ных плоских железобетонных плит.

Толщина цементно-песчаной стяжки из раствора марки не ниже 50 принимается при укладке по плитным утеплителям 15-20 мм, по сыпучим 25-30 мм; толщина асфальтовой стяжки по плитам должна составлять 15- 20 мм. Асфальтовые стяжки устраивают на кровлях с уклоном не более 20Непрочность на сжатие литого песчаного асфальтобетона должна быть не ниже 8 кг/см2 при температуре +50°С. Сборные железобетонные плиты должны быть из бетона марки не ниже 100.

Асфальтобетонные стяжки обычно выполняют при устройстве кровель в осенне-зимний период, а также при необходимости ускорения кровельных работ; стяжки для предотвращения деформаций следует разрезать на квадратные участки с размерами сторон в 4 м.

В районах, имеющих месторождения и карьеры гипса, для стяжек целесообразно применять гипсобетоны.

В местах примыканий кровель к стенам и парапетам для плавного подъема рулонного ковра на высоту его подъема устраивают борта или выкружки из цементно-песчаного раствора марки не ниже 25. Для создания уклонов кровель в ендовах на дне последних устраивают набетонки из легких бетонов с водоразделом между воронками. Уклоны в ендовах должны быть не менее 1%, а у воронок водостоков на расстоянии 0,5-1 м от оси воронки- не менее 5%.

Рис. 3. Разбивка ендовы при устройстве стяжки 1 - воронка; 2 - водораздел; 3 - стяжка

Поверхность цементно-песчаных стяжек для лучшей приклейки нижнего слоя рулонного ковра необходимо огрунтовывать.

Гидроизоляцию можно устраивать из рулонных кровельных материалов или в виде мастичной, безрулонной кровли. Конструкции рулонного ковра или безрулонной гидроизоляции назначаются проектом. Количество слоев рулонного ковра принимают с учетом уклонов кровель.

В кровлях из рулонных битумных материалов в нижние слои укладывают пергамин или двусторонний руберойд с мелкой минеральной посыпкой (РМ), а верхний слой устраивают из руберойда с крупнозернистой цветной посыпкой (РЦ) или с чешуйчатой посыпкой (РЧ). Все слои ковра наклеивают на битумной мастике.

Плоские кровли устраивают из кровельного беспокровного толя с наклейкой всех слоев на дегтевой мастике. Покровные двусторонние кровельные материалы можно наклеивать на холодных или на горячих мастиках, а беспокровные-на горячих мастиках. При устройстве кровель из рулонных материалов совместное применение битумных и дегтевых мастик допускать не следует.

Безрулонные кровли из холодных асфальтовых мастик. В настоящее время наряду с рулонными кровлями на горячих битумных мастиках все более широкое применение находят безрулонные кровли из холодных ас фальтовых мастик.

Безрулонные кровли из холодных асфальтовых мастик имеют ряд преимуществ перед кровлями из рулонных материалов:
1) холодные асфальтовые мастики применяются в голодном виде;
2) работы по устройству безрулонных кровель могут быть комплексно механизированы;
3) трудоемкость нанесения гидроизоляционного слоя меньше, чем при устройстве кровель из рулонных материалов;
4) холодные асфальтовые мастики за счет введения цемента и асбестового волокна не размываются дождем и не оплывают при нагреве солнечными лучами;
5) покрытия из этих холодных мастик водонепроницаемы и обладают достаточной механической прочностью.

Конструкция теплого покрытия с безрулонной гидроизоляцией из холодных асфальтовых мастик (рис. 4, а) состоит из несущей железобетонной плиты; пароизоляционного слоя толщиной 10-15 мм из холодной асфальтовой мастики, нанесенной в два слоя, теплоизоля-

Рис. 4. Конструкции безрулонных кровель из холодных асфальтовых мастик а - утепленное покрытие; б - холодное покрытие; 1 - стеклоткань; 2 -- холодная асфальтовая мастика; 3 - цементная стяжка; 4 - пенобетон; 5 - пароизоляция из холодной асфальтовой мастики; 6 - несущая железобетонная плита; 7 - цементный раствор

В холодном покрытии с безрулонной гидроизоляцией из холодных асфальтовых мастик паро-теплоизоляционные слои не устраивают (рис. 5, б).

Защитный слой устраивают поверх выполненной гидроизоляции для защиты водоизоли- рующего ковра от атмосферных воздействий и механических повреждений.

При уклонах кровель 5-10% поверхность гидроизоляционного слоя окрашивают горячей мастикой и посыпают ее крупнозернистым песком или мелким гравием с зернами в 3- 10 мм.

