Устройство печатной платы. Делаем печатную плату

Что представляет из себя печатная плат а ?

Печатная плат а или плат а , представляет собой пластину или панель состоящее из одного или двух проводящих рисунков, расположенных на поверхности диэлектрического основания, или из системы проводящих рисунков, расположенных в объеме и на поверхности диэлектрического основания, соединенных между собой в соответствии с принципиальной электрической схемой, предназначенное для электрического соединения и механического крепления устанавливаемых на нем изделий электронной техники, квантовой электроники и электротехнических изделий - пассивных и активных электронных компонентов.

Самый простой печатной плат ой является плат а , которая содержит медные проводники на одной из сторон печатной плат ы и связывает элементы проводящего рисунка только на одной из ее поверхностей. Такие плат ы известны как однослойные печатной плат ы или односторонние печатные плат ы (сокращенно - ОПП ).

На сегодняшний день, самые популярные в производстве и наиболее распространенные печатные плат ы , которые содержат два слоя, то есть, содержащие проводящий рисунок с обеих сторон плат ы – двухсторонни (двухслойные) печатные плат ы (сокращённо ДПП ). Для соединения проводников между слоями используются сквозные монтаж ные и переходные металлизированные отверстия. Тем не менее, в зависимости от физической сложности конструкции печатной плат ы , когда разводка проводников на двусторонней плат е становится слишком сложной, на производстве заказ ывается многослойные печатные плат ы (сокращённо МПП ), где проводящий рисунок формируется не только на двух внешних сторонах плат ы , но и во внутренних слоях диэлектрика. В зависимости от сложности, многослойные печатные плат ы могут быть изготовлены из 4,6, ….24 или более слоев.


>
Рис 1. Пример двухслойной печатной плат ы с защитной паяльной маской и маркировкой.

Для монтаж а электронных компонентов на печатные плат ы , необходима технологическая операция - пайка, применяемая для получения неразъёмного соединения деталей из различных металлов путём введения между контактами деталей расплавленного металла - припоя, имеющего более низкую температуру плавления, чем материалы соединяемых деталей. Спаиваемые контакты деталей, а также припой и флюс вводятся в соприкосновение и подвергаются нагреву с температурой выше температуры плавления припоя, но ниже температуры плавления спаиваемых деталей. В результате, припой переходит в жидкое состояние и смачивает поверхности деталей. После этого нагрев прекращается, и припой переходит в твёрдую фазу, образуя соединение. Этот процесс можно сделать вручную или с помощью специализированной техники.

Перед пайкой, компоненты размещаются на печатной плат е выводами компонентов в сквозные отверстия плат ы и припаиваются к контактным площадкам и/или металлизированной внутренней поверхности отверстия – т.н. технология монтаж а в отверстия (THT Through Hole Technology - технология монтаж а в отверстия или др. словами - штыревой монтаж или DIP-монтаж ). Так же, все большее распространение, в особенности, в массовом и крупносерийном производстве, получила более прогрессивная технология поверхностного монтаж а - также называемая ТМП (технология монтаж а на поверхность) или SMT (surface mount technology) или SMD-технология (от surface mount device – прибор, монтируемый на поверхность). Основным ее отличием от «традиционной» технологии монтаж а в отверстия является то, что компоненты монтируются и паяются на контактные площадки (англ. land), являющиеся частью проводящего рисунка на поверхности печатной плат ы . В технологии поверхностного монтаж а , как правило, применяются два метода пайки: пайка оплавлением припойной пасты и пайка волной. Основное преимущество метода пайки волной – возможность одновременной пайки компонентов, монтируемых как на поверхность плат ы , так и в отверстия. При этом пайка волной является самым производительным методом пайки при монтаж е в отверстия. Пайка оплавлением основана на применении специального технологического материала – паяльной пасты. Она содержит три основных составляющих: припой, флюс (активаторы) и органические наполнители. Паяльная паста наносится на контактные площадки либо с помощью дозатора, либо через трафарет , затем устанавливаются электронные компоненты выводами на паяльную пасту и далее, процесс оплавления припоя, содержащегося в паяльной пасте, выполняется в специальных печах путем нагрева печатной плат ы с компонентами.

Для избежания и/или предотвращения случайного короткого замыкания проводников из разных цепей в процессе пайки, производители печатных плат применяют защитную паяльную маску (англ. solder mask; она же «зеленка») – слой прочного полимерного материала, предназначенного для защиты проводников от попадания припоя и флюса при пайке, а также от перегрева. Паяльная маска закрывает проводники и оставляет открытыми контактные площадки и ножевые разъемы. Наиболее распространенные цвета паяльной маски, используемые в печатных плат а х - зеленый, затем красный и синий. Следует иметь в виду, что паяльная маска не защищает плат у от влаги в процессе эксплуатации плат ы и для влагозащиты используются специальные органические покрытия.

В наиболее популярных программах систем автоматизированного проектирования печатных плат и электронных приборов (сокращённо САПР - CAM350, P-CAD, Protel DXP, SPECCTRA, OrCAD, Allegro , Expedition PCB, Genesis), как правило, существуют правила, связанные с паяльной маской. Эти правила определяют расстояние/отступ, которое необходимо соблюсти, между краем паяемой площадки и границей паяльной маски. Эта концепция иллюстрируется на рисунке 2 (а).

Шелкография или маркировка.

Маркировка (англ. Silkscreen, legend) является процессом, в котором производитель наносит информацию о электронных компонентах и которая способствует облегчить процесс сборки, проверки и ремонта. Как правило, маркировка наносится для обозначения контрольных точек, а также положения, ориентации и номинала электронных компонентов. Также она может быть использована для любых целей конструктора печатных плат , например, указать название компании, инструкцию по настройке (это широко используется в старых материнских плат а х персональных компьютеров) и др. Маркировку можно наносить на обе стороны плат ы и ее, как правило, наносят методом сеткографии(шелкография) специальной краской (с термическим или УФ отверждением) белого, желтого или черного цвета. На рисунке 2 (b) показаны обозначение и область расположения компонентов, выполненные маркировкой белого цвета.


>
Рис 2. Расстояние от площадки до маски (а) и маркировка (b)

Структура слоев в САПР

Как уже отмечалось в начале этой статьи, печатные плат ы могут быть сделаны из нескольких слоев. Когда печатная плат а разработана с помощью САПР, часто можно увидеть в структуре печатной плат ы несколько слоев, которые не соответствуют необходимым слоям с разводкой из проводящего материала (меди). Например, слои с маркировкой и паяльной маской являются непроводящими слоями. Наличие проводящих и непроводящих слоев может привести к путанице, так как производители используют термин слой, когда они имеют в виду только токопроводящие слои. С этого момента, мы будем использовать термин «слои» без «САПР», только когда речь идет о проводящих слоях. Если мы используем термин «слои САПР» мы имеем в виду все виды слоев, то есть проводящие и непроводящие слои.

