Прерывистое отопление. Периодическое («прерывистое») отопление, как энергосберегающее мероприятие

Тепловая эффективность отопительного устройства в помещении и выбор установочной тепловой мощности системы отопления.

Отопительный прибор должен компенсировать дефицит теплоты в помещении. Использование приборов той или иной конструкции и их установка в различных местах поме­щения не должны приводить к заметному перерасходу теп­лоты. Показателем, оценивающим эти свойства, является отопительный эффект прибора, который показывает отно­шение количества затрачиваемой прибором теплоты для создания в помещении заданных тепловых условий к рас­четным потерям теплоты помещением.

Считается, что наилучшим отопительным эффектом об­ладают панельно-лучистые приборы, установленные в верх­ней зоне помещения или встроенные в конструкцию потолка. Отопительный эффект таких приборов равен 0,9-0,95, т. е. теплоотдача потолочных панелей-излучателей может быть даже несколько ниже расчетных теплопотерь помеще­ния без ухудшения комфортности внутренних условий. Отопительный эффект панели, расположенной в конструк­ции пола, около 1,0.

Наиболее распространенные приборы - радиаторы обыч­но устанавливают в нишах или около поверхности наруж­ной стены. Заприборная поверхность перегревается и через эту часть наружной стены бесполезно теряется некоторое количество теплоты. В результате отопительный эффект радиаторов оценивают величиной 1,04-1,06. В этом отно­шении более эффективными оказываются конвекторы, рас­полагаемые вдоль наружной стены. Отопительный эффект, например, плинтусного конвектора около 1,03.

Подоконная панель, встроенная в конструкцию наруж­ной стены, может иметь заметные бесполезные потери теп­лоты и ее отопительный эффект снижается до 1,1.

Отопительные приборы обычно имеют определенный шаг принятого номенклатурного ряда, который в СНиП выражают теплоотдачей, кВт, отдельного элемента прибора этого ряда. В результате в помещении устанавливают число элементов прибора, округленное в большую сторону сверх расчетной величины. Связанное с этим увеличение теплово­го потока от приборов рекомендуют учитывать коэффи­циентом β 1 , который изменяется от 1,02 до 1,13 в зависимо­сти от изменения теплоотдачи отдельного элемента прибора от 0,12 до 0,3 кВт.

Дополнительные потери теплоты отопительным прибо­ром, установленным у наружного ограждения, учитывают коэффициентом β 2 . Его значение в зависимости от вида при­бора и способа его установки у наружного ограждения изменяется от 1,02 до 1,1.

Кроме потерь, связанных с размещением нагреватель­ных приборов, в системе отопления возникают бесполезные потери теплоты трубами, встроенными в конструкции на­ружных ограждений, а также в тепловом пункте и других элементах системы. Определяют также дополнительные теплопотери Q тр трубами в неотапливаемых помещениях, связанные с охлаждением теплоносителя.

Величина суммарных дополнительных потерь (заприборными участками наружных ограждений и теплопроводами в неотапливаемых помещениях) должна быть по СНиП не более 7% тепловой мощности системы отопления.

Удельная тепловая характеристика здания и расчет потребности в теплоте на отопление по укрупненным измерителям

Для теплотехнической оценки объемно-планировочных и конструктивных решений и для ориентировочного рас­чета теплопотерь здания пользуются показателем - удель­ная тепловая характеристика здания q, которая при изве­стных теплопотерях здания равна:

q = Q зд ∕

где Q зд - расчетные теплопотери через наружные ограждения всеми помещениями здания, Вт; V - объем отапливаемого здания по внешнему обмеру, м 3 , (t в – t н)- расчетная разность температуры для основных помещений здания.

Величина q , Вт/(м 3 °С), определяет средние теплопотери 1 м 3 здания, отнесенные к расчетной разности температуры 1°. Ее можно определить заранее

q = q 0 β t

где q 0 - эталонная удельная тепловая характеристика, соответст­вующая разности температур ∆t 0 =18 - (- 30)= 48 °С; β t - темпе­ратурный коэффициент, учитывающий отклонение фактической рас­четной разности температур от ∆t 0

Эталонная удельная тепловая характеристика может быть определена с учетом требований СНиП.

Экономические показатели систем отопления

Экономичность системы отопления обусловлена стои­мостью материалов и оборудования, изготовления и сбор­ки, а также эксплуатации. Показателями экономичности являются технологичность конструкции, масса элементов, затраты труда и сроки изготовления и монтажа, расходы на наладку, управление и ремонт.

Технологичность конструкции включает такие реаль­ные мероприятия, как упрощение схемы, унификация и уменьшение числа деталей, применение нормалей, удоб­ство сборки, которые обеспечивают изготовление и монтаж с минимальными затратами времени, средств и труда.

Экономический эффект выявляется при проведении технико-экономического сравнения различных проектных решений. Сравнение позволяет выбрать систему отопления, наиболее экономичную в данных конкретных условиях.

При экономическом сравнении вариантов применяют следующие показатели: капитальные вложения К, экс­плуатационные затраты И, продолжительность монтаж­ных работ и эксплуатации системы отопления. Обычно ис­пользуют часть этих показателей. Самым простым является сравнение систем отопления с различными приборами, но с одним видом теплоносителя и с одной схемой, так как оно делается только по капитальным вложениям. Чаще всего сопоставляют системы по капитальным вложениям и экс­плуатационным затратам. Реже учитывают еще сроки мон­тажа и службы систем, наличие трудовых резервов.

Наиболее экономичен вариант, имеющий минимальные суммарные капитальные вложения и эксплуатационные затраты. Обычно приходится сравнивать два варианта, один из которых имеет меньшие капитальные вложения, другой - меньшие эксплуатационные затраты. Так, при уменьшении диаметра труб насосной водяной системы отоп­ления капитальные вложения уменьшаются, но увеличи­вается расход электроэнергии; автоматизация системы увеличивает капитальные вложения, но уменьшает экс­плуатационные затраты. Экономически более эффективный вариант выявляют в подобных случаях в зависимости от срока z, лет, окупаемости дополнительных капитальных вложений.