При уклоне кровель более 10% защитный слой выполняют путем окраски поверхности гидроизоляционного слоя горячей битумной мастикой слоем 2-3 мм.

Если верхний слой гидроизоляционного ковра выполнен из рулонных материалов с чешуйчатой или крупнозернистой посыпкой, то защитный слой не устраивают.

Рис. 5. Примыкание кровель из рулонных материалов к стенам и парапетам а - примыкание кровли из рулонных материалов к стене с перекроем «в вилку»; б - деталь примыкания гидроизоляционного ковра плоской толевой кровли к стене; в -примыкание плоской кровли к парапету; 1 - стяжка; 2 - несущая плита; 3 - гидроизоляционный ковер; 4 - защитный фартук; 5 - цементный раствор; 6 - деревянная рейка; 7 -деревянная пробка; 8 - двухслойное гравийное защитное покрытие гидроизоляционного ковра; 9 - борт из раствора или бетона; 10- теплоизоляция; 11 - пароизоляция

Рис. 6. Примыкание рулонного гидроизоляционного ковра к различному оборудованию а - к трубам и мачтам; б- к вентиляционной шахте; 1 - труба или мачта; 2 -обжимное кольцо; 3 - промазка суриком; 4 - зонт из оцинкованной кровельной стали; 5 - просмоленная пакля; 6-патрубок; 7 - дополнительный слой мешковины; 8 - гидроизоляционный ковер (основной) из четырех слоев толь-кожи; 9 - двухслойное защитное гравийное покрытие гидроизоляционного ковра; 10 - основание (стяжка) под гидроизоляционный ковер. II - борт из раствора или бетона; 12 - теплоизоляция; 13— пароизоляция; 14 - несущая плита покрытия: 15 - вентиляционная шахта: 16 - крепление зонта оцинкованными дюбелями; 17 - оцинкованные гвозди с шайбами; 18 - антисептированный деревянный брусок; 19 - слой толь-кожи

Защитный слой плоских водонаполненных крыш с многослойным гидроизоляционным ковром из беспокровного толя (толь-кожи) устраивают путем окраски поверхности ковра горячей дегтевой мастикой, в которую втапли- вают гравийную или шлаковую посыпку. После устройства первого защитного слоя по нему аналогичным способом устраивают второй защитный слой.

Для защитного слоя используют сухой и чистый гравий или шлак с крупностью зерен 5-15 мм.

Детали покрытий. Устройству деталей покрытий (примыкания ковра к стенам, обделка воронок водоспусков, бортов фонарей, труб и пр.) в процессе производства кровельных работ следует уделять особое внимание, так как при некачественном выполнении кровля в этих. местах, как правило, протекает.
Места примыканий рулонного ковра к выступающим частям здания (парапетам, трубам, фонарям) поверх основного покрытия оклеивают дополнительно слоем рулонного гидроизоляционного материала. Ковер в местах примыканий должен плавно подниматься по наклонному борту или выкружке стяжки на высоту не менее 300 мм для покрытий зданий, строящихся в I, II и IIIA климатических районах, и не менее чем на 150 мм для крыш зданий, строящихся в ШБ и IV климатических районах. Края ковра в местах примыканий к стенам (рис. 5, а) и парапетам (рис. 5, в) заводят в выдру, надежно закрепляют оцинкованными гвоздями к антисептированным рейкам и защищают фартуком из оцинкованной кровельной стали. Шов выдры заделывают цементно-песчаным раствором марки не ниже 25.

Гидроизоляционный ковер допускается заделывать в борозду бетонных камней (рис. 5,6), при этом края ковра и фартука закрепляют в борозде к деревянным пробкам и заделывают цементным раствором.

Для обеспечения надежной водонепроницаемости кровель в местах примыканий гидроизоляционный ковер на вертикальных плоскостях выполняют отдельно от основного гидроизоляционного ковра с сопряжением полотнищ гидроизоляционных материалов примыкания внахлестку или в вилку. Примеры решения примыканий ковра к вентиляционной шахте и трубам показаны на рис. 6.

Деформационные швы должны проходить через все слои покрытия без нарушения водонепроницаемости гидроизоляционного ковра. В деформационных швах (рис. 7) устраивают компенсаторы из оцинкованной кровельной стали по линии пароизоляции и гидроизоляции. Компенсаторы устанавливают на мастике и прочно закрепляют к деревянным антисеп- тированным рейкам. Шов заполняют минеральной ватой или другими видами упругих теплоизоляционных материалов.