Структура слоев в САПР:

слои САПР (проводящие и непроводящие)

описание

Top silkscreen - верхний слой маркировки (непроводящий)

Top soldermask – верхний слой паяльной маски (непроводящий)

Top paste mask – верхний слой паяльной пасты (непроводящий)

Top Layer 1 – первый/верхний слой (проводящий)

Int Layer 2 – второй/внутренний слой (проводящий)

Substrate - базовый диэлектрик (непроводящий)

Bottom Layer n - нижний слой(проводящие)

Bottom paste mask - Нижний слой паяльной пасты (непроводящий)

Bottom soldermask Нижний слой паяльной маски (непроводящий)

Bottom silkscreen Нижний слой маркировки (непроводящий)

На рисунке 3. показаны три различных структур слоев. Оранжевый цвет подчеркивает проводящие слои в каждой структуре. Высота структуры или толщина печатной плат ы может варьироваться в зависимости от назначения, однако наиболее часто используется толщина 1,5мм.


>
Рис 3. Пример 3 различных структур печатных плат : 2-х слойная(а), 4-х слойная (b) и 6-и слойная(с)

Типы корпусов электронных компонентов

Сегодня на рынке присутствует большое разнообразие типов корпусов электронных компонентов. Обычно, для одного пассивного или активного элемента существует несколько типов корпусов. Например, вы можете найти одну и ту же микросхему и в корпусе QFP (от англ. Quad Flat Package - семейство корпусов микросхем, имеющих планарные выводы, расположенные по всем четырём сторонам) и в корпусе LCC (от англ. Leadless Chip Carrier - представляет собой низкопрофильный квадратный керамический корпус с расположенными на его нижней части контактами).

В основном существует 3 больших семейств электронных корпусов:

Описание

корпуса для монтаж а в отверстия, которые имеют контакты, предназначенные для сквозной установки через монтаж ные отверстие в печатной плат е. Такие компоненты паяются на противоположной стороне плат ы , где был вставлен компонент. Как правило, эти компоненты смонтированы только на одной стороне печатной плат ы .

SMD / SMT

корпуса для поверхностного монтаж а , которые паяются на одну сторону плат ы , где помещен компонент. Преимущество этого вида компоновки корпуса является то, что он может быть установлен на обе стороны печатной плат ы и кроме того, эти компоненты меньше чем корпуса для монтаж а в отверстия и позволяют проектировать плат ы меньших габаритов и с более плотной разводкой проводников на печатных плат а х.

(Ball Grid Array- массив шариков -тип корпуса поверхностно-монтируемых интегральных микросхем). BGA выводы представляют собой, шарики из припоя, нанесённые на контактные площадки с обратной стороны микросхемы. Микросхему располагают на печатной плат е и нагревают с помощью паяльной станции или инфракрасного источника, так что шарики начинают плавиться. Поверхностное натяжение заставляет расплавленный припой зафиксировать микросхему ровно над тем местом, где она должна находиться на плат е. У BGA длина проводника очень мала, и определяется расстоянием между плат ой и микросхемой, таким образом, применение BGA позволяет увеличить диапазон рабочих частот и увеличить скорость обработки информации. Так же технология BGA имеет лучший тепловой контакт между микросхемой и плат ой, что в большинстве случаев избавляет от установки теплоотводов, поскольку тепло уходит от кристалла на плат у более эффективно. Чаще всего BGA используется в компьютерных мобильных процессорах, чипсетах и современных графических процессорах.

Контактная площадка печатной плат ы (англ. land)

Контактная площадка печатной плат ы - часть проводящего рисунка печатной плат ы , используемая для электрического подсоединения устанавливаемых изделий электронной техники. Контактная площадка печатной плат ы представляет собой открытые от паяльной маски части медного проводника, куда и припаиваются выводы компонентов. Есть два типа площадок – контактные площадки монтаж ных отверстий для монтаж а в отверстия и планарные площадки для поверхностного монтаж а - SMD площадки. Иногда, SMD площадки с переходным отверстием очень похожи на площадки для монтаж а в отверстия.

На рисунке 4 представлены контактные площадки для 4х разных электронных компонентов. Восемь для IC1 и две для R1 SMD площадки, соответственно, а так же три площадки с отверстиями для Q1 и PW электронных компонентов.


>
Рис 4. Площадки для поверхностного монтаж а (IC1, R1) и контактные площадки для монтаж а в отверстия (Q1, PW).

Медные проводники

Медные проводники используется для подключения двух точек на печатной плат е -например, для подключения между двумя SMD площадками (рисунок 5.), или для подключения SMD площадки к площадке монтаж ного отверстия или для соединения двух переходных отверстия.

Проводники могут иметь разную, рассчитанную ширину в зависимости от токов, протекающих через них. Так же, на высоких частотах, необходимо рассчитывать ширину проводников и зазоры между ними, так как сопротивление, емкость и индуктивность системы проводников зависит от их длинны, ширины и их взаимного расположения.


>
Рисунок 5. Соединение двумя проводниками двух SMD микросхем.

Сквозные металлизированные переходные отверстие печатной плат ы

Когда надо соединить компонент, который находится на верхнем слое печатной плат ы с компонентом, который находится на нижнем слое, применяются сквозные металлизированные переходные отверстия, которые соединяют элементы проводящего рисунка на разных слоях печатной плат ы . Эти отверстия, позволяют току проходить сквозь печатную плат у. На рисунке 6 показаны два проводника, которые начинаются на площадках компонентов на верхнем слое и заканчивается на площадках другого компонента на нижнем слое. Для каждого проводника установлено свое переходное отверстие, проводящее ток из верхнего слоя на нижний слой.


>

Рисунок 6. Соединение двух микросхем через проводники и переходные металлизированные отверстия на разных сторонах печатной плат ы

На рисунке 7 более детально дано представление о поперечном сечении 4-слойных печатных плат . Здесь цветами обозначены следующие слои:

На модели печатной плат ы , на рисунке 7 показан проводник (красный), который принадлежит к верхнему проводящему слою, и который проходит сквозь плат у с помощью сквозного переходного отверстия, а затем продолжает свой путь по нижнему слою(синий).


>

Рисунок 7. Проводник из верхнего слоя, проходящий через печатную плат у и продолжающий свой путь на нижнем слое.

«Глухое» металлизированное отверстие печатной плат ы

В HDI (High Density Interconnect - высокая плотность соединений) печатных плат а х, необходимо использовать более чем два слоя, как это показано на рисунке 7. Как правило, в многослойных конструкциях печатной плат ы , на которых устанавливаются много интегральных микросхем, используются отдельные слои для питания и земли (Vcc или GND), и таким образом, наружные сигнальные слои освобождаются от шин питания, что облегчает разводку сигнальных проводников. Также бывают случаи, что сигнальные проводники должны переходить от внешнего слоя (сверху или снизу) по наименьшему пути, что бы обеспечить необходимое волновое сопротивление, требования по гальванической развязке и заканчивая требованиями на устойчивость к электростатическому разряду. Для таких видов соединений используются глухие металлизированные отверстие (Blind via - «глухие» или «слепые»). Имеются в виду отверстия, соединяющие наружный слой с одним или несколькими внутренними, что позволяет сделать подключение минимальным по высоте. Глухое отверстие начинается на внешнем слое и заканчивается на внутреннем слое, поэтому оно имеет префикс «глухое».

Чтобы узнать, какое отверстие присутствует на плат е, вы можете поместить печатную плат у над источником света и посмотреть - если вы видите свет, идущий от источника через отверстие, то это переходное отверстие, в противном случае глухое.