Z = (К 1 – К 2)∕ (И 1 – И 2)

Если этот срок z < z н - нормативного срока окупае­мости дополнительных капитальных вложений за счет сни­жения эксплуатационных затрат, то целесообразно осущест­вить вариант с большими капитальными вложениями K 1 и меньшими средними годовыми эксплуатационными затра­тами И 1 . Если z > z н, то целесообразен вариант с меньшими капитальными вложениями К 2 и большей средней стои­мостью эксплуатации И 2 в течение года. Нормативный срок z н окупаемости вложений в систему отопления принят рав­ным 8,33 года (12,5 года для новой техники и энергосбере­гающих мероприятий) независимо от вида здания.

При экономическом сопоставлении нескольких систем или вариантов системы для каждого из них находят при­веденные затраты

3= (К ∕z н) +И,

и, более эффективным считают вариант, имеющий наимень­шие приведенные затраты за нормативный срок окупае­мости.

Капитальные вложения в систему отопления осуществ­ляются, как правило, в течение одного года. Эксплуата­ционные затраты ежегодно изменяются; кроме того, они зависят от срока службы как системы, так и отдельных ее элементов.

Годовые эксплуатационные затраты состоят из прямых расходов на обслуживание системы отопления и амортиза­ционных расходов

И =И пр +А

где И пр - прямые эксплуатационные расходы, складывающиеся из годовых затрат на получаемую тепловую энергию (топливо), электроэнергию, заработную плату обслуживающего персонала, управление системой и текущий ремонт; А - амортизационные расходы, включающие годовые затраты на капитальный ремонт системы и отчисления на полное восстановление капитальных вложений.

Отчисления на восстановление капитальных вложений связаны с нормативным сроком службы системы, опреде­ляемым исходя из сроков физического износа ее элементов: радиаторов (40 лет), водоводов (30 лет), паропроводов, центробежных насосов, клапанов (10 лет), вентиляторов, калориферов, отопительных агрегатов (8 лет), фильтров (6 лет), конденсатопроводов (4 года).

Срок службы определяется не только физическим, но и моральным износом системы отопления, причем моральным износом считают потерю способности поддерживать темпе­ратуру во всех обслуживаемых помещениях на требуемом уровне. Нормативный срок службы распространенных сис­тем водяного отопления в настоящее время принимается равным 30 - 35 годам (меньший срок для конвекторов).

При сопоставлении различных систем отопления со­блюдают равные или хотя бы близкие эксплуатационные показатели для всех вариантов: системы должны обеспечи­вать выполнение санитарно-гигиенических, противопожар­ных и противовзрывных требований, а также должны обла­дать равноценной эффективностью.

Срок службы систем водяного отопления, как уже из­вестно, наибольший. Благодаря уменьшению амортиза­ционных расходов при этом, экономии электрической и тепловой энергии сокращаются стоимость эксплуатации, а, следовательно, и приведенные затраты. Поэтому система водяного отопления обычно становится экономически более эффективной, чем система парового отопления.

Различие в тепловом комфорте, создаваемом в помеще­ниях при сравниваемых системах отопления, учитывают изменением срока службы и степени использования площа­ди помещений. Для системы, обеспечивающей более ком­фортные условия, увеличивают расчетный срок службы на 5-10 лет (считаясь с меньшим моральным износом). Кроме того, учитывают использование рабочей площади помещений в холодное время года (за счет изменения раз­меров зоны дискомфорта), добавляя часть затрат на строи­тельные работы по обесцененной площади к сметной стои­мости другой системы.

Все же главным показателем экономичности системы отопления являются теплозатраты в процессе ее эксплуата­ции. Известно, что только годовые затраты на эксплуата­цию превышают половину стоимости устройства системы. И основная часть затрат приходится на оплату расходуемой теплоты. Теплозатраты на отопление при паровой или центральной воздушной системе превышают расход теп­лоты в системе водяного отопления вследствие возрастания попутных теплопотерь через стенки паропроводов и возду­ховодов, бесполезных для обогрева рабочих помещений.

Комбинированное отопление

Комбинированными принято называть системы цент­рального отопления с двумя теплоносителями, когда пер­вичный теплоноситель (вода, пар) используют для нагрева­ния вторичного (воды, воздуха). В связи с широким рас­пространением в нашей стране централизованного водяного теплоснабжения большинство систем центрального отоп­ления фактически стали комбинированными - водо-водяными или водо-воздушными.

В настоящее время под комбинированным отоплением стали понимать сочетание двух режимов работы системы или двух систем для отопления одного и того же помещения с переменным тепловым режимом. Проводится также совершенствование работы и устройства систем отоп­ления для улучшения теплового режима помещений и со­кращения теплозатрат на отопление зданий. Конструктив­но похожее решение встречалось и ранее, когда для отоп­ления, периодически используемого производственного по­мещения предусматривались две системы отопления раз­личной мощности: одна для рабочего периода времени, другая (дежурная) - для нерабочего.

Различают комбинированное отопление двухрежимное, двухкомпонентное, с прерывистым режимом.

Двухрежимным называют отопление, работающее при различной температуре одного и того же теплоносителя в разное время суток. Двухрежимной является система во­дяного отопления, в которой в рабочий период времени циркулирует вода при пониженной температуре (для по­лезного использования внутренних тепловыделений), а в нерабочий период - при повышенной (или наоборот). Для понижения температуры включают смесительный насос, для повышения - применяют прямоточную подачу тепло­носителя из наружного теплопровода без подмешивания охлажденной воды.

Двухрежимной может быть также система воздушного отопления, совмещенная с приточной вентиляцией в рабо­чий период времени, и рециркуляционная в нерабочий период. Температура подаваемого воздуха в первый пери­од ниже, чем во второй.

Двухкомпонентным считают отопление двумя систе­мами, дополняющими одна другую для обеспечения необ­ходимой теплоподачи в помещения. Первую систему, обыч­но водяного отопления, называемую фоновой или базисной, устраивают пониженной мощности (например, 30% расчет­ной теплопотребности рядовых помещений) для постоянного нерегулируемого действия в течение всего отопительного сезона. Задача этой системы - выравнивать дефицит теплоты, приходящейся на единицу площади или объема ря­довых и угловых, нижних и верхних однотипных помещений здания (искусственно создавать одинаковые удельные теп­ловые характеристики основных помещений).

Вторую систему водяного, воздушного, газового или электрического отопления, называемую догревающей, пре­дусматривают дополнительной мощности для поддержания необходимой температуры воздуха, как в рабочий, так и не­рабочий периоды времени. Действие догревающей системы автоматизируют для работы по заданной программе.