Обделка воронок внутренних водостоков. Места примыканий к водосточным воронкам оклеивают дополнительным слоем пропитанной битумом (дегтевой мастикой) прочной ткани (стеклоткань, мешковина и т. п.); ткань наклеивают на закраины чаш воронок и примыкающую к ней часть основания. Конструкции водоприемников должны обеспечивать герметичное и прочное соединение их с гидроизоляционным слоем кровель. Для нормального водосбора осадков и обеспечения условий производства кровельных работ, связанных с обделкой мест примыканий ковра к воронкам водостоков, воронки следует располагать на открытых свободных площадках. Во избежание застоя воды воронки необходимо ставить несколько ниже поверхности кровли. Воронки водостоков должны быть чугунными.

Рис. 7. Конструкция деформационных швов а - в плоском покрытии; б - в пологом покрытии; 1 - оцинкованная кровельная сталь или пластмасса; 2 - верхний компенсатор из оцинко!анной кровельной стали; 3 - дополнительный слой гидроизоляции; 4- гидроизоляционный козер, 5 - двухслойное гравийное защитное покрытие под гидроизоляционный ковер; 6 - борт из раствора или бетона; 7 - теплоизоляция; 8 - пароизоляция; 9 - несущая плита; 10 - нижний компенсатор из оцинкованной кровельной стали; 11 - теплоизоляция из волокнистого материала (минеральная вата и т. п.); 12- ан- тисептированные деревянные бруски; 13 - оцинкованные гвозди; 14 - доски 120 X 50; 15 - деревянные пробки; 16 - кирпич

Рис. 8. Примыкание гидроизоляционного ковра к воронкам внутреннего водостока а - примыкание ковра к воронке внутреннего водостока с переливным патрубком на плоских крышах, охлаждаемых слоем воды; б - примыкание ковра к воронке внутреннего водостока при пологом покрытии; 1 - приемный колпак; 2 - съемный патрубок; 3 - прижимное кольцо; 4 - шпилька с гайкой; 5 - водоприемная чаша воронки с переходным патрубком; 6 - цементный раствор (или бетон); 7 - дополнительные два слоя гидроизоляции; 8 - гидроизоляционный ковер; 9 - дополнительный слой мешковины, пропитанный мастикой; 10 - основание под рулонный гидроизоляционный ковер 11 - теплоизоляция; 12 - пароизоляция; 13 - несущая плита; 14 - зажимной хомут. 15 - сальник; 16 - стояки; 17 - патрубок; 18 - асфальтовая мастика; 19 - просмоленная прядь

Конструкция примыкания гидроизоляционного ковра к воронкам внутренних водостоков для пологих кровель показана на рис. 9.

Слой воды для охлаждения плоских водо- наполненных толевых кровель по высоте составляет 25-35 мм и регулируется высотой переливных патрубков, устанавливаемых в чашах водоприемных воронок. Вода в отсеки кровли поступает из водопроводной сети, для спуска воды переливные патрубки вынимают из воронок.

Рис. 9. Конструкции покрытий с асбестоцементными кровлями 1 - ферма; 2 - прогон; 3 - листы ВУ или УВ

Карнизы. Для предохранения гидроизоляционного ковра от отрыва ветром, а карнизов от намокания свесы покрытий защищают оцинкованной сталью (рис. 10,6), концы ковра защемляют на карнизе гребнем обжимного козырька из оцинкованной кровельной стали.



- Конструкции покрытий промышленных зданий с кровлями из рулонных и мастичных материалов
  • РЕМОНТ И ВОССТАНОВЛЕНИЕ ПОКРЫТИЙ ЧЕРДАЧНОГО ТИПА
    Техническое состояние покрытия в решающей степени определяет режим эксплуатации здания в целом. Поэтому в процессе реконструкции целесообразно выполнение не просто ремонта покрытия, но и осуществление ряда продуманных и обоснованных мероприятий, которые направлены на повышение его надежности. Одним из...
    (Реконструкция зданий, сооружений и городской застройки)
  • Типы электродных покрытий.
    Электродные покрытия могут создаваться по-разиому. У одних может преобладать шлаковая защита, у других - газовая. Газовая защита может осуществляться за счет органических соединений или минералов. По-разному может осуществляться выведение из металла шва водорода - за счет кислорода или фтора. Различной...
    (Технология сварки плавлением и термической резки)
  • Исследование терморадиационного режима помещений производственных зданий
    В некоторых отраслях промышленности основные производственные процессы, связанные с переработкой материалов, сопровождаются высокотемпературным тепловым излучением. Цеха с тепловой нагрузкой 50Вт/м3 и более называются горячими. Особенно высокая тепловая нагрузка в горячих цехах металлургических заводов,...
    (Обследование и испытание конструкций зданий и сооружений)
  • ПРОИЗВОДСТВЕННЫЕ ЗДАНИЯ ДЛЯ ПОЛИГРАФИЧЕСКИХ ПРЕДПРИЯТИЙ
    Основные элементы конструкции производственных зданий и их назначение Основными элементами зданий являются: фундаменты, стены, колонны, межэтажные перекрытия, лестницы, двери, оконные проемы с заполнением и фонари, покрытия и кровли. Отдельные элементы здания показаны на рис. 5.1. Фундамент -...
    (Проектирование полиграфического производства)
  • Классификация крыш: конструкция, виды, формы, элементы

