Роль естественных очистителей воды биофильтров выполняют. Сооружения биологической очистки сточных вод

К атегория: Очистка сточных вод

Биофильтры

Биологические фильтры представляют собой сооружения, в которых процесс биологической очистки сточных вод протекает в искусственно созданных условиях. Биологические фильтры бывают периодического (контактные) и непрерывного действия. Контактные биофильтры вследствие их малой пропускной способности и высокой стоимости в настоящее время не применяют. Биофильтры непрерывного действия по пропускной способности могут быть подразделены на капельные и вы-соконагружаемые, по способу подачи в них воздуха и те и другие могут быть с естественной и с искуственной вентиляцией (аэрофильтры).

Капельные биофильтры. Капельные- непрерывно действующие биофильтры в зарубежной практике иногда называют оросительными или перколяторными.

Непрерывно действующий капельный биофильтр состоит из следующих основных частей: непроницаемого основания, дренажа, боковых стенок, фильтрующего материала и распределительных устройств. Биофильтры могут быть в плане круглые, прямоугольные, квадратные. Поверхность капельного биофильтра орошают сверху равномерно через небольшие промежутки времени; при этом вода подается в виде капель или струй (капельные или оросительные) либо в виде тонкого слоя воды (перколяторные).

В отечественной практике в капельные биофильтры воздух поступает естественным путем - сверху через открытую поверхность биофильтра и снизу через дренаж. Они имеют низкие нагрузки по воде (не более 0,5-1 м3 сточной воды на 1 м3 загрузочного материала), а также меньший по сравнению с высоконагружаемыми биофильтрами размер фракций загрузки (20-40 мм).

Проходя через фильтрующую загрузку биофильтра, загрязненная вода вследствие адсорбции оставляет в ней взвешенные и коллоидные органические вещества, не осевшие в первичных отстойниках, которые создают биопленку, густо заселенную микроорганизмами. Микроорганизмы биопленки окисляют органические вещества и получают необходимую для своей жизнедеятельности энергию. Часть растворенных органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества, а в теле биофильтра увеличивается масса активной биологической пленки. Отработавшая и омертвевшая пленка смывается протекающей сточной водой и выносится из биофильтра.

Биофильтр (рис. 1) работает следующим образом. Осветленная в первичных отстойниках сточная вода самотеком (или под напором) поступает в распределительные устройства, которые периодически напускают воду на поверхность биофильтра. Профильтрованная через толщу биофильтра вода проходит через отверстия в дырчатом дне (дренаже), поступает на сплошное непроницаемое днище, с которого стекает по отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых задерживается выносимая биопленка, отделяемая от очищенной сточной воды. Эффект очистки нормально работающих биофильтров подобного типа очень высок и может достигать по БПКго 90 % и более.

При расчете биофильтра определяют необходимый объем загрузочного материала для очистки поступающей сточной воды, а также рассчитывают распределительные устройства для орошения загрузки водой, дренаж и лотки, собирающие осветленную воду. В отечественной практике проектирования капельных биофильтров объем фильтрующей загрузки определяют по окислительной мощности биофильтра. Окислительная мощность- количество граммов кислорода, которое может быть получено с 1 м3 загрузочного материала в сутки для снижения биохимической потребности сточной воды. Окислительная мощность биофильтра колеблется в широких пределах, так как ее величина зависит от многих факторов: температуры сточной воды и наружного воздуха, свойств поступающей жидкости, материала загрузки, способа подачи воздуха и пр.

Рис. 1. Биофильтр 1 - распределительный слой; 2 - поддерживающий слой; 3 - бетон; 4 - дренаж; 5 - сборный лоток; 6 - подача сточной жидкости

Высоконагружаемые биофильтры. В 1929 г. в СССР и в 1936 г. в США появились новые типы биофильтров, которые в отечественной практике получили название аэрофильтров, а в зарубежной практике - высоконагружа-емых биофильтров. В СССР аэрофильтры были предложены профессорами Н. А. Базякиной и С. Н. Строгановым. Они впервые были построены в 1929 г. на Кожуховской станции биофильтрации и имеют явное преимущество по сравнению с капельными, поэтому получили широкое распространение. Высоконагружаемые биофильтры отличаются от капельных как конструкцией, так и эксплуатационными особенностями.

Конструктивными отличиями являются:
1) увеличение крупности зерен загрузочного материала (40-70 мм по всей высоте загрузки); материалом может служить щебень твердых пород;
2) искусственная продувка материала загрузки воздухом, а в связи с этим изменение конструкции днища и дренажа;
3) увеличение (при необходимости) высоты слоя фильтрующей загрузки.

К эксплуатационным особенностям относятся:
1) обязательное орошение всей поверхности биофильтров поступающей водой и по возможности уменьшение длительности перерывов в подаче воды на поверхность;
2) повышение нагрузки по воде на 1 м2 поверхности в целях создания естественных условий для самопроизвольной промывки фильтров;
3) разбавление в необходимых случаях поступающего стока очищенной сточной водой, т. е. введение рециркуляции.

Исследованиями установлено, что биофильтры высокой нагрузки могут обеспечить любую пропускную способность и любую степень очистки в зависимости от тех или иных конструктивных особенностей и режима их эксплуатации, которые заданы.

Высоконагружаемые биофильтры следует классифицировать по таким признакам.

1. По принципу действия - работающие с полной или неполной биологической очисткой. Первоначально биофильтры подобного типа проектировали только на неполную биологическую очистку. Предполагалось, что фильтры могут иметь повышенную пропускную способность только в том случае, если они снимают легкоокис-ляемые загрязнения, находящиеся в сточной воде, и выходящий сток имеет ВПК выше 20 мг/л; кроме того, процесс нитрификации в биофильтрах не происходит. Однако впоследствии исследованиями2 удалось установить, что высоконагружаемые биофильтры могут обеспечивать весьма высокий эффект очистки.

2. По способу подачи воздуха - с естественной и искусственной подачей воздуха; во втором случае они часто носят название аэрофильтров. Если высота загрузки в биофильтрах небольшая (1,5-2 м), то искусственная подача воздуха не обязательна; при большой высоте загрузки необходимо предусматривать искусственное нагнетание воздуха.

Рис. 2. Схема одноступенчатой работы биофильтров с рециркуляцией

3. По режиму работы - с рециркуляцией и без рециркуляции. Если концентрация поступающего загрязненного стока на биофильтр невысокая и расход воды на биофильтр достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При сильно загрязненном стоке рециркуляция желательна, в некоторых случаях обязательна.

4. По числу ступеней - одноступенчатые (рис. 2) и двухступенчатые. Двухступенчатую работу биофильтра предусматривают в том случае, если необходима полная биологическая очистка и биофильтры I ступени нельзя запроектировать достаточной высоты. В этом случае в I ступени будет осуществляться неполная очистка стока, а во II ступени - его доочистка.

5. По высоте - низкие до 2 м, высокие от 2 м и выше.

6. По конструктивным особенностям загрузки - с объемной загрузкой (гравий, щебень, керамзит и пр.) и с плоскостной загрузкой.

Биофильтры с плоскостной загрузкой подразделяются: с жесткой загрузкой в виде колец или обрезков труб из керамических, пластмассовых и металлических засыпных элементов; с жесткой загрузкой в виде решеток или блоков из плоских и гофрированных листов; с мягкой или рулонной загрузкой из металлических сеток, пластмассовых пленок, синтетических тканей, которые крепятся на каркасах или укладываются в виде рулонов.

Высокие биофильтры предназначены для полной биологической очистки, низкие - для частичной.