Комбинированное отопление может действовать с пере­рывами, и тогда тепловой режим помещений характеризует­ся тремя состояниями: постоянства температуры в течение рабочего времени, свободного понижения температуры при выключенной догревающей системе и натопа помещений перед началом работы или в праздничные дни (о преры­вистом отоплении). Возможны также различные сочетания перечисленных видов комбинированного отоп­ления, когда предусматривают двухрежимную работу од­ной или обеих систем двухкомпонентного отопления.

Повышение эффективности отопления здания

Заключительным этапом алгоритма разработки здания с эффективным использованием энергии является оценка эффективности принятого способа отопления как составной части СКМ здания. На это направлены рассмотренные в данном разделе инженерные приемы.

Комплексное свойство СКМ здания эффективно выпол­нять свои функции является обычно вероятностной харак­теристикой. Эффективность системы отопления определяется тремя основными свойствами: надежностью, управляемостью (или устойчивостью) при функционировании, обеспеченностью.

Надежность - вероятностное обеспечение безотказной работы механической части системы отопления, ее конструк­тивных узлов и элементов при эксплуатации в пределах расчетных сроков и условий.

Управляемость - вероятностное выдерживание задан­ных отклонений в работе отдельных частей и зон системы отопления в процессе управления и при эксплуатации в те­чение отопительного сезона.

Обеспеченность - принятое в проекте выдерживание с допустимой вероятностью отклонений расчетных внут­ренних условий в здании.

Регулирование системы отопления

Под регулированием системы отопления понимают комп­лекс мероприятий, направленных на максимальное при­ближение теплоотдачи ее элементов к текущей переменной теплопотребности отапливаемых помещений в течение ото­пительного сезона для выдерживания расчетной температу­ры помещений.

Различают пусковое и эксплуатационное регулирование системы. Эти виды регулирования имеют свои особенности для водяной, воздушной и паровой систем отопления.

При пуске системы отопления группы зданий, присо­единенной к теплопроводам централизованного теплоснаб­жения, обеспечивают распределение теплоносителя по от­дельным зданиям пропорционально их расчетной теплопотребности. Обычно такое регулирование проводят в центральных тепловых пунктах (ЦТП) и во внутриквартальных тепловых сетях. Способы регулирования, как при зависимом, так и при независимом присоединении системы отопления к теплопроводам, рассматриваются в дисциплине «Теплоснабжение».

Пусковое регулирование элементов и узлов системы отопления связано с обеспечением в них расчетного расхода теплоносителя.

Эксплуатационное регулирование системы отопления проводят с целью обеспечения теплоподачи в отапливаемые помещения соответствующей текущей теплопотребности. Способы регулирования различаются также в зависимости от применяемого в системе теплоносителя. В зависимости от места проведения регулирования в системе теплоснаб­жения различают центральное, групповое, местное и инди­видуальное регулирование.

В системе водяного теплоснабжения центральное регу­лирование осуществляют на тепловой станции (ТЭЦ, ко­тельной) по так называемому отопительному графику, устанавливающему связь между параметрами теплоноси­теля (температура при качественном или расход при коли­чественном регулировании) и температурой наружного воздуха как основного фактора, определяющего перемен­ный характер составляющих теплового баланса здания в те­чение отопительного сезона

Центральное регулирование на тепловой станции при теплоснабжении различных по назначению зданий (жилые, общественные, производственные и др.) и режиму теплопотребления их инженерных систем (отопление, горячее водоснабжение, вентиляция и др.) не может обеспечить ус­тойчивой работы систем отопления.

Устойчивость работы повышается при приближении места проведения регулирования к теплопотребителю за счет более полного учета различных факторов, определяю­щих теплопотребность помещений отапливаемых зданий. Так, при групповом регулировании в ЦТП появляется возможность распределять теплоту по уточненным темпе­ратурным графикам, что способствует повышению эконо­мичности отопления каждого здания. При местном регули­ровании в тепловом пункте здания учитывают особенности режима его эксплуатации, ориентацию по сторонам гори­зонта, действие ветра и солнечной радиации.

1

Проведен анализ систем отопления и установлена возможность применения прерывистого отопления в жилых зданиях и помещениях. Для изучения особенностей формирования микроклимата в помещениях с притоком наружного воздуха через вентиляционные клапаны и отопительными приборами разного типа (конвектор и радиатор) разработана математическая модель. Расчеты выполнены с использованием пакета STAR-CD. Системы уравнений аэродинамики и теплопереноса решались в нестационарной постановке с шагом по времени от 1 с до 10 с. Получены зависимости изменения температуры внутреннего воздуха в четырех контрольных точках. Установлена неоднородность поля температуры воздуха в жилом помещении при подаче наружного воздуха через вентиляционные клапаны. В значительной степени поле температуры воздуха в помещении зависит от типа отопительного прибора (радиатора или конвектора).

моделирование

микроклимат

тепловой режим

жилые помещения

1. Дацюк Т.А., Таурит В.Р. Моделирование микроклимата жилых помещений // Вестник гражданских инженеров. - 2012. - № 4. - С. 196-198.

2. Мишин М.А. Исследование процессов остывания теплоносителя при прерывистом регулировании // Ползуновский вестник. – 2010. - № 1. - С. 146-152.

3. Панферов В.И. Анализ возможности экономии тепловой энергии при прерывистом режиме отопления / В.И. Панферов, Е.Ю. Анисимова // Вестник ЮУрГУ. Сер.: Строительство и архитектура. - 2008. - Вып. 6. - № 12. - С. 30-37.

4. Протасевич А.М. Энергосбережение в системах теплогазоснабжения, вентиляции и кондиционирования воздуха: учеб. пособие. – Минск: Новое знание; М. : ИНФРА-М, 2012. – 286 с.

5. СНиП 41-01-2003. Отопление, вентиляция и кондиционирование. – М. : Госстрой России, 2004. – 56 с.

6. Энергосбережение в системах теплоснабжения, вентиляции и кондиционирования воздуха: справ. пособие / Л.Д. Богуславский, В.И. Ливчак, В.П. Титов и др.; под ред. Л.Д. Богуславского и В.И. Ливчака. - М. : Стройиздат, 1990. – 624 с.