Глухие переходные отверстия полезно использовать в конструкции плат ы , когда вы ограничены в размерах и имеете слишком мало места для размещения компонентов и разводки сигнальных проводников. Вы можете разместить электронные компоненты с обеих сторон и максимально увеличить пространство под разводку и другие компоненты. Если переходы сделаны через сквозные отверстие, а не глухие, понадобиться дополнительное пространство для отверстий т.к. отверстие занимает место с обеих сторон. В то же время глухие отверстия могут находиться под корпусом микросхемы – например для разводки больших и сложных BGA компонентов.

На рисунке 8 показаны три отверстия, которые являются частью четырехслойной печатной плат ы . Если смотреть слева направо, то первое мы увидим сквозное отверстие через все слои. Второе отверстие начинается в верхнем слое и заканчивается на втором внутреннем слое - глухое переходное отверстия L1-L2. Наконец, третье отверстие, начинается в нижнем слое и заканчивается в третьем слое, поэтому мы говорим, что это глухое переходное отверстия L3-L4.

Основным недостатком этого типа отверстия, является более высокая цена изготовления печатной плат ы с глухими отверстиями, по сравнению с альтернативными сквозными отверстиями.


>
Рис 8. Сравнение переходного сквозного отверстие и глухих переходных отверстий.

Скрытые переходные отверстия

Англ. Buried via - «скрытые», «погребенные», «встроенные». Эти переходные отверстия похожи на глухие, с той разницей, что они начинаются и заканчиваются на внутренних слоях. Если мы посмотрим на рисунок 9 слева направо, мы увидим, что первое отверстие сквозное через все слои. Второе представляет собой глухое переходное отверстия L1-L2, а последнее является, скрытое переходное отверстие L2-L3, которое начинается на втором слое и заканчивается на третьем слое.


>

Рисунок 9. Сравнение переходного сквозного отверстие, глухого отверстия и скрытого отверстия.

Технология изготовления глухих и скрытых переходных отверстий

Технология изготовления таких отверстий может быть различной, в зависимости от той конструкции, которую заложил разработчик, и в зависимости от возможностей завод а-изготовителя. Мы будем выделять два основных вида:

    Отверстие сверлится в двусторонней заготовке ДПП , металлизируется, травиться и затем эта заготовка, по сути готовая двухслойная печатная плат а , прессуется через препрег в составе многослойной заготовки печатной плат ы . Если эта заготовка находиться сверху «пирога» МПП , то мы получаем глухие отверстия, если в середине, то - скрытые переходные отверстия.

  1. Отверстие сверлится в спрессованной заготовке МПП , глубина сверления контролируется, что бы точно попасть в площадки внутренних слоев, и затем происходит металлизация отверстия. Таким образом мы получаем только глухие отверстия.

В сложных конструкциях МПП могут применяться комбинации вышеперечисленных видов отверстий – рисунок 10.


>

Рисунок 10. Пример типовой комбинации видов переходных отверстий.

Заметим, что применение глухих отверстий иногда может привести к удешевлению проекта в целом, за счет экономии на общем количестве слоев, лучшей трассируемости, уменьшения размера печатной плат ы , а также возможности применить компоненты с более мелким шагом. Однако в каждом конкретном случае решение об их применении следует принимать индивидуально и обоснованно. Однако не следует злоупотреблять сложностью и многообразием видов глухих и скрытых отверстий. Опыт показывает, что при выборе между добавлением в проект еще одного вида несквозных отверстий и добавлением еще одной пары слоев правильнее будет добавить пару слоев. В любом случае, конструкция МПП должна быть спроектирована с учетом того, как именно она будет реализована в производстве.

Финишные металлические защитные покрытия

Получение правильных и надежных паяных соединений в электронном оборудовании зависит от многих конструктивных и технологических факторов, включая должный уровень паяемости соединяемых элементов, таких как компоненты и печатные проводники. Для сохранения паяемости печатных плат до монтаж а электронных компонентов, обеспечения плоскостности покрытия и для надежного монтаж а паяных соединений необходимо защищать медную поверхность контактных площадок печатной плат ы от окисления, так называемым финишным металлическим защитным покрытием.

При взгляде на разные печатные плат ы , можно заметить, что контактные площадки почти не когда не имеют цвет меди, зачастую и в основном это серебристые цвета, блестящий золотой или матовый серый. Эти цвета и определяют типы финишных металлических защитных покрытий.

Наиболее распространенным методом защиты паяемых поверхностей печатных плат является покрытие медных контактных площадок слоем серебристого сплава олово-свинеца (ПОС-63) - HASL. Большинство изготавливаемых печатных плат защищены методом HASL. Горячее лужение HASL - процесс горячего облуживания плат ы , методом погружения на ограниченное время в ванну с расплавленным припоем и при быстрой выемке обдувкой струей горячего воздуха, убирающей излишки припоя и выравнивающей покрытие. Это покрытие доминирует в течение нескольких последних лет, несмотря на его серьезные технические ограничения. Плат ы , выпущенные таким способом, хотя и хорошо сохраняют паяемость в течение всего периода хранения, непригодны для некоторых применений. Высокоинтегрированные элементы, используемые в SMT технологиях монтаж а , требуют идеальной планарности (плоскостности) контактных площадок печатных плат . Традиционные покрытия HASL не соответствуют требованиям планарности.

Технологии нанесения покрытий, соответствующие требованиям планарности, это наносимое химическими методами покрытия:

Иммерсионное золочение (Electroless Nickel / Immersion Gold - ENIG), представляющее собой тонкую золотую пленку, наносимую поверх подслоя никеля. Функция золота - обеспечивать хорошую паяемость и защищать никель от окисления, а сам никель служит барьером, предотвращающим взаимную диффузию золота и меди. Это покрытие гарантирует превосходную планарность контактных площадок без повреждения печатных плат , обеспечивает достаточную прочность паяных соединений, выполненных припоями на основе олова. Их главный недостаток - высокая себестоимость производства.

Иммерсионное олово (Immersion Tin - ISn) – серое матовое химическое покрытие, обеспечивающее высокую плоскостность печатных площадок плат ы и совместимое со всеми способами пайки, нежели ENIG. Процесс нанесения иммерсионного олова, схож с процессом нанесения иммерсионного золота. Иммерсионное олово обеспечивает хорошую паяемость после длительного хранения, которое обеспечивается введением подслоя органометалла в качестве барьера между медью контактных площадок и непосредственно оловом. Однако, плат ы , покрытые иммерсионным оловом, требуют осторожного обращения, должны хранится в вакуумной упаковке в шкафах сухого хранения и плат ы с этим покрытием не пригодны для производства клавиатур/сенсорных панелей.

При эксплуатации компьютеров, устройств с ножевыми разъемами, контакты ножевых разъемов, подвергаются трению при эксплуатации плат ы , поэтому, концевые контакты, гальваническим способом покрывают более толстым и более жестким слоем золота. Гальваническое золочение ножевых разъёмов (Gold Fingers) - покрытие семейства Ni/Au, толщина покрытия: 5 -6 Ni; 1,5 – 3 мкм Au. Покрытие наносится электрохимическим осаждением (гальваника) и используется в основном для нанесения на концевые контакты и ламели. Толстое, золотое покрытие имеет высокую механическую прочность, стойкость к истиранию и неблагоприятному воздействию окружающей среды. Незаменимо там, где важно обеспечить надежный и долговечный электрический контакт.


