Золы уноса: области применения. Использование золы-уноса в производстве бетона Добавление древесной золы в бетон


Кислые золы

При исследовании механизма гидратации зольных цементов выявлены все стадии процесса взаимодействия частицы добавки с цементной матрицей, характерные для пуццолановой реакции и протекающие на поверхности пуццолановой частицы, в данном случае зольной, соприкасающейся с твердеющим цементным камнем (контактная зона). Основные из этих стадий:

Адсорбция гидроксилов жидкой фазы цементного камня на катионных центрах стеклофазы на поверхности пуццоланы выход катионов стеклофазы в раствор и их замещение гидроксилами;

Возникновение на поверхности частиц вследствие накопления гидроксилов отрицательного заряда, адсорбция поверхностью пуццоланы щелочных ионов и кальция и образование вокруг частицы й-потенциала;

Формирование на поверхности пуццолановой частицы полупроницаемой пленки из первичных (щелочных) и вторичных (кальциевых) продуктов гидратации

Подсос воды под полупроницаемую пленку и возникновение под ней осмотического давления, следствием чего является разрушение пленки и образование вокруг

Частицы пуццоланы стерической поры толщиной 1–2 мкм, отделяющей частицу от цементного камня;

Постепенное заполнение поры продуктами гидратации цемента и пуццолановой реакции, вследствие чего частица пуццоланы срастается с цементным камнем;

Формирование после полного зарастания поры прочной и долговечной структуры напоминающей микробетон Юнга, где, однако, заполнителем является не непрогидратировавшийся остаток клинкера, а остаток частицы золы.

На рис. 5.1 наглядно видно образование и последующее «прошивание» новообразованиями стерической поры вокруг частицы золы.

Рис. 5.1 Зона перехода частицы золы в цементном камне

Процессы в контактной зоне определяют развитие прочности и другие СТС зольных цементов. Так, цементы с тонкодисперсной золой в ранние сроки уступают по прочности цементам с более грубодисперсной золой, однако в дальнейшем рост их прочностипроисходит более интенсивно. При этом степень гидратации в ранние сроки цементов с тонкодисперсной золой даже несколько выше Причиной снижения начальной прочности является образование большего числа сферических пор при использовании тонкодисперсной золы-уноса. Те же факторы определяют пониженные деформации усадки, повышеннуютрещиностойкость и другие СТС зольных цементов. Наличие в золе наряду с порами контактной зоны также большого числа полых частиц может вызвать снижение морозостойкости зольных цементов.

Большое влияние на долговечность бетона на основе зольных цементов оказывает содержание остатков несгоревшего топлива в золе.

Морфология кислых зольных частиц такова, что частички кокса в них вплавлены в алюмосиликатное стекло. Поэтому при затворении цемента углерод первоначально изолирован силикатным стеклом от цементной матрицы.

Однако после двух-трех лет службы бетона стеклообразная алюмосиликатная оболочка вокруг углеродного включения зольных частиц коррозирует, вследствие чего в бетоне образуется большое число микроэлементов, состоящих из пары углерод – металл и электролита – жидкой фазы бетона. Возникновение микропотенциалов и микротоков от таких элементов ведет к депассивации арматуры и, как следствие, к возникновению язвенной коррозии арматуры, особенно при работе бетона в воздушно-влажных условиях.

При воздушно-сухих или водных условиях твердения бетона коррозия арматуры бетона под влиянием углерода золы может и не наблюдаться в первом случае из-за недостатка жидкой фазы бетона, во втором – из-за недостаточного доступа кислорода к поверхности арматуры. Здесь стоит отметить, что в принципе по сходному механизму –депассивации поверхности арматуры – воздействует и ион Cl - , из-за чего его предельно допустимое содержание в цементе ограничивают величиной 0,1%. Такой же норматив обычно относят и к золе-уносу (см., например BS 3892, р. 1 или ТУ 34–70–10317–92).

Опасность возникновения коррозии стальной арматуры в бетоне вынуждает ограничивать содержание несгоревшего угля (ППП) в золе, используемой в качестве активной минеральной добавки к цементу. Поэтому нормативы по предельному значению ППП золы содержатся во всех стандартах на золу-унос, используемую в качестве добавки к цементу, и обычно составляют 3–5%.

Таким условиям по содержанию несгоревшего топлива удовлетворяют золы молодых

бурых углей, а также газовых и частично – длиннопламенных. В золах тощих углей содержание углерода достигает 18–20%, антрацита – 26–28%. Эти золы могут быть использованы только после сепарации.