Биофильтры с пластмассовой загрузкой. Отличительной особенностью этих фильтров является то, что они работают на загрузке из пластмассового материала в виде решеток, пакетов или пластмассовых колец. Благоприятные условия для обтекания воздухом материала загрузки фильтра обеспечивают более высокую пропускную способность, чем биофильтров других типов. Нагрузка в них для городских сточных вод (по исследованиям кафедры канализации МИСИ) может быть доведена до 10 м3 воды на 1 м3 загрузки материала. В качестве загрузочного материала применяют пластмассовые блоки из поливинилхлорида, полистирола и других жестких пластмасс, а также пластмассовую насадку из собранных в блоки или засыпаемых в биофильтр коротко нарезанных перфорированных труб. Такие биофильтры проектируются круглыми или многоугольными в плане высотой 3-4 м. Обычно их располагают в отапливаемом помещении.

Конструкции биофильтров. В отечественной практике наибольшее распространение получили биофильтры прямоугольной или круглой формы. На рис. 3 представлен типовой биологический фильтр прямоугольной формы из сборного железобетона, разработанный Союз-водоканалпроектом. На бетонном водонепроницаемом основании устроен дренаж, который отводит воду и обеспечивает благоприятные условия для аэрации загрузки биофильтра. Чаще всего дренаж выполняют из железобетонных плит, укладываемых на бетонные опоры.

Рис. 3. Типовой биологический фильтр прямоугольной формы со спринклерным распределением воды 1 - сборные блоки; 2 и 3 - балки и плиты перекрытия; 4 - распределительная камера; 5 - площадка обслуживания

Рис. 4. Высоконагружаемый биофильтр из сборного железобетона 1 - бутовый фундамент; 2 -плиты дренажного перекрытия; 3 - сборные элементы стенок; 4 - сборная плита; б - вентиляционные трубы; 6 - колосниковые плиты

Материал загрузки должен иметь развитую поверхность с размерами частиц, обеспечивающими быстрое образование микробиальной пленки. В то же время загрузочный материал должен быть достаточно пористым, так как это способствует хорошей аэрации загрузки фильтра и в значительной мере предотвращает заиление фильтра. Для загрузки биофильтров рекомендуют применять щебень, гальку прочных горных пород и керамзит.

Высоконагружаемые биофильтры при предварительной обработке частично очищенной сточной жидкости в аэротенках и биокоатуляторах, а также высоконагружаемые биофильтры II ступени и капельные биофильтры загружают материалом крупностью 30 - 50 мм. Нижний поддерживающий слой высотой 0,2 м во всех случаях имеет крупность загрузки 60-100 мм.

Высоконагружаемые биофильтры устраивают из сборного железобетона (рис. 4). Биофильтр представляет собой цилиндрический резервуар диаметром 17 м, высотой 2,3 м. Стенки биофильтра выполнены из 48 вертикально расположенных сборных цилиндрических элементов, днище - из монолитного бетона, дренажное перекрытие - из сборных колосниковых решеток.

Надежная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Орошение осуществляется специальными распределительными устройствами, которые бывают неподвижными и подвижными. К неподвижным распределителям относятся дырчатые желоба или трубы и разбрызгиватели (спринклеры), к подвижным - качающиеся желоба, движущиеся наливные колеса и вращающиеся реактивные распределители (оросители). В отечественной и зарубежной практике наибольшее распространение получили спринклерное орошение и орошение g помощью подвижных оросителей.

Спринклерная система состоит из дозирующего бака, разводящей сети и спринклеров. Спринклеры (сприн-клерные головки) представляют собой насадки, надетые на концы вертикальных отростков, ответвляющихся от распределительных труб, проложенных на поверхности или в самом биофильтре. Отверстия спринклерных головок делают небольшого диаметра 18-32 мм. На рис. 5 показан один из типов насадок, применяемых в отечественной практике. Во избежание коррозии спринклеры изготовляют из бронзы или латуни.

Рис. 5. Насадка для орошения поверхности биофильтра 1 - отражательный конус; 2 - головка

Рис. 6. Реактивный ороситель

Для лучшего распределения сточной воды по поверхности биофильтра и улучшения его работы сточная вода должна подаваться в спринклерную сеть периодически с небольшими интервалами. Для этой цели предусмотрен дозирующий бак, автоматически подающий воду в спринклерную сеть при его опорожнении.

Распределительную спринклерную сеть целесообразно проектировать так, чтобы каждую секцйю биофильтра обслуживал отдельный дозирующий бак. Существуют различные конструкции автоматически действующих аппаратов (баков), например автоматы с вращающимися рукавами, цилиндрическим затвором и др. Наибольшее распространение получил дозирующий бак с сифоном, который не имеет движущихся частей.

При расчете распределительной системы определяют расход воды из разбрызгивателя (спринклера), необходимое их число, рассчитывают разводящую сеть, объем и время работы дозирующего бака. Для нормальной работы биофильтры должны быть обеспечены необходимым количеством воздуха. В капельных биофильтрах создается естественная продувка (вентиляция) за счет разницы температур наружного воздуха и тела биофильтра. Основная масса воздуха поступает в тело биофильтров через междудонное пространство и сверху вместе с водой по мере ее движения в фильтре. Если температура сточных вод выше температуры воздуха, то ток воздуха будет восходящий (от дренажа к поверхности), при обратном соотношении-нисходящий, а при равенстве температур вентиляция может вообще отсутствовать. Как показали исследования работы биофильтров, необходимое количество воздуха должно составлять 8-12 м3 на 1 м3 сточной воды.

Биофильтры высотой более 2 м должны иметь искусственную вентиляцию. В этом случае воздух нагнетается вентилятором в междудонное пространство между днищем и дренажем под давлением 100 мм вод. ст. (980 Па). В том месте отводного лотка, где вода выходит из-под фильтра, устраивают гидравлический затвор высотой 200 мм, а междудонное пространство со всех сторон закрывают. Это делается для того, чтобы нагнетаемый вентилятором воздух поступал полностью в тело фильтра и не прорывался вместе с выходящей из-под него водой.

Рис. 7. Схема устройства дискового биофильтра 1 - дисковый блок из пластин; 2 - вал; 3-привод дискового блока; 4 и 7 - подводящий и отводящий лотки; 5 - ванна; 6 - водослив

Реактивный вращающийся ороситель состоит из двух или четырех дырчатых труб, консольно закрепленных на общем стояке (рис. 6). Вода из распределительной камеры поступает под некоторым напором в стояк, установленный на шариковых подшипниках; стояк может свободно вращаться вокруг вертикальной оси. Из стояка вода поступает в радиально расположенные трубы и через отверстия в них выливается на поверхность биофильтра. Под действием реактивной силы, возникающей при истечении воды из отверстий, ороситель вращается. Диаметр отверстий в трубах принимается 10-15 мм; расстояние между отверстиями увеличивается от периферии к центру. Союзводоканалпроектом разработаны типовые проекты биофильтров диаметром 15, 21, 27 и 29 м с вращающимися оросителями.

В практике очистки сточных вод при расходах до 500 м3/сут находят применение погружные (дисковые) биофильтры (рис. 7). На вращающихся дисках, погруженных в сточную воду, образуется биологическая Пленка, с помощью которой осуществляется окисление сорбированных на ней органических загрязнений. Сточная вода поступает в корыто с полукруглым днищем через впускное отверстие, а отводится с противоположной стороны. Диски имеют обычно диаметр 2-3 м и вращаются со скоростью 1-40 об/мин. Расстояние между дисками 15-20 мм. Дисковые биофильтры устанавливают в виде полносборных установок заводского изготовления.