>
Рисунок 11. Примеры металлических защитных покрытий - олово-свинец, иммерсионное золочение, иммерсионное олово, гальваническое золочение ножевых разъёмов.

Технология изготовления печатных плат в домашних условиях
"...и опыт - сын ошибок трудных..."

Итак, процесс изготовления платы начинается с принципиальной схемы будущего устройства. На этом этапе вы определяете не только то, как будут соединены компоненты друг с другом, но и решаете какие именно компоненты подойдут для вашей конструкции. Например: использовать стандартные детали или СМД (которые, к слову, тоже бывают различных размеров). От этого будет зависеть размеры будущей платы.

Далее, определяемся с выбором программного обеспечения, при помощи которого вы будете чертить будущую плату. Если принципиальную схему можно нарисовать от руки, то с рисунком печатной платы так не получиться (особенно, если речь идёт об СМД компонентах). Я использую . Скачал её уже давно, и пользуюсь. Очень хорошая программа, с интуитивно понятным интерфейсом, ничего лишнего. В программе создаём рисунок печатной платы.

Пока никаких секретов не открыл? Так вот: когда рисунок платы уже создан, вы удостоверились в правильности расположения компонентов, следует установить "массу" т.е. заполнить промежутки между дорожками и отверстиями, для этого в программе присутствует специальная функция, которая делает это автоматически (по умолчанию стоит зазор в 0,4 мм). Зачем это нужно? Чтобы на травление (его рассмотрим далее) потребовалось меньше времени, вам будет проще контролировать процесс и ещё это полезно делать из схемотехнических соображений...

Примечание: при проектировании платы старайтесь не делать отверстия диаметром меньше 0,5 мм, если, конечно, у вас нет специального станка для сверления отверстий, но об этом позже...

Отлично! Мы нарисовали рисунок будущей печатной платы, теперь его необходимо распечатать на ЛАЗЕРНОМ принтере (Лут - значит лазерный). Для этого щёлкаем печать. Вышеупомянутая программа создаёт специальный файл, при этом можно выбрать количество копий, их расположение, сделать рамку, указать размер отверстий и отразить зеркально.

Примечание: если делаете двустороннюю печатную плату, то лицевую часть необходимо отразить по горизонтали, а изнаночную оставить как есть. Что касается Sprint - Layout , то лучше сделать это ещё на этапе создания схемы, а не на этапе подготовки файла для печати, так как возникают "глюки" с "массой", она пропадает, местами.

И ещё, лучше распечатать несколько копий, даже если вам нужен только один экземпляр, ведь возможно появятся дефекты на следующих этапах и чтобы не бегать каждый раз к принтеру, сделайте это заранее.

На чём печатать? Для начала, распечатываем на обычном листе бумаги, чтобы в последний раз удостоверится в том, что всё правильно сделано, что все компоненты подходят по размерам. Это также разогреет принтер.

Теперь устанавливаем максимальную плотность тонера, отключаем всякие режимы экономии (кстати, лучше использовать свежий картридж). Берём подложку от самоклеящейся бумаги, лучше от "бархатной" (с ней получается лучший результат, может быть, это из-за того, что она толще) блестящей стороной вставляем в принтер и жмём на "печать". Готово!

Примечание: с этого момента нельзя трогать эту бумагу, только за края, иначе можно заляпать рисунок!

О повторном использовании подложки. Допустим, что вы распечатали рисунок, а он занял только половину листа, не нужно выбрасывать другую половину, на ней тоже можно печатать, НО! по каким-то причинам при повторной печати принтер в 20% случаев "жуёт" бумагу, так что аккуратнее!

Подготавливаем текстолит

Я использую обычный фольгированный стеклотекстолит толщиной в 1 мм, который продаётся в магазине радиодеталей. Так как мы хотим сделать двустороннюю плату, то покупаем двусторонний текстолит. Отрезаем нужный кусочек, не нужно делать запас, он не понадобится. Отрезали. Берём нулевую шкурку и шкурим текстолит до блеска с обоих сторон, если остаются небольшие царапины, то ничего страшного, тонер будет лучше держаться (но без фанатизма!). Далее берём ацетон (спирт) и протираем плату с двух сторон, чтобы обезжирить её. Готово!

Примечание: когда будете шкурить текстолит, обратите внимание на углы платы, очень часто их "недошкуривают" или, что ещё хуже, "перешкуриваю", это когда там совсем не остаётся фольги. После протирания ацетоном плату также нельзя трогать руками, брать можно только за края, лучше пинцетом.

Далее самый ответственный этап: перенос рисунка с бумаги на текстолит. Делается при помощи утюга (лУт - значит утюг). Здесь подойдёт любой. Нагреваем его до 200 градусов (зачастую это максимальная температура утюга, поэтому просто выводим регулятор на максимум и ждём, когда он нагреется).

А вот теперь секретики! Чтобы перенести рисунок печатной платы с бумаги на текстолит, необходимо приложить бумагу к текстолиту нужной стороной, затем придавить утюгом и хорошенько разгладить. Вроде ничего сложного? Но самое трудное это приложить утюг так, чтобы не сметить бумагу, особенно, если платка маленькая и вы делаете её в единственном экземпляре, к тому же утюгом не так то просто орудовать. Есть интересный способ облегчить задачу.

Примечание: мы рассматриваем изготовление двусторонних печатных плат, так что немного о подготовке бумаги. В некоторых источниках советуют делать так: переносим одну сторону, противоположную заклеиваем скотчем или изолентой, травим одну сторону, потом сверлим дырочки, совмещаем рисунок другой стороны, затем опять переносим, заклеиваем, травим. Это занимает много времени, ведь, по сути, вам нужно протравить две платы! Можно ускорить процесс.

Берём две бумажки, на которых находится рисунок с лицевой и изнаночной стороны, совмещаем их. Это лучше делать на оконном стекле или на прозрачном столе с подсветкой. Обратите внимание! в этом случае необходимо отрезать бумажки с запасом, чем больше, тем лучше, но без фанатизма, вполне хватает 1-1,5 см. Скрепляем их степлером с 3-х сторон(клеем нельзя!), получаем конвертик, в который кладём плату и выравниваем её.

Самое интересное. Берём два кусочка текстолита (размер смотрим на рисунке), кладём их фольгированной стороной друг к другу, а между ними помещаем "конвертик" с платой, а края этого бутерброда закрепляем зажимами для бумаги, так чтобы листы текстолита не смещались друг относительно друга.

Примечание: для этих целей лучше выбирать текстолит потоньше, он будет быстрее прогреваться, и сможет деформироваться там, где это необходимо.

Теперь, берём утюг и спокойно прикладываем его к нашему бутерброду, и давим что есть силы, сначала с одной стороны, затем переворачиваем и давим с другой. Для лучшего эффекта рекомендую после первого надавливания совершить несколько круговых движений утюгом, чтобы быть уверенным, что бумага прижалась во всех местах. Гладить нужно не долго, обычно, не больше 1-3 минут на все дела, но точного времени вам никто не скажет, ведь это зависит от размеров платы, количества тонера. Главное не передержать, ведь в этом случае тонер может просто растечься, а если недодержать, то рисунок может полностью не перенестись. Практика, господа, практика!

Затем можно открыть бутерброд и убедиться, что бумага со всех сторон прилипла к текстолиту, т.е. нет пузырьков воздуха. И быстренько несём плату под проточную воду, и охлаждаем (холодной водой разумеется).