Отопление зданий и помещений может быть постоянным или прерывистым (периодическим) . При прерывистом отоплении снижается или полностью отключается подача теплоты в здание или помещение. В холодный период года в жилых помещениях, когда они не используются, допускается обеспечивать температуру внутреннего воздуха ниже нормируемой, но не менее 15 °С . Использование прерывистого режима отопления позволяет уменьшить расход тепловой энергии.

Суточный цикл имеет три части :

  • начало работы системы отопления (период «натопа» помещения) - температура в помещении повышается от минимальной допустимой t д до расчетной температуры внутреннего воздуха t в;
  • время установившегося режима - в помещении поддерживается температура внутреннего воздуха t в;
  • прекращение подвода теплоты - температура в помещении понижается до минимальной допустимой t д.

Тепловой поток в режиме разогрева помещения больше, чем во время установившегося режима. Дополнительная мощность системы отопления при периодической эксплуатации в течение всего отопительного периода в нормальном и экономичном температурных режимах зависит от следующих показателей:

  • времени, необходимого для достижения расчетной температуры внутреннего воздуха;
  • величины снижения температуры внутреннего воздуха по отношению к расчетной;
  • теплоаккумулирующей способности здания;
  • воздухообмена во время натопа.

Для повышения энергоэффективности систем отопления (снижения энергопотребления) возможно использование прерывистого режима подачи теплоносителя. Однако время натопа помещения в нормативных документах не регламентируется, т.е. предполагается только постоянное отопление. При прерывистом отоплении существенным фактором следует рассматривать скорость восстановления температурного поля помещений до расчетного значения.

Постановка задачи и исследование

Для изучения особенностей формирования микроклимата в помещениях с притоком наружного воздуха через вентиляционные клапаны и отопительными приборами разного типа (конвектор и радиатор) использован метод численного моделирования.

Моделирование микроклимата выполнялось на примере типовой жилой комнаты здания 137 серии:

  • размеры помещения: 6х3 м; внутренняя высота 2,56 м; внутренний объем комнаты - 46,08 м 3 ; суммарная площадь внутренних стен - 73 м 2 ;
  • одно окно размером 1,5х1,5 м.

Расчетная температура наружного воздуха - минус 26 °С. Расчетная температура внутреннего воздуха - плюс 20 о С.

Сопротивление теплопередаче наружной стены и оконного блока приняты в соответствии с нормативными требованиями:

для наружной стены - R с = 3,1 (м 2 К)/Вт;

для окна - R ок = 0,51 (м 2 К)/Вт.

Коэффициент теплоотдачи для наружной поверхности - Вт/(м 2 К).

Теплообмен с соседними помещениями не учитывается. Расчетный тепловой поток системы отопления помещения - 1026 Вт. Отопительные приборы размещаются под окном. Предусмотрена установка конвектора типа Atoll Pro (ПКН 310) производства ОАО «Фирма Изотерм» (Санкт-Петербург). При параметрах теплоносителя для отопительного прибора 95/70 °С (применительно к двухтрубной системе водяного отопления и схеме движения теплоносителя в отопительном приборе - сверху-вниз) тепловой поток конвектора составляет 980 Вт. Расхождение между требуемым тепловым потоком конвектора и тепловым потоком конвектора, принятого к установке, допускается в сторону уменьшения в пределах до 5%, но не более чем на 60 Вт (при нормальных условиях) . В данном случае это расхождение составляет 4,1% (56 Вт).

Конвектор моделировался в виде прямоугольного блока. На верхней грани блока имитировалась выходная решетка конвектора длиной 0,74 м и глубиной 0,1 м, через которую выходит струя нагретого воздуха со скоростью 0,34 м/с и температурой 50 °С (эти параметры получены из натурных измерений). Конвективная составляющая теплового потока равна 94%. Через нижнюю грань блока в конвектор поступал воздух из помещения. Остальная часть теплового потока моделировалась как радиационная составляющая (6% от общего теплового потока), излучаемая нагретым кожухом прибора.

Радиатор моделировался в виде прямоугольного блока длиной 1,3 м, высотой 0,4 м, глубиной 0,14 м, заполненного условным материалом со специально подобранными характеристиками, чтобы имитировать теплоемкость массивной металлической конструкции радиатора. Полный тепловой поток от радиатора - 980 Вт; 50% - конвективная составляющая и 50% - радиационная составляющая.

Поступление приточного воздуха в помещение осуществляется через приточные клапаны типа «Аэреко». Размеры приточных клапанов были выбраны таким образом, чтобы в помещении обеспечивался однократный воздухообмен. Приняты два приточных клапана сечением 0,01х0,3 м 2 каждый, расположенных в верхней части оконного блока. При перепаде давления между внутренним и наружным воздухом 10 Па клапаны обеспечивают расход приточного воздуха 46 м 3 /ч, т.е. однократный воздухообмен в комнате. Удаление воздуха из комнаты выполняется через щель, имитирующую зазор под закрытой дверью, расположенной в стене напротив окна. Расположение приточных клапанов показано на рис. 1.

Рис. 1. Расчетная схема (разрез) помещения и расположения точек контроля температуры.

Расчет проводился с использованием пакета STAR-CD. Системы уравнений аэродинамики и теплопереноса решались в нестационарной постановке с шагом по времени, который варьировался от 1 до 10 с. В ходе расчета контролировались температуры воздуха в четырех точках (рис. 1).

В результате расчетов для двух типов отопительных приборов получены графики изменения температуры воздуха во времени при нагреве помещения до и после открытия приточных клапанов для 4 контрольных точек (рис. 2 - 5).

Рис. 2. Характер изменения температуры в точке 1.

Рис. 3. Характер изменения температуры в точке 2.

Рис. 4. Характер изменения температуры в точке 3.

Рис. 5. Характер изменения температуры в точке 4.

Начальная температура воздуха в помещении перед включением отопительных приборов принята равной плюс 15 о С. Приточные клапаны при предварительном нагреве помещения закрыты.

После включения отопительных приборов:

  • конвектора: температура воздуха в верхних контрольных точках (1 и 3) достигла 28 о С за 10 минут; в нижних точках (2 и 4) температура воздуха достигла 23 о С за 12-14 минут;
  • радиатора: температура воздуха в верхних точках достигает 28 о С за 30 минут; в нижних контрольных точках (2 и 4) при работе радиатора температура воздуха за 30 минут достигает значений 26 о С.