Например, зола Луганской ГРЭС с общим значением ППП 28% сепарацией была разделена на две фракции: тонкую с ППП 5,8% и грубую с ППП 55%. В золе Волгоградской ТЭС при валовом значении ППП около 8% содержание угля в тонкой фракции составляло 3%, в крупной фракции достигало 35%. Первая в основном удовлетворяет требованиям к добавкам, вторая − может быть использована в качестве топлива, либо сырьевого материала, содержащего топливо.

Теплотворная способность крупных фракций золы тощих углей и антрацитов достигает от 7–10 до 14–15 тыс. кДж/кг.

Мировой опыт показывает, что для массового применения в качестве добавки к цементу необходима предварительная переработка или обогащение золы-уноса для превращения отхода от сжигания углей в полезный продукт, пригодный для дальнейшего применения.

Практикуются следующие методы корректировки качества золы:

1) Фракционирование с отделением крупной фракции золы может осуществляться с помощью воздушной сепарации. Это позволяет в несколько раз снизить содержание остаточного углерода в золе и повысить стабильность ее свойств.

2) Другим способом отделения частиц золы, содержащих большой остаток несгоревшего топлива, является магнитная или электростатическая сепарация. Выше было показано, каким образом частицы золы, обогащенные углеродом, приобретают магнитные свойства, позволяющие производить магнитную сепарацию золы. Электростатическая сепарация связана с тем, что в электрическом поле частицы золы, обогащенные углем, приобретают положительный заряд, а алюмосиликатные частицы, бедные углем – отрицательный. После электростатической сепарации содержание углерода в отсепарированной золе может быть снижено в 10– 15 раз. Существуют промышленные образцы электростатических сепараторов производительностью до 40 т/ч.

3) Флотация золы применяется для отделения от общей массы золы ксеносфер (полых частиц золы), которые являются весьма полезным и дорогостоящим продуктом, используемым при производстве особенно легких и теплоизоляционных бетонов и изделий. Недостатком способа является необходимость сушки золы после флотации.

4) Важным способом повышения качества золы является ее домол. Лучше, если домолу подвергается предварительно отсепарированная зола, освобожденная от большей части несгоревшего топлива. Домолнесепарированной золы целесообразен только при невысоком общем значении ее ППП, не превосходящем 3–5%. Домол позволяет не только повысить качество, но и стабилизировать химический состав золы, что особенно важно при производстве высокопрочных цементов и бетонов.

При отсутствии в России поставщиков тонкодисперсной сепарированной золы-уноса домол целесообразно осуществлять на цементном заводе, использующем золу-унос. Для этого необходимо выделить одну цементную мельницу, дооборудованную устройством для дозирования в нее золы. После домола золу можно не подавать вновь в цементную мельницу, выпускающую зольный цемент, но смешивать в нужном соотношении с бездобавочным цементом.

Основные золы

К основным золам относятся сланцевые золы Прибалтийской ГРЭС и Сланцевской ТЭЦ, золы молодых углей Канско-Ачинского и Итато-Боготольского бассейнов (Березовская ГРЭС, Красноярские ТЭЦ–1 и ТЭЦ–2 и др.), а также ТЭЦ и ГРЭС некоторых других регионов, работающих на сланцах, например, Сызранской.

Общим для них является содержание СаО в золе от 20 до 40% и более, в том числе 7–20% СаО св.

Петрографический и микрорентгеноспектральный анализы показали, что эти золы характеризуются сочетанием кислых зольных частиц, по морфологии и химическому составу аналогичных кислым золам-унос, и основных частиц, содержащих C 2 S, C 12 A 7 , СаО св и некоторое количество ангидрита, образовавшегося на их поверхности при контакте с дымовыми газами. Стеклофаза содержится главным образом в кислых частицах зол.

Исследованные золы содержали 10–14% β-С 2 S, 5–8% кварца, до 15% ангидрита, до 4% железистых соединений типа гематита и магнетита, от 8 до 28% СаО св, а также около одной трети по массе стеклофазы. Состав фракций золы определяется их дисперсностью. В тонких фракциях накапливаются ангидрит, оксиды щелочей и относительно мало СаО св, в крупных почти нет ангидрита, меньше щелочей, но значительно больше СаО св. Фракционирование зол по дисперсности может осуществляться на самих ТЭС в процессе золоулавливания. Например, на Прибалтийской ГРЭС тонкие фракции с удельной поверхностью 350 м 2 /кг и более и содержанием СаО св 7–8% осаждаются в 3–4 полях электрофильтра, в то время как грубодисперсная зола, содержащая 12–20% СаО св – в пылеосадительной камере, циклонах и 1–2 полях электрофильтра.

Пригодность основных зол для производства цемента обычно ставится под сомнение. Как правило, они используются в дорожном строительстве для укрепления грунта дорожных оснований, в сельском хозяйстве для известкования почв и т. п.