Примечание: Если вы использовали подложку от самоклеящейся бумаги, то она под водой зачатую сама отваливается от текстолита и плата спокойно выпадает из конверта. Если же вы использовали подложку от бархатной бумаги (более толстую), то с ней так не получиться. Берём ножницы и срезаем боковые стороны конверта, затем начитаем медленно, держась за краешек бумаги, под струёй воды, снимать бумагу. В результате на бумаге не должно остаться тонера, он весь будет на текстолите.

На данном этапе при возникновении дефектов можно поступить двумя способами. Если дефектов слишком много, лучше взять ацетон, смыть с текстолита тонер и попробовать ещё раз (предварительно повторив процесс очистки текстолита шкуркой).

Пример непоправимого дефекта (в данном случае, я начал сначала):

Если дефектов немного, то можно взять маркер для рисования печатных плат и дополнить изъяны.

Хороший вариант, есть небольшие прорехи в "массе", но их можно закрасить маркером:

Исправленные варианты. Хорошо заметны зелёные закрашенные области:

Отлично, это был самый технологически сложный этап, далее будет проще.

Теперь можно протравить плату, т.е. убрать лишнюю фольгу с текстолита. Суть травления такова: мы помещаем плату в раствор, разъедающий металл, при этом метал находящийся под тонером (под рисунком платы) остаётся невредимым, а тот, что вокруг убирается.

Скажу пару слов о растворе. Травить, на мой взгляд, лучше хлорным железом, оно не дорогое, раствор приготовить очень просто, да и в целом даёт хороший результат. Рецепт простой: 1 часть хлорного железа, 3 части воды и всё! Но встречаются и другие способы травления.

Примечание: добавлять нужно именно воду к железу, а не наоборот, так нужно!

Примечание: существует два вида хлорного железа (которые я встречал): безводное и 6-ти водное. Безводное, как ясно из названия, совершенно сухое, и в ёмкости, в которой оно продаётся всегда много пыли, это не беда. Но при добавлении воды активно растворятся, идёт сильная экзотермическая реакция (раствор нагревается), с выделением какого - то газа (скорее всего это хлор или хлороводород, ну всё одно - пакость редкостная), который НЕЛЬЗЯ ВДЫХАТЬ, рекомендую разводить на воздухе.

А вот 6-ти водное железо уже лучше. Это, по сути уже раствор, вода добавлена, получаются мокрые комочки, которые тоже нужно добавлять в воду, но такой бурной реакции уже нет, раствор нагревается, но не очень быстро и не очень сильно, зато всё безопасно и тихо (окна всё же нужно открыть).

Примечание: советы, которые я привожу здесь не являются единственно правильными, на многих форумах можно встретить людей у которых платы получаются и при другой концентрации, другим сортом хлорного железа и т.д. Я лишь постарался обобщить наиболее популярные советы и личный опыт. Так что, если эти методы не помогли, то попробуйте другой способ и у вас всё получиться!

Раствор приготовили? Отлично! Выбираем ёмкость. Для односторонних этот выбор прост, берём прозрачную (чтобы видеть процесс травления) пластиковую коробочку с крышкой, кладём на дно плату. Но с двусторонними платами всё не так просто. Необходимо, чтобы скорость травления с каждой стороны была примерно одинаковой, иначе может возникнуть ситуация, когда с одна сторона ещё не протравилась, а на другой уже растворяются дорожки. Чтобы этого не произошло, нужно располагать плату вертикально в ёмкости (чтобы она не лежала на дне), тогда раствор вокруг будет однородным и скорость травления будет примерно одинаковой. Следовательно, необходимо взять высокую ёмкость, чтобы плата поместилась в "полный рост". Лучше выбирать узкую прозрачную баночку, чтобы можно было наблюдать процесс травления.

Далее раствор необходимо нагревать (ставим на батарею), это увеличит скорость протекания реакции, и периодически встряхивать, чтобы обеспечивать равномерность травления и чтобы избежать появление осадка на плате.

Примечание: кто-то ставит в микроволновку и греет там, но я вам этого делать не рекомендую, т.к. на одном форуме прочёл, что после такого отравиться едой из этой микроволновки можно. Прямых доказательств нет, но лучше не рисковать!

Примечание: чтобы обеспечить равномерность травления нужно перемешивать раствор (встряхивать ёмкость), но существуют более технологичные способы. Можно присоединить к ёмкости генератор пузырьков (из аквариума) и тогда пузырьки будут перемешивать раствор. Я видел, как люди делают качающиеся ванночки для травления с сервоприводом и микроконтроллером, который осуществляет "взбалтывание" по специальному алгоритму! Здесь я не рассматриваю подробно каждый вариант, ведь в каждом есть свои нюансы и статья тогда бы очень затянулась. Я описал самый простой способ, который отлично подойдёт для первых плат.

Ждём, торопиться не нужно!

Понять, что процесс травления закончился очень просто: между чёрным тонером не останется никаких следов фольги. Когда это произойдёт, можно вынимать плату.

Далее несём её под воду и смываем остатки раствора. Берём спирт или ацетон и смываем тонер, под ним должны остаться дорожки из фольги. Отлично, всё ровно? Нигде нет "недотравленных" мест? Нигде нет "перетравленных" мест? Здорово! Можем двигаться дальше!

Примечание: при появлении дефектов на этом этапе производства ставит перед вами серьёзный выбор: выбросить брак и начать заново или попытаться исправить. Это зависит от того насколько серьёзные возникли дефекты и от того насколько высокие требования вы предъявляете к своей работе.

Следующий этап - лужение платы. Существует два основных способа. Первый - самый простой. Берём флюс для пайки (я использую ЛТИ-120, только не тот, который похож на канифольный лак, оставляющий жуткие пятна поле пайки, а на спиртовой основе, он значительно светлее), обильно смазываем им плату с одной стороны. Берём припой и паяльник с широким жалом и начинаем лудить плату, т.е. покрывать всю фольгу припоем.

Примечание: не стоит слишком долго держать паяльник на дорожках, т.к. текстолит бывает разного качества и от некоторого дорожки отваливаются очень легко, особенно тонкие. Будьте аккуратнее!

На плате в таком случае могут возникнуть "разводы" припоя или неприятные на вид бугорки, бороться с ними лучше при помощи оплётки для выпайки. В тех местах, где необходимо убрать лишний припой проводим ей, убирается весь лишний припой и остаётся ровная поверхность.

Примечание: можно сразу обернуть оплётку вокруг жала и лудить сразу с ней, так может получиться даже проще.

Способ хороший, но чтобы добиться эстетичного вида платы необходим некоторый опыт и сноровка.

Второй способ - посложнее. Вам понадобиться металлическая ёмкость, в которой вы сможете кипятить воду. Наливаем воду в ёмкость, добавляем пару ложек лимонной кислоты и ставим на газ, доводим до кипения. Припой нужно выбирать не простой, а с низкой температурой плавления, например сплав Розе (около 100 градусов по Цельсию). Бросаем несколько шариков на дно и видим, что они расплавились. Теперь бросаем плату на эти шарики, затем берём палочку (лучше деревянную, чтобы не обжечь руки), обматываем её ватой и начинаем тереть плату, разгонять припой по дорожкам, таким образом, можно добиться равномерного распределения припоя по всей плате.