Таким образом, в режиме нагрева помещения («натопа») при работе конвектора температура в верхних контрольных точках устанавливается в 3 раза быстрее, чем при работе радиатора. Сравнивая процесс нарастания температуры в нижних точках, где в меньшей степени сказывается влияние конвективной струи конвектора, видно, что прогрев воздуха при работе конвектора также происходит быстрее. Например, в точке 2 температура 23 °С при работе конвектора достигается за 12 мин, а при работе радиатора - за 20 мин.

При достижении температуры воздуха в верхних контрольных точках 28 ºС проводилось открытие приточных клапанов.

Через 10 мин после открытия клапанов температура воздуха в контрольных точках снижается до плюс 22-24 ºС для обоих приборов. Далее с течением времени температура во всех контрольных точках продолжает снижаться. Однако характер падения температуры (во всех контрольных точках) при работе радиатора более резкий, чем для конвектора. Это объясняется большей подвижностью воздуха в помещении при работе конвектора, которая связана с взаимодействием более мощной конвективной струи нагретого воздуха с холодным приточным воздухом.

Через 50 минут после открытия клапана минимальная температура в контрольных точках при работе конвектора - 22-23 ºС, а при работе радиатора - 19,5-21 ºС, т.е. на 2 ºС ниже.

Заключение

  1. Поля температуры воздуха в жилых помещениях при подаче наружного воздуха через вентиляционные клапаны неоднородны. Формирование поля температуры в помещении в значительной степени зависит от типа отопительного прибора.
  2. Сравнение изменения температуры в объеме помещения при работе конвектора и радиатора позволяет сделать вывод о том, что при работе конвектора поле температуры в комнате более однородно вследствие преобладания конвективной составляющей теплообмена.
  3. В нормативных документах для жилых помещений для повышения энергоэффективности систем отопления путем применения прерывистого режима подачи теплоносителя необходимо установить длительность периода восстановления температуры внутреннего воздуха до расчетного значения.
  4. Результаты исследования формирования температурного поля отапливаемых жилых помещений с учетом естественной вентиляции должны учитываться как проектировщиками, так и производителями отопительных приборов.

Рецензенты:

Анисимов С.М., д.т.н., профессор кафедры «Теплогазоснабжение и вентиляция», ФГБОУ ВПОУ «СПбГАСУ», г. Санкт-Петербург.

Гримитлин А.М., д.т.н., профессор кафедры «Теплогазоснабжение и вентиляция», ФГБОУ ВПОУ «СПбГАСУ», г. Санкт-Петербург.

Библиографическая ссылка

Дацюк Т.А., Ивлев Ю.П., Пухкал В.А. МОДЕЛИРОВАНИЕ ТЕПЛОВОГО РЕЖИМА ЖИЛЫХ ПОМЕЩЕНИЙ ПРИ ПРЕРЫВИСТОМ ОТОПЛЕНИИ // Современные проблемы науки и образования. – 2014. – № 5.;
URL: http://science-education.ru/ru/article/view?id=14698 (дата обращения: 18.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

В системах центрального отопления, особенно водяного, скопления воздуха (точнее газов) нарушают циркуляцию теплоносителя и вызывают шум и коррозию стали. Воздух в системы отопления попадает различными путями: частично остается в свободном состоянии при заполнении их теплоносителем; подсасывается в процессе эксплуатации неправильно сконструированной системы; вносится водой при заполнении и эксплуатации в растворенном виде.

В системах с верхней разводкой необходимо обеспечивать движение свободных газов к точкам их сбора. Точки сбора газов (и удаления их в атмосферу) следует назначать в наиболее высоко расположенных местах систем. Конкретно магистралям придают определенный уклон и устанавливают проточные воздухосборники (рис. 17, а, б,) – вертикальные (а) или горизонтальные (б). Из воздухосборников газы удаляются в атмосферу периодически при помощи ручных спускных кранов 4 или автоматических воздухоотводчиков (6) рис 17.

Рис. 17 Проточные воздухосборники а) – вертикальный на главном стояке; б) горизонтальный на магистрали; 1 – главный стояк; 2- магистрали; 3 – труба(с краном) для выпуска воздуха; 4 – муфта для выпускной трубы; 5 – муфта с пробкой для выпуска грязи.
Рис. 18 Схем установки воздухосборников и воздухоотводчиков а) – с горизонтальным проточным воздухосборником; б) – с вертикальным непроточным воздухосборником; в) – автоматический воздухоотводчик; г) – непроточный воздухосбросник; 1- магистраль; 2-воздухосбросник; 3 – воздухоотводчики; 4 – запорные краны; 5 – ручнее воздуховыпускные краны; 6- воздушная линия; 7 – поплавок; 8 – упор; 9- пружинный клапан; 10 – защитный колпак.
Рис. 19 Автоматический воздухоотводчик ASV

В системах с «опрокинутой» циркуляцией воды и верхним расположением обратной магистрали, в гравитационной системе с верхней разводкой для отделения и удаления газов используют расширительные баки с открытой переливной трубой.

В системах водяного отопления с нижней разводкой обеих магистралей газы, концентрирующиеся в радиаторах или в греющих трубах конвекторов, установленных на верхнем этаже, удаляют в атмосферу периодически при помощи ручных и автоматических воздушных кранов 1 (рис. 20, а) или централизованно через специальные воздушные трубы 2 и 3 (рис. 20, б). При централизованном удалении газов воздушные трубы стояков соединяются горизонтальной воздушной линией 2 (рис. 20, б) с петлей 5 для устранения циркуляции воды в воздушной линии. Для периодического выпуска воздуха в воздушной петле помещают вертикальный воздухосборник 4 со спускным краном (рис. 17, в и 2, в). Для непрерывного удаления воздуха воздушную петлю присоединяют к соединительной трубе открытого расширительного бака(6) (рис. 20, г).

Рис. 21 Воздушный кран Маевского

В системах парового отопления воздух находится в свободном состоянии. В паропроводах пар вытесняет воздух в нижние части систем к конденсатным трубам. В паровых системах высокого давления воздух захватывается конденсатом, движущимся с высокой скоростью. Водовоздушная эмульсия по трубам попадает в закрытый конденсатный бак, где воздух отделяется от конденсата и периодически отводится в атмосферу через специальную воздушную трубу.