Исследованиями, проведенными в МИСИ им. В. В. Куйбышева и Одесском инженерно-строительном институте, установлено, что погружные биофильтры просты и надежны в эксплуатации и потребляют мало энергии для насыщения воды кислородом.

Часть 2

Биофильтры подразделяются на биофильтры периодического действия, или контактные, и биофильтры непрерывного действия. Биофильтры непрерывного действия в свою очередь могут быть подразделены на: а) биофильтры обычного типа; б) аэрофильтры; в) высоконагружаемые.

Контактные биофильтры вследствие их малой производительности и высокой стоимости в настоящее время не применяются.

Непрерывно действующий биофильтр обычного типа состоит из следующих основных частей: непроницаемого основания, дренажа, боковых стенок, фильтрующего материала и распределительных устройств. В плане биофильтры могут иметь форму круга, прямоугольника, квадрата или восьмиугольника. Их можно устраивать с водонепроницаемыми или ажурными стенками. Поступление воды в аппараты, распределяющие ее по поверхности биофильтра, происходит непрерывно, орошается же его поверхность через небольшие интервалы в 3-5 мин. водой, подаваемой из этих аппаратов в виде отдельных капель или струй. Такое орошение способствует лучшему проникновению в тело биофильтра воздуха, необходимого для окислительного процесса. Воздух также поступает через ажурные стенки биофильтра и дренаж. Схема работы непрерывно действующего биофильт. ра заключается в следующем: осветленная в первичных отстойниках сточная вода самотеком (или под напором) поступает g распределительные устройства, при помощи которых вода перио. дически напускается на поверхность биофильтра. Профильтро. вившаяся через толщу биофильтра вода проходит через отверЛ стия в дырчатом дне (дренаже), поступает на сплошное непро. ницаемое днище, с которого стекает по отводным лоткам, расположенным за пределами биофильтра.

Процессы окисления, происходящие в теле биофильтра, аналогичны процессам, которые происходят при естественных методах очистки воды на полях орошения или фильтрации, но отличаются от последних значительно большей интенсивностью. Эффект очистки сточных вод нормально работающими биофильтрами очень высок, БПК выходящего стока снижается на 90% и более.

Расчет биофильтра состоит в определении необходимого объема загрузочного материала для очистки поступающей воды, а также расчета распределительных устройств для орошения воды, дренажа и лотков для пропуска и сбора осветленных вод.

Объем загрузочного материала определяют по так называемой окислительной мощности биофильтра (ОМ), под которой понимается число граммов кислорода, которое может быть отдано 1 мг загрузочного материала в сутки для снижения биохимической потребности сточной воды.

Эта величина окислительной мощности биофильтра сильно -отеблется даже в каждом биофильтре, так как ее значение зависит от многих причин, например, от температуры наружного Б03цуха и сточной воды, концентрации и свойств поступающей жидкости, от материала загрузки, способа подачи воздуха и пр. Величина ее лишь в общем виде отображает процессы окисления органических веществ, происходящих в теле биофильтра. Можно говорить лишь о среднем значении окислительной мощности, определяемом экспериментальным путем на основе натурных измерений.

Рис. 1. Биофильтр прямоугольной формы

Необходимым условием нормальной работы биофильтра является их продувка воздухом. В биофильтрах обычного типа их продувка или вентиляция происходят естественным путем за счет разности температур наружного воздуха и тела биофильтра.

В отечественной практике наибольшее распространение получили прямоугольные фильтры (рис. 1).

Рис. 2. Днище биофильтра из железобетонных плит

Лучшим типом дренажа является дренаж из железобетонных плит, которые укладывают на бетонные или кирпичные опоры (рис. 2). В плитах имеются отверстия квадратной или цилиндрической формы. Другие типы дренажей (из кирпича, из керамических труб) применяются редко.

Днищу биофильтра придают уклон 0,02 к сборным лоткам, располагаемым на расстоянии 2,5-4 м друг от друга (в зависимости от размеров биофильтра) с уклоном 0,005-0,02. Из сборных лотков вода поступает в отводные лотки, имеющие уклон 0,003-0,005. Иногда сборных лотков под биофильтром не устраивают и его днищу придают общий уклон 0,01 в сторону отводных лотков. Фильтры могут быть как наземного, так и подземного типа.

Стенки наземных фильтров делают иногда ажурными, т.е. с отверстиями, через которые поступает воздух. Материалами для стенок могут служить железобетон, кирпич, бут и др.

Материал загрузки должен иметь развитую поверхность с размерами частиц, обеспечивающими быстрое образование микро-биальной пленки. С другой стороны, загрузочный материал должен быть достаточно пористым, так как это способствует хорошей продувке фильтра и в значительной мере предотвращает заиление. Материал должен обладать также достаточной прочностью, стойкостью против выветривания; кроме того, он не должен содержать примесей, которые могли бы повлиять на ба реальную флору биофильтров. Следует по возможности испо| зовать местный недорогой материал. В качестве загрузочного териала для биофильтров до сих пор применяли преимуществ но котельный шлак и кокс. Однако можно также примем щебень твердых пород, щебень из кирпича-железняка, гравий! гальку.

Рис. 3. Биофильтр круглой формы

Нормальная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Это орошение производится специальными распределительными устройствами, которые подразделяются на две основные группы: распределители неподвижные и подвижные.

К неподвижным распределителям относятся: а) дырчатые желоба или трубы и б) разбрызгиватели или спринклер; к подвижным: а) качающиеся желоба; б) движущееся наливное колесо и в) вращающиеся реактивные распределители (просители). При распределении воды по поверхности при помощи желобов или

В последнее время за рубежом начали применять подвижные еактивные распределители, работающие по принципу РрГиерова колеса. Стояк, куда поступает осветленная сточная во-С я установлен на шариковых подшипниках и может свободно вращаться вокруг вертикальной оси. К стояку присоединены две или четыре консольные горизонтальные трубы, расположенные оадиально на расстоянии 0,15 м над поверхностью биофильтра. Трубы удерживаются в горизонтальном положении металлическими растяжками. На трубе имеются отверстия, расположенные на определенном расстоянии друг от друга. Когда из этих отверстий под некоторым напором (от 0,25 до 0,8 м) выливается вода, распределитель под действием реактивной силы движется в противоположную сторону. Недостатком таких распределителей является возможность заиления отверстий и, как следствие этого, неравномерное орошение поверхности биофильтра.

На рис. 4 показан другой тип подвижного распределителя- распределитель в виде движущегося наливного колеса. Наливное колесо представляет собой длинный полый цилиндр с лопастями на поверхности. Цилиндр расположен над биофильтром и при подаче в него сточной воды движется по рельсам, уложенным на продольных стенах биофильтра. Питание распределителя сточной водой производится из жолоба при помощи сифона, конец которого опущен в жолоб. Сточная вода, поступая на лопасти одной стороны оросителя, приводит его во вра-шение. Ороситель начинает двигаться по рельсам вдоль биофильтра. Для изменения направления движения оросителя служит специальное приспособление, которое состоит из поддона с рукоятками и буфера; рукоятка, наталкиваясь на буфер, поворачивает поддон, вследствие чего сточная вода поступает на другую сторону подвижного колеса и оно движется в противоположную сторону.

К достоинствам таких распределителей следует отнести небольшую величину напора, необходимого для их работы, и равномерное распределение воды. Недостатком их является ненадежная работа зимой, так как при обмерзании рельсов аппарат может остановиться. Поэтому эти распределители могут найти себе применение главным образом для биофильтров, устраиваемых в южных районах, или для биофильтров малых размеров, устанавливаемых в закрытых помещениях.