Способ довольно хороший, но более затратный, и необходимо подобрать ёмкость, ведь вам придётся орудовать в ней инструментами. Лучше использовать что - нибудь с невысокими бортиками.

Примечание: вам придётся довольно долго проделывать эту операцию, поэтому лучше открыть окно. С опытом у вас должно получаться быстрее.

Примечание: многие не очень хорошо отзываются о сплаве Розе из - за его хрупкости, но для лужения плат данным способом он подходит очень хорошо.

Примечание: сам я этот способ недолюбливаю, потому что пытался использовать его, когда делал первую плату и хорошо помню, как было неудобно "варить" эту плату в консервной банке без инструментов....Оо это было ужасно! Но теперь...

Оба способа имеют свои достоинства и недостатки, выбор зависит только от вас и ваших возможностей, желания, умения.

Примечание: далее я рекомендую прозвонить плату мультиметром, чтобы убедиться, что нигде нет пересечения дорожек, которые не должны пересекаться, что нигде нет случайных "сопелек" или ещё какой неожиданности. В случае обнаружения проблемы, берём паяльник и убираем лишний припой, если не помогает, то используем канцелярский нож и аккуратно разъединяем необходимые места. Это может означать, что плата недотравилась в некоторых местах, но ничего страшного.

Для этого используем маленькую дрель и сверло. Сейчас продаются специальные свёрла для печатных плат с особой заточкой и особыми канавками на сверле. Сначала я использовал обычное сверло по металлу толщиной 0,6 мм, затем перешёл на специальное и результат очень хороший. Во первых, даже с моей бюджетной дрелью без проблем сверлится любой текстолит, практически без усилий. Сверло само "вгрызается" в него и тянет за собой инструмент. Во - вторых, оставляет аккуратное входное и выходное отверстие, без заусенцев, в отличие от стандартного сверла, которое буквально "рвёт" текстолит. В - третьих, это сверло почти не скользит, т.е. нужно только с первого раза попасть в нужное место и оно уже никуда не денется. Чудо, а не инструмент! Но и стоит оно немного дороже обычного сверла.

Примечание: чтобы "сразу попасть в нужное место" лучше использовать шило или специальный инструмент для кернения, только не делайте слишком глубокие зарубки, это может направить сверло не в ту сторону. Ещё: у этого сверла есть один недостаток - оно легко ломается, поэтому лучше использовать специальный станок, чтобы сверлить отверстия или держать дрель строго вертикально. Поверьте, очень легко ломается! Особенно, когда нужно просверлить отверстие в 0,3 мм или 0,2 мм, но это уже ювелирная работа.

Готово! Вот собственно и всё! Сквозные отверстия пропаиваем тонкими проводками и получаются аккуратные полусферы на плате, смотрится очень даже ничего. Теперь нужно только припаять все компоненты схемы и убедиться, что она работает, но это тема для других статей. А вот, что получилось у меня:

На этом всё. Ещё раз хочу подчеркнуть, что здесь я лишь постарался обобщить все материалы, которые мне удалось найти о ЛУТе, и свой опыт. Получилось немного затянуто, но в каждом деле есть много нюансов, которые необходимо учитывать, для достижения наилучшего результата. Последний совет, который я могу вам дать: нужно пробовать, пытаться делать платы, ведь мастерство приходит с опытом. И в конце ещё раз приведу эпиграф: "...и опыт - сын ОШИБОК трудных..."

Если остались вопросы, то можно оставлять их комментариях. Также буду благодарен за конструктивную критику.

Так как я учусь на инженера, я часто делаю дома проекты с достаточно простыми электронными схемами и для этого частенько делаю печатные платы сам.

Что такое печатная плата?

Печатная плата (ПП) служит для механического монтажа радиокомпонентов и электрического их соединения с помощью проводящего рисунка, контактных площадок и других компонентов, вытравленных на медном слое ламинированной пластины.
На ПП находятся заранее спроектированные медные дорожки. Правильно проектирование соединений посредством этих дорожек сокращает количество использованных проводов, а значит, и количество повреждений, вызванных разрывами соединений. Компоненты монтируются на ПП пайкой.

Способы создания

Основных способов изготовления печатных плат своими руками три:

  1. ЛУТ технология изготовления печатных плат
  2. Нанесение дорожек вручную
  3. Травление на лазерном станке

Метод лазерного травления является промышленным, поэтому я расскажу подробнее о первых двух методах изготовления.

Шаг 1: Создаем разводку печатной платы

Обычно разводку делают путем конвертирования принципиальной схемы с помощью специальных программ. Существует множество бесплатных программ в открытом доступе, например:

Я создал разводку с помощью первой программы.

Не забудьте в настройках изображения (Файл – Экспорт – Изображение) выбрать DPIG 1200 для лучшего качества изображения.

Шаг 2: Материалы для платы

(текст на фото):

  • Журналы или рекламные брошюры
  • Лазерный принтер
  • Обычный утюг
  • Ламинат с медным покрытием для ПП
  • Раствор для травления
  • Поролоновая губка
  • Растворитель (например, ацетон)
  • Провод в пластиковой изоляции

Также вам понадобятся: перманентный маркер, острый нож, наждачная бумага, бумажные полотенца, вата, старая одежда.
Объяснять технологию я буду на примере изготовления ПП сенсорного выключателя с IC555.

Шаг 3: Распечатываем разводку

Распечатайте разводку схемы на листе глянцевой или фото бумаги форматаА4 на лазерном принтере. Не забудьте:

  • Распечатывать нужно изображение в зеркальном отображении
  • Выберите «Печатать все черным» и в программе для дизайна печатных плат и в настройках лазерного принтера
  • Убедитесь, что изображение будет напечатано на глянцевой стороне листа.

Шаг 4: Вырезаем плату из ламината


Вырежьте из листа ламината кусок такого же размера, как и изображение разводки платы.

Шаг 5: Шлифуем плату

Обработайте фольгированную сторону металлической мочалкой или абразивной стороной губки для мытья посуды. Это нужно, чтобы снять оксидную пленку и фоточувствительный слой.
На загрубленную поверхность изображение ложится лучше.

Шаг 6: Варианты изготовления схемы




Вариант 1:
ЛУТ: перенос напечатанного на глянцевом слое бумаги изображения на фольгированный слой ламината. Положите напечатанное изображение на горизонтальную поверхность тонером вверх. Положите сверху плату медным слоем на изображение. Изображение должно располагаться ровно относительно краев. Скрепите ламинат и изображение с двух сторон скотчем, чтобы бумага не могла сместиться, липкий слой скотча не должен попасть на медное покрытие.

Вариант 2:
Нанесение дорожек перманентным маркером: взяв за образец распечатанную разводку, нанесите схему на медный слой куска ламината сначала простым карандашом, затем обведите перманентным черным маркером.

Шаг 7: Проглаживаем изображение



  • распечатанное изображение нужно прогладить утюгом. Разогрейте утюг до максимальной температуры.
  • положите на ровную деревянную поверхность чистую ненужную ткань, на нее положите будущую плату медным слоем вверх с прижатым к нему изображением схемы.
  • с одной стороны прижмите плату рукой с полотенцем, с другой прижмите ее утюгом. Утюг держите в течение 10 секунд, затем начинайте проглаживать с бумагой немного надавливая, в течение 5-15 минут.
  • хорошо прогладьте края – с нажимом, медленно перемещая утюг.
  • длительное нажатие действует лучше, чем постоянно проглаживание.
  • тонер должен расплавиться и прилипнуть к медному слою.