8. РАСШИРИТЕЛЬНЫЕ БАКИ СИСТЕМ ВОДЯНОГО ОТОПЛЕНИЯ: НАЗНАЧЕНИЕ, ВИДЫ, ПОДБОР, ПРИСОЕДИНЕНИЕ К СИСТЕМЕ ОТОПЛЕНИЯ.

Предназначены для приема прироста воды, образующегося в системе отопления. Расширительные баки по конструкции бывают: - открытыми, сообщающиеся с атмосферой; закрытые, находящиеся под переменным, но строго избыточным давлением. 1. Открытые расширительные баки. Изготовляют, как правило, цилиндрическими, размещают на расстоянии не менее 1 м над верхней точкой системы, обязательно изолируют.

1 – расширительная труба, по которой вода поступает в бак. 2 – контрольная или сигнальная, для проверки наличия воды в баке. 3 – переливная труба. 4 – циркуляционная труба. 5 – патрубок с пробкой, для промывки. V п – полезный объем расширительного бака.

В гравитационных системах расширительный бак присоединяют к высшей точки подающей магистрали (как правило, к главному стояку), служит одновременно для удаления воздуха. В насосных системах отопления расширительные баки подсоединяют к обратной магистрали, вблизи всасывающего патрубка циркуляционного насоса.

V п должен соответствовать увеличению объема воды в системы отопления, при ее нагревании до средней расчетной температуры. V п =k∙V c , м 3 . k – объемное расширение воды в системе отопления: k=β∙Δt, β – среднее значение коэффициент объемного расширения воды для данного интервала температур. β – 0,0006 1/ о С. Δt – изменение температуры от начальной до средней температуры. k=0,24 при 95-70, k=0,27 при 105-70. V с – общий объем воды в системе отопления при начальной температуре. V с =(V пр +V тр +V котл)Q с. V пр,V тр,V котл – объем воды в системе, л/кВт. Q с – мощность системы, кВт. Недостатки открытых расширительных баков: установка в верхней точке на чердаке, утепление. Возможность поглощения воздуха из атмосферы, что вызывает коррозию. Необходимость добавления воды вследствие ее испарения.

2. Закрытые расширительные баки. Бывают: - с мембраной; - без мембраны. Они герметичны, давление в них поддерживается сжатым воздухом. Наиболее часто используют мембранные расширительные баки. Мембраны изготавливаются из эластичного синтетического каучука или резины. Используют две модификации мембранных баков: 1) баки с несменными диафрагмами, жестко закреплены по периметру. 2) баки со сменными диафрагмами, которые можно заменить через горловину бака. Вода не контактирует со стенкой бака.

Определение объема закрытого расширительного бака. Если объем бака окажется, мал, то давление в низших точках системы может превышать допустимое. Если объем бака велик, при понижении температуры в системе, давление в верхних точках может оказаться ниже минимального допустимого, для предупреждения вскипания воды. Объем закрытого строго обусловлено перепадами давления в системе. Vп=ΔV с /(Р а /Р min -P a /P max). ΔV с =k∙V c = β∙Δt∙V c . ΔV c – прирост объема воды. Р а – абсолютное давление в баке до первого поступления воды. Закрытые баки размещают непосредственно в котельной или в тепловом пункте, на полу или на стенке.

9. ОТОПИТЕЛЬНЫЕ ПРИБОРЫ: КЛАССИФИКАЦИЯ, ВИДЫ, ВЫБОР И РАЗМЕЩЕНИЕ ОТОПИТЕЛЬНЫХ ПРИБОРОВ В ПОМЕЩЕНИИ.

Классификация отопительных приборов.

1) По преобладающему способу теплоотдачи:

а) радиационные приборы – передающие не менее 50% теплоты излучением – это потолочные панели;

б) конвективно-радиационные – передающие конвекцией 50-75% общего теплового потока – радиаторы секционные, панельные, напольные отопительные приборы;

в) конвективные передающие конвекцией не менее 75% - конвекторы.

2) По использующему материалу:

а) металлические – из чугуна, листовой стали, стальные, медные;

б) комбинированные – используют теплопроводящий материал, панельные радиаторы;

в) неметаллические – керамические и пластмассовые радиаторы, потолочные и напольные панели, заделанные пластмассовыми панелями или без труб.

3) По характеру внешней поверхности:

а) гладкие – радиаторы, панели, приборы из гладких труб;

б) ребристые – конвекторы, ребристые трубы, калориферы.

4) По высоте прибора:

а) высокие – h>650 мм; б) средние – 450-650 мм; в) низкие – 200-400 мм;

г) плинтусные – h<200 мм.

Виды отопительных приборов.

1) Простейшими являются гладко трубные приборы, они выполняются в виде змеевиков или регистров из гладких труб, Ø32-100 мм.

Эти приборы легко очищать от пыли, высокий коэффициент теплопередачи. Тяжелые, громоздкие, занимают много места. Применяются в производственных помещениях. На рынке отопительных приборов составляют 2,6%.

2) Радиаторы – приборы, состоящие из отдельных колончатых элементов – секций, либо из плоских блоков с каналами колончатой или змеевиковой формы:

а) чугунные секционные радиаторы, собираются из отдельных секций с помощью ниппеля (цилиндра с резьбой). Расстояние по осям между подводками равно 500 мм. Маркировка МС-140-108; М90; t max =130 o C; Р раб =0,6 МПа. На рынке 47%. Высокая тепловая единичная мощность; стойкие против коррозии; простые в изменении мощности. Металлические (≈ 45кг/кВт); производство трудоемко, экологически вредно; монтаж затруднителен из-за веса; очистка от пыли неудобная; внешний вид непривлекателен.

б) алюминиевые радиаторы, секционные, соединяются прессовкой, на рынке 17%. Имеют привлекательный внешний вид; менее массивны (≈ 11-20 кг/кВт); теплоотдача выше, чем у чугунных, за счет развитой оребренной поверхности; быстрее прогревают помещение; хорошо регулируются терморегуляторами; Р раб =0,6-2 МПа. Менее гигиеничны, т.к. затруднено удаление пыли с внутренней поверхности; подвергаются кислотной коррозии, которая усиливается при образовании гальванической пары алюминий-медь. Во избежание электрохимической коррозии, в местах соединения алюминиевых секций со стальными трубами, используют оцинкованные переходники; алюминий реагирует с водой с выделением водорода. Недостатки, касающиеся электрохимической коррозии, отсутствуют в биметаллических радиаторах, т.к. внутри имеется стальная труба.