Однако исследованиями, выполненными в НИИЦементе и Фирме «Цемискон», установлено, что вследствие кратковременности пребывания в горячей зоне топки котла свободная известь в частицах золы не является мертво обожженной. При затворении водой ее гашение начинается уже через несколько часов, а через сутки гасится до 70% свободной извести. Ангидрит растворяется медленнее, затрудняя доступ воды к остальной части СаО св. Вследствие этого окончание гашения СаО св наблюдается только через 7–10 суток, в те же сроки заканчивается растворение ангидрита.

После окончания процессов гашения СаО св и растворения ангидрита в части гидратированных зол отчетливо фиксируются гипс и эттрингит. В других образцах ни один из этих минералов методом РФА или петрографически не обнаруживается, однако методом ИКС по полосе поглощения 1100– 1200 см –1 установлено наличие большого количества рентгеноаморфногоэттрингита. Исследования показали, что морфология продуктов гидратации определяется соотношением скорости гидратации СаО св, CaSO 4 , C 12 A 7 и алюмосодержащего стекла, причем существенно соотношение количества СаО св и SO 3 в золе.

Фактором, определяющим допустимый ввод основной золы и контролирующим прочность цемента с этой золой, является расширение цементов. Изучение фазового состава новообразований показало, что расширение МЦ с основной золой имеет гидроксидную и сульфоалюминатную составляющие.

Оксидное расширение в основном происходит в первые сутки гидратации и полностью завершается к 7–10 суткам, когда структура цементного камня еще способна к деформациям. Часть эттрингита образуется после 7 суток. При этом могут образовываться хорошо оформленные кристаллы эттрингита, что ведет к возрастанию прочности, либо рыхлые бесформенные пучки, из которых позднее формируются иглы. При формировании эттрингита в виде квазиаморфных пучков расширение цемента значительно возрастает и он, несмотря на весьма высокую прочность, не выдерживает испытания на равномерность изменения объема.

Было установлено, что формирование игольчатых кристаллов эттрингита может быть ускорено, а линейное расширение цементов снижено при оптимизации отношения SO 3 /CaO св в цементе (сульфоизвестковый модуль). Исследование влияния этого модуля на линейное расширение и прочность цемента показало, что максимум прочности достигается при величине модуля 1,1–1,2. При этих значениях равномерность изменения объема обеспечивается даже при довольно значительной величине линейного расширения. Например, при содержании в цементе основной золы с 14,4% СаО св в количестве20% прочность цемента при испытаниях по ГОСТ 310.4 составила в 3-суточном возрасте 39,4, в 28-суточном – 59,6, в 6-месячном – 77,4 МПа. Прочность после пропаривания –56,6 МПа. Линейное расширение составило 0,22% в 28-суточном возрасте и 0,45% после ТВО.

Ввод в цемент основной золы должен быть таким, чтобы содержание СаО св в цементе не превышало 3,0, максимум – 3,5%. При большем содержании СаО св расширение является чрезмерным даже при оптимизации ввода гипса и формировании эттрингита в виде игольчатых кристаллических сростков. Это может привести к неравномерности изменения объема цемента.

Велико влияние дисперсности цемента на линейное расширение и прочность цементов с основной золой. С увеличением дисперсности с 300 до 400 м 2 /кг линейное расширение снижается в среднем на 30–35%, а прочность цементов возрастает на 10–17%.

Таким образом, установлены условия, при которых достигается высокое качество цементов с основной золой:

Сульфоизвестковый модуль 1,1 – 1,2;

Дисперсность не менее 350 м 2 /кг. Выводы проверены и подтверждены какв лабораторных, так и в производственных условиях при изготовлении сборного железобетона класса прочности В25 – В30. Наблюдения за состоянием этих изделий после эксплуатации в несущих конструкциях зданий в течение 3-х лет не выявили каких-либо повреждений бетона на цементе с основной золой.

Специальные зольные цементы

В связи с тем, что при гидратации цементов с основной золой наблюдается значительное линейное расширение, были проведены исследования по получению зольных напрягающих и безусадочных цементов, а также цементов с регулируемым расширением. Такие цементы нужны для получения плотных водонепроницаемых бетонов.

Показано, что цементы оптимального состава, содержащие 20–25% основной золы с содержанием СаО св около 15% и удовлетворяющие требованиям, указанным выше имеют энергию самонапряжения в пределах 1,5–3 МПа и могут применяться как напрягающие цементы с малой энергией самонапряжения. При увеличении содержания золы в цементе до 25% или содержания СаО св в золе до 20–25% самонапряжение возрастает до 3–5 МПа, что соответствует НЦ 20 и НЦ 40 со средним и высоким самонапряжением.