Для расчета сборной сети лотков, отводящих очищенную жидкость из-под биофильтра (днища), необходимо знать расходы воды.

Рис. 4. Подвижный распределитель

В том месте отводного лотка, где вода выходит из-под фильтра, устраивают водяной затвор высотой 200-250 мм, а междудонное пространство со всех сторон закрывают. Это делается для того, чтобы нагнетаемый вентилятором воздух поступал полностью в тело аэрофильтра и не прорывался вместе с выходящей из-под него очищенной водой. Кроме того, чтобы создать дополнительное сопротивление движению воздуха вдоль внутренней поверхности стен аэрофильтра, их делают с горизонтальными ребрами. Междудонное пространство обычно делают высотой 0,5-0,6 м и перекрывают железобетонными плитами с отверстиями. Плиты покоятся на бетонных столбиках или ребрах. Воду на такие биофильтры подают, как правило, при помощи сприн-клерного распределителя.

Расчет аэрофильтра также ведут по окислительной мощности. Вследствие того что процесс окисления в аэрофильтре идет более интенсивно, чем в биофильтрах других типов, ОМ принимают обычно до 600 г. кислорода в сутки на 1 м3 загрузочного материала. Расход воздуха в сутки в среднем составляет 25- 30 м3 на 1 м3 загрузки. Такие аэрофильтры обычно работают с повышенными нагрузками (до 4-5 м3 воды в сутки на 1 м3 загрузки), поэтому во избежание быстрого заиления тела загрузки сточная вода, поступающая на аэрофильтры, не должна быть высококонцентрированной, т.е. БПК поступающей воды не должна быть выше 100-120 мг!л. Для этого высококонцентрированную сточную воду либо подвергают предварительной очистке на аэротенках (как это делается на Кожуховской станции аэрации), либо концентрированный сток разбавляют очищенной водой (Щукинская биологическая станция).

Аэрофильтры можно загружать шлаком или щебнем. Размеры зерен загрузки принимают различные. Так, например, на Кожуховской станции основной слой загружен щебнем или шлаком крупностью 25 мм; на Щукинской станции в одних секциях имеется загрузка крупностью 50-60 мм, в других - 25-45 мм и т. д.

Высоконагружаемые биофильтры начали внедряться в практику строительства в последнее время. Их отличие от обычных фильтров состоит прежде всего в том, что в них предусматривается иногда не полная биологическая очистка, как в обычных биофильтрах, а частичная очистка. Процесс минерализации органических загрязнений в этих биофильтрах по существу заканчивается стадией окисления легко окисляемых органических веществ; в этом случае сточная вода очищается не полностью. Вследствие этого нагрузка как по воде, так и по загрязнениям на 1 м2 поверхности биофильтра принимается увеличенной.

Рис. 5. Схема высоконагружаемых фильтров, работающих с рециркуляцией

При повышенной нагрузке в теле биофильтра происходит быстрое накопление биологической пленки, что может привести к заилению биофильтра. Промывка его обеспечивается разбавлением поступающих сточных вод очищенной водой, т.е. так называемой рециркуляцией и загрузкой биофильтра гладким материалом (щебнем). Следует указать, что в отдельных случаях увеличение высоты биофильтра может дать такие же результаты, как и применение рециркуляции.

Опыты, проведенные Академией коммунального хозяйства, показали, что для успешной работы таких фильтров необходимо, чтобы концентрация поступающей воды по ВПК не превышала 200 мг/л. Если концентрация сточной воды выше, то необходимо применять разбавление стока, т.е. рециркуляцию.

Исследования таких биофильтров в эксплуатационных условиях Щукинской биологической станции, произведенные кафедрой канализации Московского института инженеров городского строительства совместно с коллективом работников Щукинской станции, показали, что даже при нагрузке до 4,5 м3 на 1 м3 материала качество очищенного стока вполне удовлетворительно. В качестве загрузки наиболее рационально применять гранитный щебень крупностью 25-50 мм. При концентрации сточной воды по ВПК до 170 мг/л рециркуляция не обязательна.



- Биофильтры

Процесс изъятия и окисления органических загрязнений сточных вод в биологических фильтрах принципиально не отличается от аналогичных процессов, протекающих при очистке сточных вод в других сооружениях биологической очистки, однако ход процесса в биологических фильтрах во многом зависит от конструктивных особенностей этих сооружений. В частности, конструкцией биологического фильтра обусловлена специфика гидродинамических условий в нем, а следовательно, характер и скорость подвода органических веществ и кислорода воздуха к клеткам микроорганизмов биологической пленки, отвода от них продуктов биохимических реакций, что в свою очередь влияет на скорость процесса очистки сточных вод и эффективность работы сооружений.

Очистка осуществляется при контакте протекающей сточной воды через загрузку с неподвижно закрепленной на ее поверхности биологической пленкой. Ход массообменных процессов, происходящих в элементарном объеме биологаческого фильтра, схематично представлен на рис. 2.1 а. Перенос загрязнений определяется законами молекулярной и турбулентной диффузии вещества. При молекулярной диффузии массообмен происходит как за счет разности концентраций веществ на границе раздела фаз жидкость - воздух (максимальная концентрация загрязнений) и жидкость - биопленка (минимальная концентрация). Турбулентная диффузия происходит вследствие перемешивания жидкости при ее протоке через загрузку биологического фильтра. При этом скорость турбулентной диффузии может намного превышать скорость молекулярной диффузии.

t/почнал Soda

Эаеряонени*

воздух

Ppo?f/ктм реакций -

Лоробос

I HjP?/точмая I сТиоплснка

Оресничес/fue бещестба биогенные j/гсменты MP da, Mg, б и dp.

Рислород

А в I P I » I *u

биологическая

пленка

C0 Zl H;0, H0 2j Wj

Энергия

Прирост биомассы

Энергетические WMC

Нонструктиш обмен

Рис. 2.1. Схемы массообменных процессов, протекающих при очистке сточных вод на биологических фильтрах (а), и окислительных процессов , происходящих в биопленке (б)

Кислород воздуха, необходимый для протекания биологического процесса, поступает к биопленке из порового пространства загрузки биологического фильтра. Перенос и фиксирование (сорбция) органических веществ на поверхности клетки или в околоклеточном пространстве сопровождаются гидролизом сложных соединений под действием различных ферментов, а также в результате диффузии веществ через проницаемую мембрану клетки.

В ходе внутриклеточных процессов происходит окисление органических веществ (энергетический обмен) и синтез нового материала клетки (конструктивный обмен). Процесс окисления сопровождается выделением энергии, процесс синтеза идет с ее потреблением (рис. 2.16).

Продукты распада органических загрязнений выносятся из биогшенки в слой жидкости и отводятся с потоком жидкости (растворенные вещества) и с потоком воздуха (газообразные). Одновременно потоком жидкости вымывается избыточная (прирастающая) биопленка, которая выносится из биологического фильтра вместе с очищенной водой. Для отделения избыточной биопленки очищенные сточные воды после биологических фильтров отстаивают во вторичных отстойниках.

Характер протекания процесса очистки сточных вод на биологическом фильтре показан на рис. 2.2. Как видно из рисунка, концентрация органических загрязнений Ь н сначала быстро снижается при продолжительности процесса от г 0 До что свидетельствует о высоких скоростях изъятия загрязнений на этом участке. Одновременно резко увеличивается количество биопленки (кривая 2) по сравнению с начальным С н, причем скорость роста микроорганизмов биоиленки по мере уменьшения концентрации загрязнений в жидкости постепенно снижается. К моменту времени /1 количество биопленки становится стабильным, так как недостаток питания тормозит дальнейший рост клеток.