    Крыша - верхняя ограждающая конструкция здания, выполняющая несущие, гидроизолирующие и, при бесчердачных (совмещённых) крышах и тёплых чердаках, теплоизолирующие функции.

    Кровля - верхний элемент крыши (покрытие), предохраняющий здания от всех видов атмосферных воздействий.

    Рис. 1 Основные элементы крыши, имеющей несколько скатов

    Крыша здания состоит из следующих элементов (рис. 1): наклонных плоскостей, называемых скатами (1), основой которых служат стропила (2) и обрешётка (3). Нижние концы стропильных ног опираются на мауэрлат (4). Пересечение скатов образует наклонные (12) и горизонтальные ребра. Горизонтальные ребра называют коньком (5). Пересечение скатов, образующие входящие углы, создают ендовы и разжелобки (6). Края кровли над стенами здания называют карнизными свесами (7) (располагаются горизонтально, выступают за контур наружных стен) или фронтонными свесами (11) (располагаются наклонно). Вода по скатам стекает к настенным желобам (8) и отводится через водоприёмные воронки (9) в водосточные трубы (10) и далее в ливневую канализацию.

    Рис. 2 Основные элементы двускатной крыши

    1) Карнизная планка; 2) Доска обрешетки; 3) Спадающий брус контробрешетки; 4) Гидроизоляционная пленка; 5) Стропильная нога; 6) Конек; 7) Листы металлочерепицы; 8) Уплотнитель конька; 9) Заглушка конька; 10) Ветровая планка; 11) Водосливная труба; 12) Держатель трубы; 13) Водосливной желоб; 14) Держатель желоба; 15) Снеговой барьер; 16) Ендова верхняя; 17) Ендова нижняя; 18) Пристенный профиль.

    Уклоны скатных крыш и их долговечность

    Материал кровли

    Срок службы, лет

    Асбестоцементные плоские листы, плитки

    Волнистые асбестоцементные листы

    Глиняная черепица

    60 и более

    Кровельная листовая сталь черная

    Кровельная листовая сталь оцинкованная

    Рулонные материалы двухслойные, на мастике

    Рубероидные по пергамину

    Деревянная дранка

    Классификация крыш

    В зависимости от уклона скатов крыши бывают скатные (больше 10%) и плоские (до 2,5%). В индивидуальном жилищном строительстве, как правило, используются скатные и пологоскатные крыши. По конструктивному решению крыши могут быть чердачными (раздельными) и бесчердачными (совмещенными). Чердачные крыши бывают утепленные или холодные. В зависимости от формы крыши могут быть односкатными, двускатными, трех-, четырехскатными, многоскатными (рис. 1).

    Рис. 3. Основные типы крыш

    Односкатная крыша (рис. 3, а) своей плоскостью (скатом) опирается на несущие стены, имеющие разную высоту. Эта крыша больше всего подходит для строительства хозяйственных построек.

    Двускатная крыша (рис. 3, б, в) состоит из двух плоскостей-скатов, опирающихся на несущие стены одинаковой высоты. Пространство между скатами, имеющее треугольную форму, называется щипцами или фронтонами. Разновидностью двускатной крыши является мансарда.

    Если крыша состоит из четырех треугольных скатов, сходящихся в одной верхней точке, то она носит название шатровой (рис. 3, г).

    Крыша, образованная двумя трапецеидальными скатами и двумя торцевыми треугольными называется вальмовой четырехскатной (рис. 3, д). Бывают и двускатные вальмовые (полувальмовые), когда фронтоны срезаны (рис. 3, е).