Для получения безусадочных цементов и цементов с регулируемым расширением в состав цемента вводили комплексную добавку, состоящую из высококальциевой основной золы, шлака или трепела и кварцевого песка.

Соотношение компонентов определяет величину линейного расширения, самонапряжение и прочность цемента. Исследовали составы, содержавшие шлак в количестве 5–15%, золу 5–25%, песок 3–11%, трепел 5–10% Прочность цементов в 28-суточном возрасте составляла 42–56 МПа, после пропаривания – 29–49 МПа.

Определены наиболее эффективные составы цементов с комплексной добавкой клинкер – 60 –80%, высококальциевая зола с содержанием СаО св не более 18% – 10–25%, шлак гранулированный – 5–25%, кварцевый песок–3–10%.

Должны быть также выполнены условия указанные выше. Цементы такого состава являются безусадочными либо слаборасширяющимися и позволяют получить бетон с водонепроницаемостью W8 и более.

Дозировка золы

Для кислой золы класса А с ППП не более 5% содержание золы в цементе обычно составляет 10–20%. Такое количество золы допускает в цементе типа СЕМ II европейский стандарт EN 197–1, российские ГОСТ 31108 и ГОСТ 10178, китайский GB 175 и другие. В специальных зольных цементах содержание золы может достигать 40–50%.

Тонкую фракцию кислой золы можно смешивать с бездобавочным цементом в количестве до 20% от массы готового продукта, грубую – использовать в качестве компонента сырьевой смеси, определяя необходимую дозировку этой фракции золы расчетом состава сырьевой смеси.

Микрокремнезем

Цементы и бетоны с содержанием микрокремнезема. Ультрамелкие пуццолановые побочные продукты промышленности кремниевых сплавов обозначаются, по крайней мере, 17 различными названиями, некоторые из них представлены в таблице 1. В научном мире термин "конденсированные пары кремнезема" сейчас применяется по отношению к парам, получаемым из целого ряда сплавов. Большинство исследований влияния этих материалов на бетон посвящено концентрированным парам кремнезема, для обозначения которых становится общепринятым термин "микрокремнезем". Для удобства в данном тексте материалы, представляющие особый интерес для бетонной промышленности, называются "микрокремнезем".

Альтернативные названия микрокремнезема:

Кремнеземистая мука;

Кремнеземистая пыль;

Кремнеземистые пары;

Пары кремнезема;

Летучий кремнезем;

Кремнезем из электродуговых печей;

Пирогенный кремнезем;

Конденсированные пары кремнезема.

История. Норвежский Технологический Институт изучает свойства бетона с содержанием микрокремнезема уже 35 лет. Расширение применения порошка микрокремнезема в готовых бетонных смесях с 1975 привело к принятию норвежских стандартов для микрокремнезема в цементе (1976) и в бетоне (1978). В Канаде использование микрокремнезема в бетоне было одобрено в 1981, в том же году первые промышленные смеси портландцемент/микрокремнезем были произведены в Исландии. В Канаде такие смеси появились в 1982. Микрокремнезем используется везде – от бетонных блоков до нефтяных сооружений, и его рабочие качества исследуются и проверяются по всему миру.

Источники и производство. Кремний, феррокремний и другие кремниевые сплавы вырабатываются в электродуговых печах. Чистый кварц плавится с углем и рудами при очень высоких температурах, и микрокремнезем собирается путем охлаждения и фильтрования печных газов. Заводы кремниевых сплавов потребляют огромное количество энергии, поэтому они обычно расположены там, где доступна дешевая гидроэлектроэнергия. В число ведущих производителей входят Норвегия, Канада и Исландия.

Химические и физические характеристики. Вид сплава, вырабатываемого в печи, является основным фактором, определяющим характер материала, собранного в рукавных фильтрах. Печи для производства феррокремниевых сплавов с содержанием кремния свыше 72% дают микрокремнезем, очень сходный по своим свойствам и составу. Конденсированные пары кальциево-кремниевых, феррохромо-кремниевых и кремниево-марганцевых сплавов могут обладать сходными физическими характеристиками, но их химический состав может существенно отличаться.

Частицы микрокремнезема имеют гладкую поверхность и сферическую форму. Средний размер частиц составляет 0,1–0,2 микрон, то есть они в 50–100 раз мельче цемента или летучей золы, а удельная площадь поверхности составляет от 13000 до 25000 м 2 /кг. Порошок, собранный в фильтрах, фактически состоит из рыхлых агломератов с очень низкой насыпной плотностью.

По сравнению с другими вяжущими материалами, микрокремнезем отличается очень высоким содержанием реактивного кремнезема и мелкостью. На содержание углерода и, следовательно, цвет влияет главным образом наличие или отсутствие в печи системы теплорегенерации. Не считая этого, изменчивость материала в зависимости от особенностей печи или состава сплава крайне невысока.