Шаг 8: Очистка платы



После утюжки поместите ее в теплую воду примерно на 10 минут. Бумага намокнет и ее можно будет удалить. Удаляйте бумагу под малым углом и, желательно, без остатков.

Иногда с бумагой снимаются частички дорожек.
Белым прямоугольником на фотографиях выделено место, где дорожки плохо перенесены и затем восстановлены черным перманентным маркером.

Шаг 9: Травление





Во время травления нужно быть чрезвычайно осторожным.

  • сначала оденьте резиновые перчатки или перчатки с пластиковым покрытием
  • застелите пол газетами на всякий случай
  • наполните пластиковую коробку водой
  • добавьте в воду 2-3 чайных ложки порошка хлорида железа
  • опустите плату в раствор примерно на 30 минут
  • хлорид железа вступит в реакцию с медью и медь, не защищенная слоем тонера, уйдет в раствор
  • чтобы проверить, как идет травление внутренних частей платы, достаньте плату из раствора пассатижами, если внутренняя часть еще не очистилась от меди, оставьте ее в растворе еще на некоторое время.

Слегка перемешивайте раствор, чтобы реакция шал активнее. В растворе образуется хлорид меди и хлорид железа.
Каждые две-три минуты проверяйте, вся ли медь вытравлена с платы.

Шаг 10: Техника безопасности





Не прикасайтесь к раствору незащищенными руками, обязательно используйте перчатки.
На фото видно, как проходит травление.

Шаг 11: Утилизация раствора

Раствор для травления токсичен для рыб и других водных организмов.
Не выливайте отработанный раствор в раковину, это незаконно и может испортить трубы.
Разбавьте раствор для снижения концентрации и только после этого слейте в общую канализацию.

Шаг 12: Завершение процесса изготовления




На фото показаны для сравнения две печатных платы, изготовленных с помощью ЛУТ и перманентного маркера.

апните несколько капель растворителя (можно жидкость для снятия лака) на ватку и удалите остатки тонера с платы, у вас должны остаться только медные дорожки. Действуйте осторожно, затем просушите плату чистой тканью. Обрежьте плату до нужного размера и обработайте края наждачной бумагой.

Просверлите монтажные отверстия и припаяйте все компоненты на плату.

Шаг 13: Заключение

  1. Лазерно-утюжная технология — вполне эффективный способ изготовления печатных плат в домашних условиях. Если делать все аккуратно, каждая дорожка получится четкой.
  2. Выполнение разводки с помощью перманентного маркера ограниченно нашими художественными навыками. Этот способ подходит для простейших схем, для чего-то более сложного лучше изготавливать плату первым способом.

Подробный рассказ о популярной "лазерно-утюжной" технологии изготовления печатных плат, её особенностях и нюансах.

Печатные платы в радиотехнике применяются очень давно. В условиях производства существует различное оборудование, позволяющее выпускать платы в массовом масштабе. Подобные платы раньше выпускались методами офсетной печати, почему и получили название «печатных».

В домашних условиях или в заводских электролабораториях, занимающихся ремонтом электрооборудования подобные платы приходилось рисовать вручную различными лаками. Инструменты для рисования применялись самые разнообразные, от просто остро заточенной спички до иголок от шприца и стеклянных рейсфедеров.

Производительность подобного труда была низкая, да и качество оставляло желать лучшего. Если же требовалось изготовить несколько одинаковых плат, то уже вторая рисовалась без особого вдохновения, а следующие за ней, оптимизма не прибавляли.

Сейчас компьютерные технологии проникли во все сферы человеческой деятельности, в том числе и в радиолюбительство. Печатные платы рисовать вручную теперь уже не приходится, разве что очень простые, которые можно даже вырезать ножом. Но обо всем по порядку.

Прежде всего, печатную плату необходимо спроектировать согласно принципиальной электрической схеме. Подобная работа выполняется на компьютере при помощи специальных программ. Наиболее просты и доступны программы Sprint-Layout. Они бесплатны, и их можно скачать в Интернете. Их интерфейс интуитивно понятен и пользование программой затруднений не вызывает.

В версиях программ, начиная с третьей, возможна вставка рисунка и просто его обведение линиями печатных дорожек. Эта функция позволяет изготавливать платы, опубликованные на страницах журналов. Картинка из журнала, если ее просто распечатать, требуемого качества, как правило, не дает.

После того, как печатная плата спроектирована и проверена, ее следует перенести на заготовку будущей печатной платы. И именно на этом этапе следует проявить внимательность и аккуратность.

Прежде всего, следует рассказать, как печатать и на чем. Это два основных вопроса, от которых зависит конечный результат.

Рисунок платы печатается на лазерном принтере при отключении всех экономных режимов, что позволяет нанести на бумагу максимально толстый слой тонера. Это способствует улучшению переноса тонера на заготовку печатной платы. Сейчас подобная технология называется «лазерно-утюжной».

Общий смысл ее достаточно прост: рисунок помещается на заготовку (фольгированный стеклотекстолит), конечно рисунком к фольге, после чего проглаживается обычным утюгом. Тонер, расплавляясь, переносится на фольгу, оставляя на ней рисунок платы. После этого бумага размачивается в воде, а плата травится как обычно в растворе хлорного железа.

Теперь о тонкостях и деталях всего процесса.

Прежде всего на чем печатать? Когда эта технология была известна только по слухам, считалось, что печатать рисунок надо на бумаге самого низкого качества. Такая бумага, тонкая и бурая, предназначалась для пишущих машинок. Отмочить эту бумагу было просто невозможно, поэтому предлагалось сначала растворять ее, кажется, соляной кислотой. Бумага растворялась плохо, а вместе с ней и часть рисунка.

Тогда большинство исследователей, видимо, печатали подобные картинки на государственных принтерах, поэтому были предложения делать распечатки даже на бытовой алюминиевой фольге, каких-то пленках и еще не помню на чем.

На самом деле все оказалось значительно проще: лучше всего подходит мелованная бумага из глянцевых журналов. При этом рисунки и фотографии на страницах на качество не влияют. Единственное, что следует опытным путем подобрать журнал, дающий лучшее качество. Некоторые журналы намелованы до такой степени, что приглаживаются к фольге даже без тонера.

Границы платы на распечатке лучше указать при помощи «крестов», (такая опция присутствует в программе), нежели в рамке. Рамка может потянуть за собой бумагу в процессе приглаживания и исказить рисунок.

Бывает, рисунок приглаживается хорошо не с первого раза, поэтому на одном листе бумаги надо отпечатать несколько его экземпляров. Количество рисунков на листе устанавливается в программе.

Заготовку для платы следует вырезать не ровно в размер, а так, чтобы по краям оставался запас 6…10 мм. Он срезается уже после того, как плата будет готова. Это необходимо для того, чтобы крайние дорожки рисунка получились хорошо. Не понятно почему, именно эти дорожки приглаживаются плохо. Поэтому острые кромки фольги следует притупить сняв небольшие фаски.