в) стальные панельные радиаторы. Сваривают из двух штампованных стальных листов, толщиной 2 мм. Каналы для воды могут быть вертикальные, горизонтальные и змеевиковые. Состоят из 1, 2, 3 х параллельных блоков. Для увеличения конвективной составляющей прибора, между блоками – ответвления. Количество плоских блоков и оребрения, в соответствии с европейскими стандартами указывается в марке прибора.

Меньшая масса, чем у чугунных (0,55-0,8 кг/кВт), увеличенная излучательная способность, монтаж легче, производство механизировано, легко очищаются. Относительная небольшая нагревательная поверхность, для их производства используется дефицитная, коррозиестойкая, холоднотянутая сталь. Применять в закрытых системах, с деаэрированной водой. Р раб =0,6-1,0 МПа. На рынке 17%

3) Конвекторы. На рынке 17%. Основными элементами являются трубчатый ребристый нагреватель, выполненный из стальных электросварных или медных труб.

1. а) навесные (настенные); б) напольные (островные); в) встраиваемые (внутренапольные).

2. а) с кожухом; б) без кожуха.

3. а) с воздушным регулирующим клапаном; б) без воздушного регулирующего клапана.

Требования к конвекторам – хороший контакт оребрения с нагревательной трубкой (цинкование, накатное). Наличие кожуха позволяет использовать при высоких температурах теплоносителя. Теплоотдача конвектора с кожухом растет с увеличением его высоты. Конвекторы со встроенным автоматическим терморегулятором выпускаются без воздушного клапана.

1 – нагревательные трубы. 2 – воздушный клапан. 3 – кожух.

При выборе вида и типа прибора учитываются факторы:

1. Назначение и архитектурно-технологическая планировка помещения.

2. Особенности теплового режима здания (постоянное, дежурное, прерывистое отопление).

3. Вид теплоносителя в системе отопления (водяная, паровая).

4. Давление в системе отопления. 5. Качество теплоносителя. 6. Состав воздушной среды. 7. Санитарно-гигиенические показатели приборов.

Комфортность тепловой обстановки в помещении в большей мере зависит от места установки прибора в помещении. Это связано с тем, что прибор должен выполнять роль локализаторов источников холода в помещения, поэтому прибор должен быть установлен, чтобы нагретая поверхность и восходящая над ним струя не давала попасть холодному потоку воздуха в помещение

1. Наиболее целесообразно устанавливать приборы вдоль наружных стен и под окнами. Длина прибора не менее 50% от длины оконного проема.

2. Под витринами прибор располагают по всей длине - низкие конвекторы, конвекторы теплая дорожка.

3. В детских садах, яслях желательно теплый пол и плинтусные приборы.

4. Теплые полы желательно устраивать в вестибюлях и переходах, куда люди заносят снег.

5. В южных районах при удалении рабочих мест от наружных стен более 2 м, допускается установка у внутренних стен.

6. На лестничных клетках в зданиях до 12 этажей отопительные приборы следует размещать на 1этаже.

7. Не следует размещать лестничные стояки в тамбурах, имеющих наружные двери.

8. Отопительные приборы на лестничных стояках следует присоединять к отдельным стоякам по проточной схеме, с обязательной установкой запорной арматуры на них, регулирующая арматура около приборов не устанавливается.

9. В помещениях кирпичных зданий отопительные приборы устанавливают в нишах глубиной 150 мм, в соответствии со СНиПом 3.05-01-85.


Реконструкция системы отопления, т. е. частичная или полная замена ее элементов, их конструктивная модерни­зация, осуществляется в связи с физическим износом систе­мы, различного рода технологическими изменениями, вы­званными назначением и объемом здания или условиями работы системы, ее моральным старением и другими причи­нами.

Износ системы водяного и парового отопления при дли­тельной эксплуатации происходит под воздействием внут­ренней, а иногда и внешней коррозии. Вследствие отложе­ния взвешенных частиц и образования накипи повышается гидравлическое сопротивление теплопроводов, отопитель­ных приборов, ухудшаются их теплотехнические свойства. Этим же процессам подвержены оборудование систем (теп­лообменники, баки, воздухосборники, грязевики и пр.) и запорно-регулирующая арматура.

Исследованиями систем водяного отопления, проведен­ными в условиях эксплуатации их в Москве, установлено заметное различие в изменении потерь давления в системах в течение многолетней эксплуатации в зависимости от ка­чества теплоносителя. Оценить это изменение можно по формуле

Дрг/Дрр = 0,6 + аг°"38,

где Дрг, Дрр - потери давления в системе отопления соответст­венно через г лет эксплуатации и расчетные; а - коэффициент, зависящий от качества теплоносителя (а- 0,17 для деаэрированной воды при содержании кислорода в ней до 0,1 мг/л и а=0,65 для недеаэрированной и смешанной воды при содержании кислорода 10 мг/л).

В начале эксплуатации потери давления в новой системе водяного отопления составляют около 60% расчетных. Рас­четные потери давления достигаются в системах, питаемых недеаэрированной водой, практически в первый год экс­плуатации, а в системах, работающих на деаэрированной воде, через 8-10 лет эксплуатации.

Повышение потерь давления в системе приводит к умень­шению расхода теплоносителя, к гидравли­ческой и тепловой разрегулировке системы отопления и снижению теплоотдачи ее элементов.

Срок службы отдельных элементов системы отопления не одинаков. Долговечность систем зависит от вида и качества используемого теплоносителя, условий их рабо­ты. Срок службы систем водяного отопления возрастает при их теплоснабжении от ТЭЦ и тепловых станций, когда про­водятся умягчение и деаэрация воды, по сравнению с тепло­снабжением от местных котельных. Особенности работы системы парового отопления, более интенсивные процессы коррозии, происходящие в ней, ставят ее на последнее мес­то по долговечности среди других систем. Наиболее долго­вечной считают систему воздушного отопления (за исклю­чением воздухонагревателей).

Срок службы системы отопления зависит и от материала, из которого сделаны ее элементы, его качества. Например, коррозионные процессы, особенно в стальных отопитель­ных приборах и деталях, быстро понижают их прочность. Важно и качество изготовления самих элементов, прове­дения сборочных и монтажных работ.