    В индивидуальном строительстве, как правило применяются крыши, показанные на рис. 3, а-е. Пересечения скатов крыши образуют двугранные углы. Если они обращены книзу, их называют разжелобами, или ендовами, если кверху, то ребрами. Верхнее ребро, расположенное горизонтально, называют коньком, а нижнюю часть ската - свесом.

    Для удаления дождевой и талой воды устраивают наружные водосточные трубы, по которым вода сбрасывается в определенное место и по водоотводным канавам уходит с участка в уличные канавы. Величина уклона ската и долговечность крыши зависят от материала кровли, а также от климатических условий (см. табл.).

    Конструкция крыш

    Чердачные скатные крыши состоят из несущих конструкций и кровли. Между такой крышей и чердачным перекрытием находится чердак, используемый для размещения вентиляционных каналов (коробок), разводов трубопроводов и т.д. При значительных уклонах чердачные пространства нередко используются для встроенных в них помещений. Высота чердака в самых низких местах, например у наружных стен, должна быть не менее 0,4 м для возможности периодического осмотра конструкций.

    Наибольшее распространение получили наслонные и висячие стропила.

    Рис. 4. Наслонные стропила:

    а-г - для односкатных крыш; д, е - для двускатных крыш; ж - план устройства стропил; 1 - стропильная нога; 2 - стойка; 3 - подкос; 4 - подстропильный брус; 5 - ригель; 6 - распорка; 7 - верхний прогон; 8 - лежень; 9 - диагональная нога; 10 - короткая стропильная нога.

    Рис.5. Деревянные висячие стропила:

    1 - затяжка; 2 - подвеска, или бабка; 3 - стропильная нога; 4 - подвесное чердачное перекрытие; 5 - подкос; 6 - аварийный болт; 7 - гвозди; 8 - покрытие кровли; 9 - две накладки; 10 - болты; 11 - болтовые нагели.

    Наслонные стропила (рис. 4) состоят из стропильных ног, подкосов и стоек. Они опираются нижними концами стропильных ног на подстропильные брусья - мауэрлаты, а верхними - на горизонтальный брус, называемый верхним коньковым прогоном. Роль мауэрлатов заключается в том, чтобы создать удобную опору для нижних концов стропил. Верхний прогон поддерживается стойками, устанавливаемыми на внутренние опоры. Расстояние между стойками, несущими коньковые прогоны, принимают равным 3 - 5 м.

    Для увеличения продольной жесткости конструкций стропил ставят продольные подкосы, расположенные у каждой стойки. Если в здании имеются два ряда внутренних опор в виде продольных капитальных стен или столбов, колонн и других элементов, то укладывают два продольных прогона. Наслонные стропила применяют в зданиях при наличии промежуточных опор и пролетов размером до 16 м.

    Наслонные стропила выполняют из брусьев, досок и бревен. Шаг стропил принимают в зависимости от материала, из которого они изготовлены, типа кровли и сечения элементов обрешетки. При изготовлении стропил из брусьев толщиной 180 - 200 мм их ставят через 1,5 - 2 м, а из пластин и досок - через 1 - 1,5 м. В зданиях значительной ширины, когда длина стропильных ног достигает 8 м, необходимо устраивать промежуточные опоры на внутренних стенах. По этим стенам укладывают лежни, на них устанавливают стойки и подкосы, а затем устанавливают прогон, на который опираются стропильные ноги.

    В местах пересечения скатов крыши наслонные стропила делают из диагональных и коротких стропильных ног (см. рис.4, ж).

    По форме крыши делят на скатные и плоские. Форма крыши определяется архитектурой здания и его конфигурацией в плане.

    По конструкции различают крыши чердачные и бесчердачные.

    В зависимости от температурно-влажностного режима верхней ограждающей конструкции здания бесчердачные (совмещенные) крыши делят на вентилируемые и невентилируемые.

    По назначению различают эксплуатируемые (солярии, спортивные площадки, кафе и др.) и неэксплуатируемые крыши .

    Скатные крыши бывают чердачные и бесчердачные.

    Чердачные крыши выполняют с холодным или теплым чердаком. Бесчердачные крыши могут быть холодными (над неотапливаемыми строениями) и теплыми (над отапливаемыми зданиями). Бесчердачные крыши устраивают как в жилых и общественных, так и в производственных зданиях промышленного и сельскохозяйственного назначения. В производственных зданиях часто на покрытиях устраивают светоаэрационные фонари.

    Односкатная крыша опирается своей несущей конструкцией (системой стропил, фермой и др.) на наружные стены, находящиеся на разных уровнях.