Виды и сорта. В настоящее время в Великобритании имеется в основном микрокремнезем из чистых сплавов. Чистейший продукт поступает с металло-кремниевого производства, отличается высокой ценой и ограниченной сферой применения – промышленность огнеупорных материалов. Микрокремнезем для использования в бетоне получают из феррокремниевых сплавов. Некоторые поставщики микрокремнезема смешивают материал из различных источников для получения продукта постоянного состава с разницей в содержании реактивного кремнезема ±2%.

Пары сплавов с высоким содержанием кальция или марганца настолько отличаются по химическому составу по сравнению с чистым микрокремнеземом, что их следует рассматривать как различные материалы. Проведены небольшие исследования их применения в бетоне и очевидно, что их пуццолановая активность гораздо ниже.

Суспензии в сравнении с порошками. Необработанный микрокремнезем очень трудно транспортировать и хранить. Был сделан ряд попыток получить более удобный в обращении материал с помощью таких методов как микрогранулирование путем длительной аэрации, механическое гранулирование и агломерация путем высушивания суспензий. Хотя с такими материалами и легче обращаться, но они все же плохо рассеиваются в бетонной смеси и, как правило, необходимо использовать пластификатор или суперпластификатор.

Суспензии микрокремнезема, по-видимому, представляют собой наиболее практичную форму для крупномасштабного производства обычного бетона. Сырой микрокремнезем смешивается с равным количеством воды и суспензируется с помощью высокомощных смесительных установок. Для обеспечения химической и физической стабильности суспензии водородный показатель pH должен находиться в пределах от 4,5 до 5,5.

Существуют суспензии, включающие в себя целый ряд химических добавок, но недавний опыт на участке в Великобритании показывает, что обычный бетон можно получить при добавлении одной водной суспензии. Удельный вес суспензий составляет 1,3– 1,4, а вязкость – 20 секунд при 4мм чашке, то есть показатели сравнительно низкие.

Воздействие на свойства бетона. Суспензии и порошки существенно отличаются только по своему воздействию на пластичный бетон. Их влияние на свойства затвердевшего бетона одинаково. Поскольку суспензии микрокремнезема без примесей, вероятно, представляют наибольший интерес для производителей бетона, в остальной части текста термин "микрокремнезем" употребляется по отношении к 50% водной суспензии, если не указано иное. Дозировка микрокремнезема выражается в процентном содержании твердого микрокремнезема от массы цемента. Вес добавляемой в смесь суспензии в два раза превышает вес требуемого твердого микрокремнезема.

Пластические свойства . Правильно составленная бетонная смесь, содержащая менее 300 кг/м 3 обычного портландцемента и менее 10% микрокремнезема, практически не отличается по водопотребности для эквивалентной номинальной осадки конуса по сравнению с обычными смесями с тем же общим содержанием вяжущих. Даже в таких небольших дозах микрокремнезем обеспечивает отличительные "квазитиксотропные" свойства смеси. На первый взгляд свежеприготовленная бетонная смесь кажется более жесткой, чем показывают результаты теста осадки конуса, однако, ее намного легче подавать насосом, укладывать и отделывать. На участке наблюдалось аномальное поведение смеси, такое как повышение удобообрабатываемости после длительного перемешивания или прохождения через бетононасос.

Жирные смеси с более высоким содержанием микрокремнезема и/или цемента могут стать вязкими и требовать больше усилий для укладки и уплотнения, в таком случае рекомендуется использовать пластификаторы.

Рассеявшись, мельчайшие частицы микрокремнезема уплотняют и стабилизируют смесь и существенно снижают выступание воды и расслоение. В жирных смесях это может привести к образованию трещин при пластической усадке, поскольку вода, испаряющаяся с поверхности, не заменяется выступающей водой. В жаркую или ветреную погоду необходимо уделять особое внимание защите и выдерживанию бетона.

Нарастание прочности. Как и все пуццолановые материалы, микрокремнезем вступает в реакцию с гидроокисью кальция Ca(OH) 2 , освобождаемой при гидратации портландцемента для образования вяжущих соединений. Очень высокая чистота и мелкость микрокремнезема способствует более эффективной и быстрой реакции. При надлежащем рассеивании тысячи реактивных сферических микрочастиц окружают каждое зерно цемента, уплотняя цементный раствор, заполняя пустоты прочными продуктами гидратации и улучшая сцепление с заполнителями. Степень пуццолановой активности зависит от содержания реактивного кремнезема, но на практике между двумя видами материала с высоким содержанием кремнезема существует довольно незначительное различие.