Рис. 2.2.

1 - концентрация органических загрязнений; 2 - общая масса биогшенки, закретенной на загрузке и циркулирующей; 3 -масса биопленки, закрепленной на загрузке биологического фильтра; 4 - концентрация нитритов и нитратов; 5 - зольность биомассы

Прирост биомассы в этот момент времени максимальный. При дальнейшем увеличении продолжительности процесса очистки сточных вод в биологическом фильтре концентрация органических загрязнений продолжает снижаться (кривая /), но скорость на участках б - / 2 и / 2 - Ь значительно ниже, чем в начале процесса. Ввиду низкой остаточной концентрации загрязнений в жидкости, отсутствия достаточного питания для жизнедеятельности микроорганизмов биопленки на этих участках начинается процесс отмирания (самоокисления) биомассы. Часть биопленки смывается с за1рузки биологического фильтра и поступает в очищаемую жидкость. Вследствие распада биомассы ее общее количество уменьшается (кривая 2), также уменьшается количество биопленки, закрепленной на загрузке (кривая 3), зольность биомассы повышается (кривая 5).

Участок I (см. рис. 2.2) при продолжительности процесса очистки сточных вод от /] до? 2 характеризует режим работы биологических фильтров при неполной биологической очистке. При работе в этом режиме концентрация загрязнений по ВПК снижается до 100...30 мг/л, наблюдается большой прирост биомассы, процесс идет без нитрификации.

При продолжительности процесса очистки от до Ь (участок II) биологические фильтры работают в режиме полной биологической очистки; ВПК жидкости снижается до Ь 0 - = 15...25 мг/л, в очищенной жидкости появляются нитриты и нитраты (кривая 4). Количество биомассы как закрепленной на загрузке биологического фильтра, так и выносимой с очищенной жидкостью, снижается вследствие процессов самоокисления.

Увеличение продолжительности процесса от и до / 4 сопровождается дальнейшим распадом и следовательно, уменьшением количества биомассы в биологическом фильтре (кривые 2 и 3), зольность ее повышается. Этот участок III характеризует режим стабилизации биомассы , аналогичный режиму продолженной аэрации при очистке сточных вод с активным илом. При работе биологических фильтров в этом режиме можно получить наименьший прирост биопленки, высокую степень минерализации выносимой из биологического фильтра избыточной биопленки, что позволяет облегчить дальнейшую ее обработку. Стабилизированная избыточная биомасса, выносимая из биологических фильтров, работающих в этом режиме, не требует дополнительного сбраживания и может быть сразу направлена на иловые площадки для подсушивания.

Концентрация загрязнений сточных вод на участке III не только не снижается по сравнению с концентрацией загрязнений на участке II, но и может даже несколько увеличиваться (кривая 1 ) за счет вторичного загрязнения очищенной жидкости продуктами распада биомассы. В конце участка III при продолжительности процесса Ц в биологическом фильтре развиваются микроорганизмы, адаптированные к остаточным трудноокисляемым загрязнениям сточных вод, что обусловливает дальнейшее снижение концентрации загрязнений.

Участок IV характеризует работу биологических фильтров в режиме доочистки сточных вод до величины остаточных загрязнений по ВПК Ь й = 15...5 мг/л. В этом режиме прирост биомассы крайне незначительный, зольность избыточной биомассы высокая, процесс нитрификации протекает интенсивно.

Рассмотренный ход процесса очистки сточных вод на биологических фильтрах на контакте иллюстрирует возможность работы этих сооружений в различных режимах, а их режим работы, принятый на основании местных условий и требуемого качества очищенных сточных вод, обусловливает выбор конструкции этих сооружений, технологических параметров их работы, схемы всей очистной станции.

Основные технологические параметры, определяющие режим работы биологических фильтров: нагрузка по органическим загрязнениям, окислительная мощность, гидравлическая нагрузка, средняя продолжительность протока сточных вод, коэффициент рециркуляции, расход подаваемого воздуха.

измеряется количеством органических загрязнений, подаваемых вместе со сточными водами на биологический фильтр в единицу времени, и является основным показателем, определяющим режим и условия биологического процесса (см. рис. 2.2). Обычно пользуются удельной нагрузкой по БПК полн, отнесенной к 1 м 3 объема биологического фильтра: N - Ь еп QJW, где N - удельная

нагрузка по БПК П0Л11 , г/сут-м 3 ; Ь еп - БПК полн исходных сточных вод, г/м 3 ; 0^, - расход сточных вод, м 3 /сут; ]Г- объем биологического фильтра, м 3 .

Для сравнения режимов работы биологических фильтров удельную нагрузку правильнее определять на единицу площади поверхности биопленки или площади поверхности фракций загрузки: Ы = Ь е „ 0,^ а, где - удельная нагрузка, г/сут-м 2 ; /в - площадь поверхности загрузки, м 2 .

Окислительную мощность, или производительность биологического фильтра по количеству изъятых органических загрязнений в процессе очистки сточных вод, выражают в граммах БПК полн на 1 м 3 загрузки в сутки: ОМ = (Ь еп ~ ()*/№, где ОМ - окислительная мощность, г/сут-м 3 ; А^-БПКполн очищенных сточных вод, г/м 3 .

- количество сточных вод, поступающих на биологический фильтр, отнесенное к 1 м 2 площади сооружения в плане: ц - ()„/Г, где q - гидравлическая нагрузка, м 3 /м 5 -сут; площадь биологического фильтра, м 2 .

Средняя продолжительность протока сточных вод через биологический фильтр Г со зависит от гидравлической нагрузки, высоты биологического фильтра, способа подачи сточных вод на поверхность загрузки, типа загрузки и распределения в ней биопленки. Величина г ср является показателем продолжительности процесса очистки сточных вод в биологическом фильтре. При повышении гидравлической нагрузки увеличивается скорость движения жидкости через биологический фильтр и уменьшается продолжительность протока; с увеличением высоты биологического фильтра увеличивается продолжительность пребывания сточных вод в загрузке. Загрузка, а также закрепленная на ней биопленка, оказывая сопротивление движению протекающей жидкости, тем самым определяют путь, по которому движется поток жидкости, а следовательно, влияют на продолжительность протока.

Коэффициент рециркуляции - отношение расхода рециркулируемой очищенной жидкости к общему расходу исходных сточных вод, поступающих на биологический фильтр, п = (2и-

Рециркуляция, т.е. повторный пропуск части очищенной ЖИДкости через биологический фильтр, позволяет увеличить продолжительность процесса очистки, снизить начальную концентрацию загрязнений исходных сточных вод и повысить гидравлическую нагрузку, обеспечивающую промывку загрузки сооружения в процессе его работы. Коэффициент рециркуляции принимают в зависимости от предельно допустимой концентрации загрязнений по БПК полн смеси исходных и рециркулируемых сточных вод, которую можно направить на биологический фильтр без опасений заиливания пор загрузки в результате прироста биопленки. Коэффициент рециркуляции определяют по формуле п = (L en - L mix)/ (L mix - L ex ), где L mix -БПК п0ЛН смеси исходных и рециркулируемых сточных вод, г/м 3 .