    Двускатная (щипцовая) крыша состоит из двух плоскостей, опирающихся на стены, расположенные на одном уровне. Треугольные части торцовых стен между скатами называют фронтонами или щипцами.

    Шатровая крыша имеет четыре треугольных ската, вершины которых сходятся в одной точке.

    Вальмовая (четырехскатная) крыша образуется от соединения двух трапецеидальных скатов и двух треугольных торцевых скатов, называемых вальмами.

    Полувальмовая (двухскатная) крыша имеет срезанные вершины над торцовыми стенами в виде треугольников (вальм).

    Двускатная крыша промышленного здания с продольным фонарем отличается от двускатной крыши жилого здания меньшим наклоном скатов и большей шириной и длиной.

    Сводчатая крыша в поперечном сечении может быть очерчена дугой окружности или другой геометрической кривой.

    Складчатая крыша образуется от соединения отдельных трапецеидальных элементов - складок.

    Куполообразная крыша по очертанию представляет собой половину шара со сплошным опиранием по кольцу на цилиндрическую стену.

    Крестовый свод представляет собой четыре сомкнутых арочных свода.

    Многощипцовая крыша образуется от соединения скатов плоскостей. Торцы стен под двускатными плоскостями называют щипцами.

    Шпилеобразная крыша состоит из нескольких крутопадающих треугольных скатов, сомкнутых к вершине.

    Сферическая оболочка по начертанию подобна куполу, но с опиранием на основание в отдельных точках. Пространство между опорами обычно устраивается светопрозрачным.

    Крыша из косых поверхностей состоит из нескольких пологих плоскостей, опирающихся на стены.

    Крыша с внутренним водостоком широко распространена в современном промышленном и гражданском строительстве.

    Мансардные крыши устраивают в случаях, когда чердачные помещения используют для жилья или имеют служебное назначение.

    Плоские крыши имеют уклон до 2,5%. Их устраивают в виде площадок и используют для соляриев, открытых кафе и других целей. Хотя плоские крыши обходятся дороже скатных, экономия на эксплуатационных расходах компенсирует этот недостаток.

    КОНСТРУКЦИИ КРЫШ

    Покрытие - верхнее ограждение здания для защиты помещений от внешних климатических факторов и воздействий. При наличии чердака покрытие называют чердачным. Покрытие выполняет гидроизолирующие, а при бесчердачных (совмещенных) крышах , теплых чердаках также и теплоизолирующие функции.

    К основным конструктивным элементам крыш относятся несущие конструкции, пароизоляция, теплоизоляция и кровля.

    Кровля - верхний элемент крыши из водонепроницаемых материалов, защищающий здание от атмосферных осадков.

    Защитный слой - элемент кровли, предохраняющий кровельный ковер от механических повреждений, воздействия солнечной радиации. Теплоизоляция служит для защиты здания о холода и перегрева солнцем.

    Теплоизоляция бывает монолитной, сборной и из сыпучих материалов. Монолитную теплоизоляцию выполняют из легких бетонных смесей, сборную - из плит заводского изготовления. Такие плиты выпускают из легких ячеистых бетонов, пенопластов на основе пенополиуретана, пенополистирола и т.д. Теплоизоляцию из сыпучих материалов устраивают из керамзита, перлита и др. Такую теплоизоляцию применяют при отсутствии сборных утеплителей, а также в комплексных панелях заводского изготовления.

    Пароизоляция защищает утеплитель от увлажнения проникающими из помещения водяными парами. Ее устраивают под теплоизоляцию, наклеивая на несущие конструкции. Пароизоляция бывает окрасочной или оклеечной в один или два слоя в зависимости от степени влажности воздуха в помещении.

    Несущие конструкции воспринимают нагрузку от собственной массы, массы снега, давления ветра и передают эти нагрузки на стены или отдельные опоры. Несущими конструкциями являются сборные железобетонные панели, комплексные панели покрытий повышенной заводской готовности (с тепло- и гидроизоляционным слоями или только с гидроизоляционным слоем), монолитный железобетон, стальной профилированный настил, деревянные стропила и фермы, асбестоцементные плиты.