Микрокремнезем может обеспечить прочность на сжатие, намного превышающую прочность обычных бетонов, и здесь ограничивающим фактором является только прочность заполнителя. При использовании природных заполнителей достигается прочность свыше 150 МПа, а при использовании специальных высокопрочных заполнителей можно достичь прочности 300 МПа.

Темпы нарастания прочности обычного бетона с содержанием микрокремнезема слегка отличается по сравнению с современными бетонами на обычном портландцементе. Обычно через 7 дней он приобретает только 55–65% от 28-дневной прочности при выдерживании при температуре 20 о С. Основная пуццолановая активность, по-видимому, протекает между 7 и 20 днями. Микрокремнезем зачастую используется в сочетании с летучей золой и гранулированным доменным шлаком для достижения более приемлемых темпов нарастания прочности.

Опыт других стран, недавно получивший подтверждение в Великобритании, показал, что 1 кг микрокремнезема может обеспечивать такую же прочность, как 3–5 кг обычного портландцемента, в смесях одинаковой удобообрабатываемости при умеренном содержании микрокремнезема и цемента в обеих смесях. На эту вяжущую эффективность или К-фактор оказывает влияние содержание обоих материалов, но при содержании обычного портландцемента 200–300 кг/м 3 и микрокремнезема – менее 10%, значение К-фактора может составлять около 4. В Норвегии средняя дозировка микрокремнезема для смесей обычной прочности составляет 8%.

При добавлении микрокремнезема в количестве до 30% в сочетании с суперпластификаторами можно получить смеси с отношением вода/вяжущие ниже 0,3. Такие бетоны могут достигать очень высокой ранней прочности и они нашли широкое применение там, где осуществляется выдерживание во влажном режиме. Выдерживание в сухом режиме ведет к самовысушиванию и результаты ранних тестов могут оказаться разочаровывающими.

Известно, что пуццолан более чувствителен к изменениям температуры, нежели портландцемент, и микрокремнезем– не исключение. При низких температурах пуццолановая реакция замедляется, а при высоких – ускоряется, причем в обоих случаях значительнее по сравнению с портландцементом. Ни о каких существенных неблагоприятных эффектах на время схватывания обычных бетонов с содержанием микрокремнезема в условиях стран ЕС не сообщается.

Щелочность. Доказано, что микрокремнезем оказывает существенное влияние на щелочность воды в порах цементного геля. Пуццолановая реакция, по-видимому, приводит к образованию геля с высоким содержанием кремнезема, связывающего щелочные металлы, и возможно, с высоким содержанием связанной воды. Уровень водородного показателя pH воды в порах бетона на обычном портландцементе равен 14. При добавлении даже умеренного количества микрокремнезема он очень быстро снижается до 13. При добавлении свыше 15% микрокремнезем в конечном счете забирает из воды в порах практически все ионы щелочных металлов, понижая уровень pH до 12,5. При добавлении около 25% микрокремнезем нейтрализует всю свободную известь, освобожденную силикатами портландцемента. При этом общий уровень pH бетона едва ли снижается до того, что это оказывает неблагоприятное воздействие на инертность арматуры.

Проницаемость. Эффект заполнения пор, создаваемый пуццолановыми сферическими микрочастицами, способствует значительному уменьшению капиллярной пористости и проницаемости бетона. Фактически непроницаемый бетон можно получить при умеренном содержании микрокремнезема и сравнительно низком содержании обычного портландцемента. Поскольку микрокремнезем оказывает большее влияние на проницаемость, чем на прочность, бетон с содержанием микрокремнезема всегда будет гораздо менее проницаемым, чем бетон эквивалентной прочности на обычном портландцементе.

Защита арматуры. Теоретически, пониженная щелочность бетона с содержанием микрокремнезема должна ослаблять его устойчивость к карбонизации и хлоридам. В Норвегии и Швеции исследования бетонных конструкций в возрасте до 12 лет показали, что высококачественные бетоны с содержанием микрокремнезема обладают не меньшей устойчивостью к карбонизации, чем бетоны такой же прочности на обычном портландцементе, и гораздо лучше предотвращают проникновение хлоридов из морской воды. Однако, плохо выдержанный бетон с микрокремнеземом в этом отношении страдает больше, нежели бетон на обычном портландцементе.

Проведена масса лабораторных измерений коррозии арматуры, но предсказать ее рабочие характеристики в реальных условиях трудно. Хотя можно с уверенностью сказать, что при условии надлежащего выдерживания, способность бетона с микрокремнеземом защищать стальную арматуру не будет существенно отличаться по сравнению с бетоном той же прочности на обычном портландцементе.

Морозостойкость. Низкая проницаемость и повышенная плотность цементного камня обеспечивает прекрасную морозостойкость бетона с микрокремнеземом. По всей видимости, не существует теоретической несовместимости микрокремнезема с воздухововлекающими добавками, в действительности стабильная реологическая структура пластичного бетона с микрокремнеземом должна уменьшать потерю вовлеченного воздуха при транспортировке и вибрировании.