Количество кислорода, требуемое для окисления органических загрязнений сточных вод микроорганизмами биопленки, должно обеспечиваться подачей в тело биологического фильтра соответствующего количества воздуха. Недостаток кислорода замедляет скорость биологического процесса. Однако влияние количества подаваемого воздуха на скорость процесса очистки сказывается только до тех пор, пока процесс не будет полностью обеспечен требуемым количеством кислорода. Если достаточный воздухообмен в поровом пространстве загрузки биологических фильтров не обеспечивается естественной вентиляцией, то предусматривают принудительную подачу воздуха.

Наиболее важным конструктивным элементом биологического фильтра является загрузка. Тип и характеристика загрузки существенно влияют на протекание процесса очистки сточных вод. Загрузка биофильтра характеризуется следующими основными параметрами: высотой слоя, удельной площадью поверхности, пористостью и плотностью загрузки. Высота слоя загрузки, или рабочая высота биологического фильтра, определяет наравне с другими параметрами продолжительность пребывания сточных вод в биологическом фильтре.

От удельной площади поверхности загрузки зависит и общая площадь поверхности закрепленной на ней биопленки, а следовательно, и площадь, через которую осуществляется перенос органических загрязнений из жидкости, обтекающей загрузку, к бактериальным клеткам. Как правило, процесс массо-переноса является фактором, лимитирующим скорость изъятия загрязнений, и потому от площади поверхности загрузки в значительной мере зависит окислительная мощность биологического фильтра.

Следует отметить, что для процесса очистки сточных вод важным является площадь поверхности биопленки, а не общее количество биомассы в загрузке. При накоплении биомассы увеличивается толщина биопленки, а активно работающим остается по-прежнему только наружный аэробный слой. Внутри, у поверхности загрузки, образуется анаэробная зона (рис. 2.1а), которая почти не участвует в процессе изъятия и окисления загрязнений. Увеличение количества биомассы уменьшает объем порового пространства загрузки, затрудняет воздухообмен в биологическом филыре, а также снабжение микроорганизмов кислородом воздуха. Пористость загрузки биологических фильтров должна быть такой, чтобы при установившемся режиме работы сооружения (когда количество биопленки в загрузке остается постоянным и ее прирост соответствует выносу) объехМ свободных пор был достаточен для снабжения биоплёнки кислородом воздуха.

Загрузку, применяемую для биологических фильтров, условно можно разделить на два вида: объемную и плоскостную. В качестве объемной загрузки используют щебень, гравий прочных горных пород, кокс, керамзит и другие материалы, характеризуемые определенной крупностью фракций, механической прочностью и стойкостью к разрушению . Такой материал имеет пористость 40...50 %, плотность 500... 1500 кг/м 3 , удельную поверхность в зависимости от размера фракций загрузки 30... 120 м 2 /м 3 .

В качестве плоскостной загрузки применяют листовой материал (пластмассу, асбестоцемент и др.), мягкие рулонные материалы (пластмассовую пленку, синтетические ткани), а также засыпные элементы (кольца, отрезки труб и др.). Загрузку из листовых материалов выполняют в виде различных блоков и кассет, которые укладывают в тело биологического фильтра, мягкие рулонные материалы закрепляют на каркасах или свободно подвешивают.

Пористость плоскостной загрузки из листовых материалов составляет 80...97 %, из рулонных материалов - 94...99, из засыпных элементов - 70...90 %. Удельная поверхность листовой и рулонной загрузки - 80... 130 м 2 /м 3 , засыпной - 70... 100 м 2 /м 3 , плотность листовой загрузки 40-100 кг/м 3 , рулонной - 5.. .60 кг/м 3 , засыпной- 100...600 кг/м 3 .

Применение плоскостной загрузки позволяет упростить конструкцию биологического фильтра, снизить строительные и монтажные расходы.

Сравнение биологических очистных систем

Каждый, кто хотя бы раз сталкивался с проблемой очистки канализационных, промышленных и бытовых стоков, знаком с понятиями "биофильтр" и "аэротенк". Эти сооружения, применяемые в рамках биологических процессов очистки воды, в последние годы обрели довольно высокую популярность. Их активно применяют в частном жилом строительстве, обеспечивая автономную очистку сточных вод.

На чём основывается биологическая методика очистки сточных вод? В её основе лежит использование особого рода микроорганизмов, способных перерабатывать растворенные в воде вещества органического и неорганического происхождения в рамках процессов собственного жизнеобеспечения. В частности, эти микроорганизмы способны разрушать органические соединения (нитриты, сульфиты, сероводород), разлагая их на составные элементы - воду, ионы, двуокись углерода и пр. Не подлежащие разложению на составные компоненты вещества становятся частью биомассы. А сам процесс разрушения веществ органического происхожденияименуют биохимическим окислением. Именно способностью к окислению и определяется возможность биохимического разрушения тех или иных веществ.

Биофильтр или аэротенк - оба эти варианта сооружений биологической очистки служат одной цели - очистке сточных вод до безопасного для окружающей среды состояния, до норм ПДК.

1. Биофильтр

Биофильтр представляет собой очистные сооружения , заполненные фильтрующими элементами и снабженные определённым запасом микроорганизмов, образующих на поверхности особую пленку. Фактически, именно жизнедеятельность присутствующей в составе этого сооружения биомассы и определяет эффективность процессов очистки сточных вод.

Все биофильтры делятся на категории , согласно:

  • заявленному количеству степеней очистки выделяют одно- и двухступенчатные варианты;
  • по принципу обеспечения доступа воздуха - принудительного (искусственно вентилируемые) и с естественной вентиляцией;
  • степени очистки (с полной или частичной загрузкой);
  • типу загрузочного материала/наполнителя - с зернистым заполнением (используют керамзит, щебень, шлак, гальку, либо плоскостным - заполненным сетками, пластиковыми листами, металлическими листовыми материалами, сборными металлическими блоками (ячеистыми или решетчатыми), обрезками труб, засыпными элементами из пластика, керамики, металлов.

Все биофильтры с объёмной загрузкой можно разделить на:

  • капельные - мелкофракционные, с высотой засыпки в 1-2 м и размером элементов не более 30 мм;
  • высоконагрузочные - аэрационные, обладающие более интенсивным воздействием, оснащаемые принудительной системой вентиляции (размер фракций в этом случае достигает 60 мм, а высота загрузки - 4 м);
  • башенные - глубинные сооружения, высота загрузки в которых достигает 18 м при размерах фракций до 80 мм.

Помимо этого, существует категория погружных биофильтров, позволяющих обеспечить локальную фильтрацию стоков по месту требования. Они представляют собой барабанные или винтовые конструкции с покрытием из биопленки, обеспечивающей необходимый уровень содержания микроорганизмов в ходе очистки.

2. Аэротенк

Представляет собой аэрируемые очистные сооружения из стеклопластика или железобетона, процесс очистки стоков в которых производится за счёт смешивания активных иловых биомасс с аэрированными (насыщенными кислородом) сточными водами.

Аэротенки могут обеспечивать различный уровень очистки воды - от частичного (с удалением элементов, вызывающих загнивание и очищением до уровня разложения стоков на воду, нитраты и другие компоненты) до полного, обеспечивающего глубокую биологическую очистку воды .

Аэротенки оснащаются различными аэрационными приспособлениями - пневматическими, механическим, смешанными, обеспечивающими насыщение сточных масс кислородом, необходимым для эффективной их очистки.

Аэротенк может вводить стоки по принципу проточного или полупроточного поступления, контактным путём или на основании переменной рабочей подачи.

Существуют варианты с разным количеством ступеней очистки - обычно не более двух.