    Крыши из сборных железобетонных панелей бывают неэксплуатируемые и эксплуатируемые, бесчердачные и чердачные. Сборные железобетонные крыши устраивают шести типов:

    • чердачные с гидроизоляцией мастичными или окрасочными составами (безрулонная кровля)
    • чердачные с кровлей из рулонных материалов
    • бесчердачные из однослойных панелей, выполненных их легких или ячеистых бетонов
    • бесчердасные из многослойных комплексных панелей, состоящих из двух железобетонных панелей, между которыми уложен эффективный теплоизоляционный материал
    • бесчердачные с несущими панелями из тяжелого бетона, по которым уложены плиты из эффективных утепляющих материалов
    • бесчердачные построечного исполнения многослойной конструкции с засыпным утеплителем и стяжкой под кровлю из рулонных материалов

    Инверсионные кровли. Кровли из рулонных и мастичных материалов могут быть выполнены в традиционном (при расположении кровельного ковра над теплоизоляцией) и инверсионном (при размещении кровельного ковра под теплоизоляцией) вариантах.

    Конструктивное решение покрытия с кровлей в инверсионном варианте включает: железобетонные сборные или монолитные плиты; кровельный ковер; теплоизоляцию; разделительный (фильтрующий) слой - холст из синтетических волокон; пригруз из гравия или бетонных плиток.

    Стропила по конструкции разделяют на два типа: наслонные, опирающиеся концами и средней частью (в одной или нескольких точках) на стены здания, и висячие, опирающиеся только концами на затяжку, а она на стены здания (без промежуточных опор).

    По материалу различают деревянные и железобетонные стропила. Деревянные стропила применяют в качестве несущих конструкций при строительстве временных зданий, зданий сельскохозяйственного назначения, при строительстве малоэтажных деревянных или кирпичных зданий и в сельской местности. Железобетонные стропила используют при строительстве зданий с большими пролетами (производственные здания).

    Наслонные стропила устраивают тогда, когда расстояние между опорами (пролет) не превышает 6,5 м. При наличии одной дополнительной опоры ширина, перекрываемая наслонными стропилами, может быть увеличена до 10…12 м, а при двух опорах - до 15 м. Нижние концы стропильных ног опираются в деревянных рубленых или брусчатых зданиях на верхние венцы, в деревянных каркасных зданиях - на верхнюю обвязку, в каменных - на опорные брусья (мауэрлаты). Расположение стропил зависит от размеров контура здания в плане и наличия в нем внутренних опор в виде стен или колонн.

    Висячие стропила представляют собой две стропильные ноги, соединенные снизу затяжкой, воспринимающей распор. Для уменьшения прогиба стропильных ног при пролетах до 8 м параллельно затяжке врезают ригель (между затяжкой и вершиной стропил), а при пролетах более 8 м устанавливают бабку. Все сопряжения элементов деревянных стропил из бревен или брусьев выполняют в виде врубок с применением накладок, скоб, болтов и гвоздей.

    Фермы применяют в промышленном строительстве при расстояниях между стенами и опорами 12…36 м. Ферма состоит из нижнего и верхнего поясов и заключенной между ними решетки из стоек и раскосов. Чердачные крыши устраивают с холодным или теплым чердаком.

    Бесчердачные (совмещенные) крыши выполняют функции несущих и ограждающих конструкций верхнего этажа зданий. Конструкция бесчердачной крыши состоит из следующих элементов: несущей конструкции, которая должна отвечать необходимым условиям прочности, жесткости и трещиностойкости во время монтажа и в эксплуатационных условиях; пароизоляционного слоя, предохраняющего от проникновения водяного пара из помещений в толщу конструкции крыши (устраивают в случае необходимости); теплоизоляционного слоя, обеспечивающего требуемое сопротивление теплопередаче; кровельного ковра, который устраивают по основанию из цементных или асфальтовых стяжек или по поверхности комплексных панелей.

    Безрулонные крыши жилых зданий, имеющих более пяти этажей, устраивают с внутренним водоотводом.

    Невентилируемая бесчердачная крыша состоит из ряда уложенных в покрытие железобетонных плит.

    КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ КРОВЕЛЬНОГО ПОКРЫТИЯ

    Кровля (кровельное покрытие) здания состоит из следующих элементов: наклонных плоскостей, называемых скатами, наклонных и горизонтальных ребер, образуемых пересечением скатов. Горизонтальные ребра называют коньком. Пересечение скатов, образующие входящие углы, создают ендовы и разжелобки. Края кровли над стенами здания называют карнизными свесами (располагаются горизонтально) или фронтонными свесами (располагаются наклонно). Вода по скатам стекает к н6астенным желобам и отводится через водоприемные воронки в водосточные трубы и далее в ливневую канализацию.

    Водоотвод в зависимости от уклона кровли может быть организованный (наружный или внутренний) или неорганизованный - только наружный.