Химическое воздействие. Известно, что низкая проницаемость и низкое содержание свободной извести повышает устойчивость бетона к воздействию агрессивных химических веществ. Бетон с содержанием микрокремнезема обладает этими качествами и проявляет прекрасную устойчивость к воздействию целого ряда веществ. Долгосрочные полевые испытания в Норвегии показали, что по своей потенциальной устойчивости к сульфатам он равен сульфатостойкому портландцементу.

Кремнеземная пыль (КП), называемая также микрокремнеземом или микронаполнителем, представляет собой побочный продукт металлургического производства при выплавке ферросилиция и его сплавов, образующийся в результате восстановления углеродом кварца высокой чистоты в электропечах. В процессе выплавки кремниевых сплавов некоторая часть моноокиси кремния SiO переходит в газообразное состояние и, подвергаясь окислению и конденсации, образует чрезвычайно мелкий продукт в виде шарообразных частиц с высоким содержанием аморфного кремнезема. Новые возможности использования КП тесно связаны с прогрессом в области создания эффективных суперпластификаторов– их сочетание дало толчок к созданию бетонов нового поколения, обладающих высокой прочностью (от 60 до 150МПа), повышенной удобоукладываемостью и долговечностью.

Кремнеземная пыль, как сказано выше, представляет собой очень мелкие шарообразные частички аморфного кремнезема со средней удельной поверхностью около 20 м 2 /г. Тонкость КП можно проиллюстрировать сравнением с другими порошкообразными материалами:

Кремнеземная пыль 140000–300000 см 2 /г;

Золы уноса 4000–7000 см 2 /г;

Портландцемент 3000–4000 см 2 /г.

Гранулометрический состав КП свидетельствует о том, что размер большинства частиц не превышает 1 микрона, а средний размер частиц составляет около 0,1 микрона, т.е. примерно в 100 раз меньше среднего размера зерна цемента. Кремнеземную пыль можно получать в трех состояниях - природном и уплотненном, а также в виде водной суспензии (около 50%). Плотность КП в естественном состоянии составляет примерно 2,2 г/см 3 (портландцемента – 3,1 г/см 3), а объемная плотность в рыхлом состоянии – 130–430 кг/м 3 (цемента – 1500 кг/м 3). За счет уплотнения можно повысить плотность до 480–720 кг/м 3 . Весьма мелкий гранулометрический состав и значительная удельная поверхность зерен аморфного кремнезема обусловливают высокие пуццолановые свойства и позитивное влияние КП на свойства бетона. Кремнезем в таком виде легко вступает в реакцию с гидроокисью кальция, высвобождаемой в процессе гидратации цемента, повышая тем самым количество гидратированных силикатов типа CSH в результате реакции:

SiO 2 + xCa(OH) 2 + yH 2 O↔xCaO + SiO 2 + (x+y)H 2 O

Эта вновь образовавшаяся фаза CSH характеризуется меньшим отношением C/S (даже до 1,4), чем CSH в результате гидратации цемента. Как следствие, она обладает способностью присоединять другие ионы, особенно щелочи, что имеет существенное значение в связи с применением КП для уменьшения расширения, вызванного реакциями между щелочами и заполнителем. На рис. 2 показаны графики изменения содержания Са(ОН) 2 в течение трех месяцев гидратации растворов из портландцемента 35 с добавками КП в размере от 10 до 30% (В/Ц и В/Ц + КП = 0,4). В случае добавки КП в количестве 10–20% заметный процесс восстановления гидроокиси кальция начинается через 3 дня, а при добавке 30% – уже через один день и протекает весьма интенсивно вплоть до 28-го дня твердения.

Это означает, что в этот период пуццолановая реакция является наиболее интенсивной. Тем не менее, следует подчеркнуть, что с учетом необходимости защиты арматуры содержание КП в бетонах не должно превышать 10%. Известно, что прочность переходной зоны между цементным раствором и крупным заполнителем меньше прочности самого раствора. Эта зона содержит больше пустых пространств, образующихся вследствие скопления свободной воды около зерен заполнителя, а также сложностей, связанных с более плотной упаковкой частиц у его поверхности. В этом пространстве скапливается больше частиц портландита.

В случае отсутствия добавки КП образуются крупные кристаллы Са(ОН) 2 , ориентированные параллельно поверхности заполнителя или арматуры. Кристаллы портландита обладают меньшей прочностью, чем гидратированные силикаты кальция CSH. Именно поэтому переходная зона и является самым слабым звеном в обычном бетоне. Добавка КП даже в количестве 2-5% приводит к уплотнению структуры переходной зоны за счет заполнения свободных пространств. Поэтому уменьшается как величина кристаллов портландита, так и степень их ориентации относительно зерен заполнителя, что обусловливает упрочнение этой слабой зоны бетона.