Перед тем, как приглаживать рисунок утюгом, заготовку следует зачистить наждачной бумагой, так, чтобы поверхность фольги приобрела матовый оттенок. После этого поверхность обезжирить ацетоном или бензином.

Затем положить бумагу рисунком вверх на ровную поверхность, и уже на нее фольгой вниз, ориентируя по крестам, заготовку платы. Для фиксации заготовки края бумаги подогнуть вовнутрь получившегося пакета. При приглаживании пакет положить, естественно, бумагой вверх.

Обычный утюг для глажения белья следует разогреть до 200 градусов. Температуру можно проконтролировать авометра, либо подбирать опытным путем.

Приглаживание производить сначала всей плоскостью утюга для разогрева платы, а ближе к концу процесса приглаживать бумагу ребром утюга. Чтобы мелованная бумага не прилипала к утюгу в начале приглаживания можно под утюг положить обычную чистую бумагу. Под приглаживаемую заготовку лучше подложить картонную папку для бумаг или журнал. Это позволит плате несколько прогибаться, что исключит влияние неровностей, как самой платы, так и рабочего стола.

После приглаживания весь пакет следует остудить, прикладывая другой утюг, только холодный, чтобы рисунок лучше зафиксировался на плате.

После этих процедур приглаженную бумагу следует отмочить в теплой 50…60 градусов воде. Когда бумага достаточно размокнет ее следует осторожно снять. Остатки бумаги, прилипшие к плате, удалить, протирая пальцем, как переводные картинки.

После того, как будет получен оттиск хорошего качества, заготовку следует как обычно протравить в растворе хлорного железа. После травления рисунок удаляется ацетоном или бензином.

Программа Sprint-Layout позволяет нарисовать в контактных площадках отверстия для деталей. Эти отверстия следует делать диаметром не менее 0,7…0,8 мм. Тогда фольга в них протравится до текстолита и не потребуется кернить отверстия: сверло будет центроваться в этих протравленных отверстиях. Точность сверления такова, что даже микросхемы в 40 выводных корпусах «садятся» на свои места безо всякого подгибания ножек.

Борис Аладышкин

» Печатная плата электроники – инструкция изготовления

Практика конструирования и монтажа, напрямую связанная с электроникой, никак не обходится без главной детали – печатной платы. Начальная разработка какого-нибудь электронного устройства, конечно, допустима с помощью навесного монтажа. Однако полноценную печатную плату всё равно придётся делать, если речь идёт о серьёзном электронном устройстве. Существуют два варианта: заказать изготовление печатной платы в сервисе или сделать печатную плату своими руками непосредственно дома. Первый вариант требует солидных финансовых вложений и двух-трёх недель ожидания. Второй не требует ничего, кроме личного желания, куска фольгированного текстолита и небольшого количества хлорного железа.


Вот такой результат работы вполне возможно получить в домашних условиях, используя простые доступные средства, инструменты, материалы

Если же освоить все тонкости производства и запастись необходимым материалом, не исключается изготовление печатных плат дома, если не в промышленных масштабах, так в количествах достаточных для бизнеса.

Существует несколько технологий прорисовки и травления миниатюрных дорожек на фольгированном текстолите. Начиная от метода простого рисунка электронной схемы лаком для ногтей с последующим химическим травлением, и заканчивая автоматической лазерной разводкой и микронной резкой.

Однако для домашних условий требуется методика особая – эффективная, но одновременно бюджетная и относительно несложная.

Изготовление печатных плат в домашних условиях

Здесь – в рамках своего рода учебного пособия, рассматривается с использованием технологии переноса тонера лазерным принтером.

Этот метод разработан давно, но до сих пор сопровождается массой новых советов и приемов, благодаря которым эффективность только повышается.

Что потребуется домашнему электронщику?

  • программа разработки дизайна,
  • лазерный принтер,
  • любой глянцевый журнал,
  • утюг бытовой,
  • одна-две пластиковых тары,
  • небольшая кисточка или зубная щетка,
  • резиновые перчатки,
  • хлорное железо,
  • фольгированный текстолит.

Практически все компоненты списка можно найти в бытовом хозяйстве. Исключение составляют: хлорное железо и текстолит с фольгой.


Два материала: хлорид железа и фольгированный текстолит, которые потребуется купить. Всё остальное обычно имеется в наличии среди предметов и материалов домашнего хозяйства

Эти два пункта списка закрываются через посещение радиоэлектронного магазина или радио-рынка. Такие торговые точки имеются в любом среднем по величине населённом пункте. В крайнем случае, можно заказать оба компонента через интернет.

Между тем, хлорное железо вполне заменимо другим химическим веществом, полученным на основе смеси медного купороса (МК) и обычной поваренной соли (ПС). Смесь делается в соотношении 1 часть МК на 2 части ПС, разведённых в 0,5 л кипятка.

Обычно на изготовление средней по размерам электронной печатной платы достаточно взять 4 столовых ложки МК и 2 столовых ложки ПС. Залитую кипятком порошковую смесь тщательно размешать и дать отстояться.

Единственное отличие такого раствора от FeCl 3 – несколько увеличенное время травления. Но с другой стороны – смесь на медном купоросе безопаснее FeCl 3 . Медный купорос (порошковый) доступен в любом хозяйственном магазине.

Создание дизайна печатной платы

Для создания дизайна рисунка ПП оптимальной видится компьютерная программа «KiCad » – профессиональное средство рисования электронных печатных плат, но при этом бесплатное.

Программное обеспечение «KiCad» обеспечивает пользователя функцией маршрутизации кисти, благодаря чему легко разводить дифференциальные пары, интерактивно настраивать длину трассировки.


Рабочее окно программы KiCad — профессионального средства разводки, без которого никак не обойтись в процессе изготовления печатной платы. ПО распространяется бесплатно
Отпечаток тонера на глянцевой странице журнала. Как видно из рисунка, качество печати достаточно высокое. Такой же след должен получиться на фольге печатной платы

Фактор присутствия сторонних изображений не оказывает никакого влияния на процесс. Рисунок тонером принтера в любом случае остаётся на глянцевой поверхности страницы журнала (бумаги). А это именно тот результат, который требуется получить.

Желательно дважды (на двух разных страницах) провести печать, чтобы удостовериться, что напечатанный рисунок не имеет пятен, мазков, иных дефектов.

Перенос разводки с принтера на фольгу

Если след разводки печатной платы качественно выдан лазерным принтером, глянцевую страницу журнала с полученным оттиском следует аккуратно извлечь из принтера и поместить рисунком вниз на медную поверхность текстолита.


Термическая обработка печатной платы с помощью обычного хозяйственного утюга. Температура нагрева — максимум. Иначе страдает качество переноса

Нагретой подошвой утюга прижимают журнальный лист с напечатанной разводкой схемы к поверхности фольгированного текстолита. Выдерживают утюг на листе без движений в течение примерно 30 секунд.

Далее необходимо плавными круговыми движениями разгладить утюгом поверхность листа в течение 2-3 минут. За этот промежуток времени термальной обработкой, тонер намертво прилипает к медному покрытию текстолита.


Результат переноса оттиска тонера от журнальной страницы на медное покрытие текстолита. Выглядит не хуже варианта промышленного изготовления

Завершением процесса переноса отпечатка на медную фольгу текстолита является удаление приклеенного листа журнала. Здесь требуется терпение и аккуратность.