Помимо этого, они могут иметь различную нагрузку на активную биомассу и подразделяются на подвиды согласно выбранному гидродинамическому режиму :

  • вытесняющие,
  • смесительные,
  • с рассредоточенным выпуском.

Что выбрать?

Биофильтры и аэротенки - идеальное решение для почв, в составе которых преобладает глина, либо на участках с высоким уровнем грунтовых вод. Фактически, это высокотехнологичные разработки, ориентированные на максимально глубокую очистку стоков - в пределах 60 - 98% .

Если говорить о сравнении биофильтра или аэротенка, то всё зависит от того, каковы будут условия эксплуатации очистных сооружений. Если на участке нужна простая и энергонезависимая система очистки - стоит отдать предпочтение биофильтрам. Если же основной упор делается на качество - стоит выбрать аэротенк, способный обеспечить наиболее высокий уровень очистки стоков, но требующий постоянного доступа к электропитанию и требующий поддержания определённого уровня влажности в системе.

Argel

Прекрасно справляются со своими задачами и показывают высокую эффективность работы. Очищенные септиком воды могут использоваться для полезных целей либо просто впитываться в грунт. Помимо самих септиков, иногда необходимо использовать дополнительное оборудование для доочистки. Если необходимо чтобы вода уходила в грунт или любое другое место максимально чистой, следует установить систему доочистки стоков в виде биофильтра для септика . Бывает что водопоглощение грунта такое, что стоки после канализации не впитываются, и это довольно распространённый вариант, либо вы намерены использовать воду для полива приусадебного участка или сбрасывать в водоём. Установить станцию биологической очистки по каким то причинам невозможно, то мы рекомендуем Вам задуматься о приобретении биофильтра для очистки воды. На данной странице вы найдете актуальный материал по этим двум видам дополнительного оборудования для септиков.

Разновидности систем отведения очищенных стоков

Системы отведения очищенных стоков целесообразно применять при низкой водопроницаемости грунта. Они позволяют более эффективно отводить очищенную воду и, кроме этого, способствуют её фильтрации. Рассмотрим четыре основных разновидности систем отвода очищенных вод.

1. Поле поглощение

Такая система пользуется популярностью у многих наших клиентов. Она простая в установке, недорогая и вместе с тем эффективная.

Монтаж системы производится следующим образом: возле устанавливаемой станции биологической очистки сточных вод или септика раскапывается траншея необходимой ширины и глубины. На дно насыпается слой крупного щебня, образующего собой подушку для системы отвода. Затем устанавливается сама система. Если глубина, на которой она располагается, не превышает 120 см, систему необходимо утеплить (чаще всего песком). Затем она аккуратно закапывается.

Принцип действия поля поглощения: очищенная в септике вода через систему отвода попадает в грунт, проходя через песок и щебень. Это способствует её фильтрации (доочистки) и быстрому впитыванию.

2. Впитывающий колодец

Данная система наиболее хорошо подходит для песчаных грунтов с умеренным уровнем грунтовых вод. Сложнее в установке, чем поле поглощение, однако, и более эффективная.

Монтаж системы производится следующим образом: на определенном расстоянии от канализационной станции, выкапывается котлован. Посредством траншеи он соединяется с котлованом станции. В котлован устанавливается ёмкость без дна (по сути - колодец). Она может быть сделана из стеклопластика, бетонных колец или иных водонепроницаемых материалов. На дно колодца насыпается слой щебня.

Станция очистки и колодец соединяются трубой, расположенной под небольшим уклоном. Принцип действия впитывающего колодца: очищенные стоки, стекая по трубе, попадают в колодец, а затем, проходя сквозь слой щебня и фильтруясь, уходят в грунт.

3. Поле фильтрации

По сути, данная система отвода очищенных сточных вод является модернизированной и улучшенной системой «Поля поглощения». Она более объемная и трудоёмкая, однако, и намного эффективней. Монтаж системы производится следующим образом: вблизи от станции очистки выкапывается необходимой формы и размера котлован. На дно насыпается слой гравия. На него устанавливается двухуровневая система труб. Затем насыпается песчаный слой. После этого прокладывается еще слой щебня. Конечным этапом является засыпка оставшегося места в котловане грунтом.

Принцип действия поля фильтрации: такой же, как и у поля поглощения. Отличия состоят лишь в том, что воды, прежде чем попадут в грунт, проходят еще и через песчано-гравийный слой.

4. Фильтрующая кассета

Еще одна разновидность систем отвода. Будет удобна тем, у кого на участке мало места для поля поглащения/фильтрации.

Монтаж системы производится следующим образом: от станции очистки выкапывается необходимой формы и размера котлован. Дно котлована засыпается щебнем. На него устанавливается кассета (сооружение, выполненное в виде короба с несколькими отсеками и выводной трубой). Секции кассеты наполнены фильтрующими материалами (песок, щебень). После установки и подсоединения вводной трубы, котлован закапывается.

Принцип действия фильтрующей кассеты: очищенные сточные воды попадают через вводную трубу в фильтрующую кассету. Проходя через все секции с фильтрующими материалами, они подвергается доочистке. Затем через выводную трубу очищенные стоки поступают в грунт.

Принцип действия биофильтра и его конструкционные особенности

Биофильтр производит доочистку стоковых вод. Применяется совместно с септиками. Особенно удобен биофильтр для воды там, где невозможно установить систему отвода очищенных стоков. А такие случаи возможны при следующих факторах:

  • На участке высокий уровень грунтовых вод;
  • На участке расположена скважина или колодец с питьевой водой;
  • Почва участка обладает низкими показателями фильтрации и поглощения (к примеру, глина);
  • Сброс очищенных стоков в водоохранную зону (в таких случаях не редко применяется дополнительная УФ-очистка; очистка переработанных стоков до 100%).

Биофильтр для очистки сточных вод представляет собой особого типа емкость наполненную керамзитом. Через вводную трубу в биофильтр подаются (обычно самотеком) осветленные сточные воды (очищенные на 65-70%). Жидкость заполняет всю область загрузки биофильтра и подвергается аэробному окислению. Затем производится обработка сточных вод аэробными бактериями. После запуска фильтра в работу, в первые 2-3 недели в области инертной загрузки, в первой камере биофильтра, происходит формирование биоплёнки из бактерий, микроорганизмов и различных грибов. Бактерии и грибы окисляют поступающие вместе со стоками органические соединения. Также они являются пищей для различных микроорганизмов. Например, инфузорий или коловраток. Благодаря данной биологической активности, биоплёнки постоянно омолаживаются, и процесс очистки воды является постоянным. Для ускорения развития бактерий используются специальные ферментные добавки. Поступление кислорода, необходимого для активности бактерий и микроорганизмов, обеспечивается системой естественной вентиляции. Для её функционирования нет необходимости использования каких-либо технических средств. После очистки вода поступает во вторую камеру, а оттуда с помощью выводного шланга выводится из фильтра. В результате рассмотренных процессов сточные воды очищаются на 90-95%.

Важно помнить, что фильтр биологической очистки является лишь дополняющим оборудованием к септикам. Его использование без септика строго запрещено и чревато засорением камер и даже выходом из строя всего фильтра. Задумались о приобретении септика? Посетите соответствующие страницы нашего сайта – у нас есть, что Вам предложить.

Где приобрести биофильтры и системы отведения очищенных сточных вод?

В нашей компании Вы можете приобрести рассмотренные на данной странице системы отведения очищенных стоков, а также биофильтры "Flotenk ", рассчитанные на разное количество пользователей. Приобретая септики, системы отведения или биофильтры для очистки сточных вод в нашей компании, Вы получаете бесплатную профессиональную консультацию, бесплатный выезд (до 50 км) и замер, проектирование системы автономной канализации, а также качественный монтаж от опытных и грамотных специалистов.