Решение о частичной или полной замене элементов систе­мы отопления принимают после специального обследования, в ходе которого проводят гидравлическое и тепловое испы­тания системы, определяют расход теплоносителя в системе в целом и ее отдельных узлах, соответствие теплоотдачи элементов расчетной. Состояние металла в системе оцени­вают путем исследования образцов, извлеченных путем частичной разборки или вырезки.

Проектируя реконструкцию системы отопления, стре­мятся сохранить те ее элементы, которые мало изменили свои свойства в процессе эксплуатации. К ним относятся чугунные радиаторы и ребристые трубы, которые при ка­чественной ежегодной промывке практически не подвер­жены коррозии. Относительно долго служат и те элементы системы, которые выполнены из неметаллических материа­лов (керамические отопительные приборы, стеклянные трубы в бетонных отопительных панелях и пр.).

При реконструкции систем отопления с использованием существующих стальных труб эквивалентную шерохова­тость их внутренней поверхности принимают: для воды и пара - 0,5, конденсата-1,0 мм.

Реконструкцию системы отопления часто проводят по причинам, не связанным непосредственно сее состоянием. Так, полную замену системы осуществляют при капиталь­ном ремонте, связанном сперепланировкой здания. При этом иногда принимают принципиально новое схемное реше­ние системы с заменой устаревших конструкций, использо­ванием нового оборудования, обеспечением автоматизации. Перепроектирование проводят с учетом изменения тепло - затрат на отопление помещений.

В производственных и коммунальных зданиях конструк­ция системы отопления может изменяться вследствие изме­нения технологических процессов, теплового режима поме­щений, а также назначения здания в целом.

Полное перепроектирование системы отопления тре­буется при замене теплоносителя, например, при переходе от пара к воде.

Изменение условий теплоснабжения здания (изменение температуры, давления теплоносителя) вызывает реконст­рукцию теплового ввода и местного теплового пункта. Больших затрат требует, в частности, перевод системы во­дяного отопления с зависимой на независимую схему при­соединенияк тепловой сети. При этом дополнительно устанавливают теплообменники, циркуляционные и подпиточные насосы, расширительный бак, новые контрольно - измерительные приборы, приборы автоматизации, запорно-регулирующую арматуру. Каких-либо дополнительных из­менений непосредственно в системе отопления обычно не требуется.

Повышение требований к тепловому комфорту в зда­ниях, качеству работы инженерного оборудования со сни­жением эксплуатационных затрат, в том числе экономией тепловой энергии, также вызывает реконструкцию системы отопления.

Неспособность системы отопления удовлетворять воз­росшим требованиям называют ее моральным старением. Качество устаревшей системы повышают путем частичной модернизации отдельных узлов и деталей, оснащения ее средствами управления и диспетчерского контроля.

Одной из причин реконструкции может бытьизменение условий эксплуатации системы отопления. Например, переход от постоянного теплового режима помещений зда­ния к переменному с прерывистым отоплением. При этом изменяют мощность системы отопления, ее конструкцию, схемное решение, вводят новое оборудование.

Новую систему отопления в настоящее время проекти­руют, предусматривая возможность ее реконструкции или модернизации в будущем. Например, разделяют систему водяного отопления на пофасадные части для оснащения в будущем приборами автоматического регулирования; предусматривают возможность замены обычного элеватора элеватором с регулируемым соплом или смесительным на­сосом, перехода к независимой схеме присоединения к теп­ловой сети.

В системах воздушного отопления автоматизируют дей­ствие отопительных агрегатов и воздушно-тепловых завес, центральных систем, в том числе регулирование распре­деления воздуха по каналам и воздуховодам.

В зданиях старой постройки реконструкция системы отопления, как правило, связана с конструктивными изме­нениями (например, с перекладкой магистральных труб). Учет этих затрат, а также стоимости нового автоматизиро­ванного оборудования часто приводит к выводу об эконо­мической нецелесообразности реконструкции морально устаревшей системы. Окончательное решение и выбор ва­рианта реконструкции в этом случае увязывают с экономи­ческой целесообразностью реконструкции всего здания в целом.

Частичную реконструкцию системы отопления может вызвать какой-либо внутренний дефект, который нельзя устранить путем ремонта. Например, при выходе из строя замоноличенных в строительные конструкции греющих элементов приходится устанавливать новые отопительные приборы непосредственно в обогреваемых помещениях, присоединяя их к существующей системе.

В редких случаях, в условиях особенно суровых зим (на­пример, зимой 1978/79 гг.), реконструкция вызывается последствиями аварий, особенно при неправильной экс­плуатации систем отопления.

Библиографический список:

1. Справочник по теплоснабжению и вентиляции. Книга 1, Щекин Р.В., Кореневский С.М., Бем Г.Е., Госстройиздат УССР, 1959

2. СНиП 23-01-99*. Строительная климатология / Госстрой России. – М.: ГУП ЦПП, 2005.

3. СНиП 23-02-2003. Тепловая защита зданий / Госстрой России. – М.: ФГУП ЦПП, 2004.

4. ГОСТ 30494-96. Здания жилые и общественные. Параметры микроклимата в помещениях / Госстрой России. – М.: МНТКС, 1999.

5. СП 23-101-2004. Проектирование тепловой защиты зданий / Госстрой России. – М.: ГУП ЦПП, 2005.

6.Сканави А. Н., Махов Л. М. Отопление: Учебник для вузов. – М.: Издательство АСВ, 2002.

7. Внутренние санитарно-технические устройства. В 3 ч. Ч.1. Отопление / В. Н. Богословский, Б. А. Крупнов, А. Н. Сканави и др.; Под ред. И. Г. Староверова и Ю. И. Шиллера. – М.: Стройиздат, 1990. (Справочник проектировщика).

8. Лымбина Л. Е., Магнитова Н. Т. Отопление и вентиляция гражданского здания. Учебное пособие к курсовому проекту. Часть 1. Теплотехнический расчет конструкций. Теплоэнергетический баланс здания. – Челябинск, ЮУрГУ, 1998.

9. Лымбина Л. Е., Магнитова Н. Т., Буяльская И. С. Отопление и вентиляция гражданского здания. Учебное пособие к курсовому проекту. Задание. – Челябинск, ЧГТУ, 1994.