    Наружный организованный водоотвод устраивают с помощью водосточных желобов и наружных водосточных труб, исходя из следующих указаний:

    • настенные или подвесные желоба устанавливают на крышах, покрытия которых выполнены с уклоном более 15%;
    • продольный уклон желобов должен быть не менее 2%;
    • борта желоба делают высотой 120 мм;
    • расстояние между водосточными трубами - не более 24 м;
    • площадь водосточной трубы в свету принимают из расчета 1,5 кв. см ее сечения на 1 кв. м площади кровли.

    Внутренний организованный водоотвод с наружным выпуском рекомендуется для крыша зданий, расположенных во всех климатических районах.

    Система внутреннего водоотвода состоит из водоприемной воронки, стояка, отводной трубы и выпуска. Эта система должна обеспечивать удаление воды с крыши как при положительной, так и при отрицательной температуре наружного воздуха. Отвод воды из системы внутреннего водоотвода рекомендуется осуществлять в наружную сеть дождевой или общесплавной канализации. Площадь кровли, приходящуюся на одну водосточную воронку, определяют из расчета не более 0,75 кв. м кровли на 1 кв. см поперечного сечения водоотводящей трубы. Водоприемные воронки внутренних водостоков располагают по продольной оси крыши. Устраивать водоприемные воронки и их стояки в наружных стенах или вблизи них не разрешается, так как стены могут промерзать.

    Наружный неорганизованный водоотвод как исключение допускается делать на зданиях высотой до пяти этажей в районах с количеством осадков не более 300 мм в год. Такой водоотвод разрешается на односкатных крышах со сбросом воды в сторону дворового фасада. Над входом в здание с неорганизованным водоотводом необходимо устраивать козырьки.

    Уклоны кровельных панелей безрулонных крыша назначают в зависимости от их конструкций. Так, для крыша с неорганизованным водоотводом уклон панелей 5…10%, с внутренним организованным водоотводом - 5…7%.

    ОСНОВАНИЯ ПОД КРОВЛИ

    Основанием под рулонные и мастичные кровли являются поверхности сборных железобетонных плит и теплоизоляции без стяжки или с цементной или асфальтовой стяжкой под ней. Под кровлю из штучных материалов применяют деревянные основания (сплошные и разреженные) из брусков или брусьев и досок.

    Основания под кровли устраивают по горизонтальным, вертикальным и наклонным поверхностям здания, выступающим над крышей (парапетным стенкам, трубам, шахтам). В верхней части вертикальных поверхностей для закрепления рулонного ковра закладывают антисептированные деревянные рейки.

    В местах перехода основания от горизонтальной поверхности к вертикальной делают наклонный переходный бортик с уклоном 45 градусов и со сторонами 100х100 мм.

    Выравнивающую стяжку под рулонный ковер, которая также является основанием, устраивают из цементно-песчаного раствора марки 50…100, песчаного асфальтобетона или устраивают сборную стяжку из асбестоцементных листов. Температурно-усадочные швы шириной 5 мм располагают через 6 м. Толщина стяжки из раствора при укладке по бетону 10…15 мм, по жестким монолитным и плитным утеплителям 15…25 мм, по сыпучим и нежестким плитным утеплителям 25…30 мм. Сборная стяжка - асбестоцементный лист толщиной 10 мм. Асфальтобетонное основание под кровлю должно быть разрезано температурно-усадочными швами шириной 10 мм на квадратные участки со сторонами 4 м. Швы покрывают полосками из рулонного материала шириной 150 мм, приклеивая их точечно с одной стороны шва во избежание разрыва рулонного ковра при деформации основания.

    Поверхности оснований вне зависимости от материала, из которого они выполнены, должны быть ровными и непрогибающимися.

    Не допускаются местные обратные уклоны и впадины, которые могут вызвать застой воды на кровле.

    Просветы между поверхностью основания под кровли из рулонных материалов и контрольной трехметровой рейкой, не должны превышать 5 мм при укладке рейки вдоль ската и 10 мм - при укладке ее поперек ската; просветы между поверхностью основания под кровли из штучных материалов и контрольной трехметровой рейкой не должны быть более 5 мм в обоих направлениях. Просветы допускаются только плавно нарастающие, не более одного на 1 м длины.

    Деревянные сплошные основания укладывают под асбестоцементные листы. Основания под плитки выполняют в один слой с зазором между досками не более 10 мм.

    Деревянные разреженные основания из брусков сечением 50х50 мм и досок сечением 20х200 мм устраивают под покрытие асбестоцементными волнистыми листами, листовой сталью, черепицей и деревянными изделиями.