→ Очистка сточных вод

Классификация биофильтров


Классификация биофильтров


Биофильтры могут работать на полную и неполную биологическую очистку и классифицируются по различным признакам, основными из которых являются конструктивные особенности и вид загрузочного материала.

По виду загрузочного материала биофильтры делятся на: биофильтры с объемной загрузкой (гравий, шлак, керамзит, щебень и др.) и биофильтры с плоскостной загрузкой (пластмассы, асбестоцемент, керамика, металл, ткани и др.).

Биофильтры с объемной загрузкой подразделяются на следующие виды: – капельные, имеющие крупность фракций загрузочного материала 20-30 мм и высоту слоя загрузки 1-2 м; – высоконагружаемые, имеющие крупность загрузочного материала 40-60 мм и высоту слоя загрузки 2-4м; – биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60-80 мм и высоту слоя загрузки 8-16 м.

Объемный загрузочный материал имеет плотность 500-1500 кг/м3 и пористость 40-50%.

Биофильтры с плоскостной загрузкой подразделяются на следующие виды: – с жесткой засыпной загрузкой. В качестве загрузки могут использоваться керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100-600 кг/м3, пористость 70-90%, высота слоя загрузки 1-6 м; – с жесткой блочной загрузкой. Блочные загрузки могут выполняться из различных видов пластмассы (гофрированные и плоские листы или пространственные элементы), а также из’ асбестоце-ментных листов. Плотность пластмассовой загрузки 40-100 кг/м3, пористость 90-97%), высота слоя загрузки 2-16 м; – с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5-60 кг/м3, пористость 94-99%, высота слоя загрузки 3-8 м.

Пропускная способность биофильтров зависит от конструктивных особенностей того или иного типа сооружения и объясняется содержанием активной биомассы на единицу объема биофильтра.

Биофильтры с объёмной загрузкой (капельные биофильтры). В капельном биофильтре сточная вода подается в виде капель или струй. Естественная вентиляция воздуха осуществляется через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде – обычно 0,5-2 м3 на 1 м3 объема загрузочного материала в сутки. Капельные биофильтры впервые появились в Салфорде (Великобритания) в 1893 г., их рекомендуется применять при расходе сточных вод не более 1000 м3/сут. Они предназначаются для полной биологической очистки сточных вод.

Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, профильтровавшаяся через толщу загрузки, проходит через дренажную систему, а далее по непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых отмершая биоплёнка отделяется от очищенной воды. При нагрузке по органическим загрязнениям больше допустимой, загрузочный материал быстро заиливается, и работа капельных биофильтров резко ухудшается.

Высоко нагружаемые биофильтры. В начале XX столетия появились биофильтры, которые у нас в стране получили название – аэрофильтры, а за рубежом – биофильтры высокой нагрузки.

Отличительной особенностью этих сооружений является более высокая, по сравнению с капельными биофильтрами, окислительная мощность, что обусловлено меньшей заиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря крупным фракциям загрузочного материала и повышенной в несколько раз нагрузке по воде. Высокая скорость движения сточной воды в биофильтре обеспечивает постоянный вынос задержанных трудноокисляемых нерастворенных примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела биофильтра. Конструкции аэрофильтров были предложены Н.А. Базякиной и С.Н. Строгановым и в 1929 г. построены на Кожуховской биологической станции. Они предназначаются для неполной и полной биологической очистки сточных вод.

Башенные биофильтры. Эти биофильтры имеют высоту 8-16 м и применяются для очистных станций пропускной способностью до 50 тыс.м3/сут при благоприятном рельефе местности и при БПК очищенных сточных вод 20-25 мг/л. В отечественной практике они распространения не получили.

Биофильтры с плоскостной загрузкой. Появление в 50-х годах XX века плоскостных – блочных, мягких и засыпных загрузочных материалов позволило значительно повысить производительность биологических фильтров (рис. 12.3).

Рис. 12.3. Биофильтр с плоскостной (пластмассовой) загрузкой:
1 – корпус из облегчённых листов по металлическому каркасу; 2 – пластмассовая загрузка; 3 – решетка; 4 – бетонные столбовые опоры; 5 – подводящий трубопровод; б – реактивный ороситель; 7 – отводящие лотки

Как видно из таблицы, плотность плоскостных загрузочных материалов (12,2-140 кг/м3) значительно меньше, чем традиционных из гравия или щебня (1350-1500 кг/м3), что позволяет упростить и облегчить фундамент и ограждающие конструкции биофильтров. Пористость плоскостных загрузочных материалов (87-99%) более чем вдвое выше, чем у объемных загрузок (40-50%), что позволяет отказаться от принудительной вентиляции и сэкономить значительное количество электроэнергии. Удельная поверхность плоскостных загрузочных материалов 80-450 м /м, против 50-80 м /м3 у объемных. Однако, даже при одинаковой удельной поверхности активная поверхность плоскостных загрузочных материалов значительно больше за счет отсутствия мертвых зон, образующихся при соприкосновении фракций засыпного загрузочного материала.

Установлено, что на производительность биофильтра большое влияние оказывает конфигурация загрузочного материала. В загрузочных материалах, где жидкость движется строго вертикально по гладкой поверхности, гидравлический режим ламинарный (идеальный вытеснитель), а в загрузочном материале со сложной формой поверхности, где поток отклоняется по вертикали (Флокор, Пласдек и др.), режим движения жидкости турбулентный. По данным зарубежных ученых, производительность сложных загрузочных материалов, по сравнению с гладкими (при одинаковой площади удельной поверхности и в одинаковых условиях работы), на 67% выше.

Биофильтры насчитывают столетнюю историю использования их в качестве биологических окислителей. Но с конца 50-х годов XX столетия число строящихся станций биофильтрации в нашей стране по субъективным и объективным причинам стало уменьшаться. Среди этих причин можно выделить следующие: неиндустриальность строительства; отсутствие загрузочного материала; малая пропускная способность; изменение состава поступающих на очистку сточных вод; ненадежность работы при перегрузках (особенно по органическим загрязнениям) и ряд других. Из общего числа проектируемых и строящихся биологических окислителей на долю биофильтров приходится не более 10%.

Вместе с тем при наличии дешевых местных материалов и дефиците электроэнергии, а также в тяжелых грунтовых условиях и сейсмичных районах предпочтение отдается биофильтрам. Например, в Киргизии из 31 действующей станции биологической очистки – 28 с биофильтрами. Следует отметить, что в ряде отраслей промышленности (гидролизно-дрожжевая, пищевая, и др.), где сточные воды обладают значительной пе-нообразующей способностью, целесообразно применять биофильтры.

В настоящее время сотни построенных станций биофильтрации работают в режиме, превышающем их расчетную пропускную способность, как по расходу сточных вод, так и нагрузкам по органическим загрязнениям. Весьма актуальной стала проблема модернизации таких станций биофильтрации, что явилось стимулом для разработки новых высокопроизводительных загрузочных материалов. Следствием этого и стало появление новых биофильтров с плоскостной загрузкой. Они имеют высокую индуст-иальность строительства, включая заводское изготовление блочного загрузочного материала или комплекса сооружений небольшой пропускной способности. Им свойственна высокая пропускная способность, как по расходу сточных вод, так и по снижению органических загрязнений, превышающая соответствующие показатели биофильтров с объемной загрузкой в 3-8 раз.