В результате происходит восстановление самопроизвольно отдаваемой воды, снижается пористость переходной зоны и повышается сцепление теста с заполнителем и арматурой. Пуццолановые реакции, как фактор химического воздействия, вызывают дальнейшее повышение прочности и долговечности бетона. Считается, что в течение первых 7 дней твердения воздействие КП на свойства бетона имеет в основном физический характер, а позднее – как физический, так и химический. В результате физического и химического воздействия происходит благоприятное изменение микроструктуры теста, связанное со значительным уменьшением пористости в зоне капиллярных пор. Изменение структуры пор в бетоне рассматривается многими исследователями как главный фактор влияния КП на механические свойства и прочность бетона.

Эти изменения находят свое отражение в снижении проницаемости бетона, а также в уменьшении коэффициентов диффузии ионов хлора. В свою очередь, снижение водопроницаемости способствует повышению стойкости бетона к воздействиям агрессивных сред. В случае добавки 15% кремнеземной пыли, на каждое зерно цемента в бетонной смеси приходится свыше 2 млн. частичек пыли, что и объясняет их существенное влияние на свойства бетона. Наконец, КП способствует устранению расширения бетона при реакциях щелочей с реакционно-способным заполнителем. С учетом изложенного прим

Зола-унос представляет собой тонкодисперсный материал с малым размером частиц, что позволяет использовать ее для ряда производств без дополнительного помола. Характерной особенностью золы является присутствие в ней около 5-6 % несгоревшего топлива, а также железа, в основном в записной форме. Частицы шлака имеют размеры от 0,2 до 20--30 мм. В топках с жидким шлакоудалением шлак получается в гранулированном виде. Для него характерна стекловидная структура.[ ...]

В настоящее время в России ежегодно образуются десятки миллионов тонн золошлаковых отходов. Каждые сутки работы на угле ТЭС накапливается до 1 тыс. т золы и шлака. Подавляющая их часть направляется в отвалы, а в строительной индустрии утилизируется лишь 3-5% ЗШО. Для сравнения: в США и Германии - 40-60%. В США из 20 млн т ежегодно образующихся зол уноса только для изготовления бетона утилизируется 7 млн т.[ ...]

Зола уноса и шлаки образуются при сгорании твердого топлива в присутствии кислорода воздуха при температуре 800°С.[ ...]

Зола-унос может использоваться в производстве строительных материалов без дополнительной обработки (помола, просеивания и т.п.). Нелетучая зола может использоваться в гранулированном виде в дорожном строительстве для изготовления основания участков парковки автомобилей, велосипедных дорожек, дорог, набережных. Ее можно использовать в качестве покрытия на полигонах для размещения твердых бытовых отходов.[ ...]

Зола-унос сухого улавливания может применяться в качестве самостоятельного медленно твердеющего вяжущего, а также в сочетании с портландцементом и известью, в том числе при строительстве автомобильных дорог для укрепления грунтов. Опыт строительства Братской ГЭС на примере утилизации отходов Иркутской ТЭС-1 показал, что эола-унос может быть применена для изготовления бетонных растворов при строительстве плотин, дамб и других гидротехнических сооружений. Ее можно также использовать в качестве покрытия на полигонах для размещения ТБО.[ ...]

Зола-унос добавляется в производстве тяжелых, легких, ячеистых бетонов.[ ...]

Активная зола-уноса сухого отбора может быть использована в качестве минерального порошка в производстве пористого и высокопористого асфальтобетона марок I, II и в горячих и теплых смесях марки III для плотного асфальтобетона, а также в бетонах, применяемых для строительства покрытий и оснований дорог.[ ...]

Использование золы-уноса сухого отбора и ЗШМ отвалов гидроудаления. Очень широк диапазон использования ЗШМ в бетонах: от гидротехнического бетона, в котором сухая зола применяется как заменитель части цемента (до 25 %), до шлакобетона и стеновых блоков из него, в которых в качестве мелкого и крупного заполнителя используются зола и шлак из отвалов и текущего выхода .[ ...]

Характеристики золы (уноса), полученной в топках котлов, несколько отличаются по физико-химическим свойствам и химическому составу от золы, полученной в лабораторных условиях. Такое отличие определяется температурными условиями и временем сжигания частиц топлива в топке, где температура значительно выше 800° С. Основными отличительными факторами является шлакование (расплавление) части минеральной составляющей топлива и наличие в золе частиц недогревшего топлива (механического недожога).[ ...]

Для улавливания золы из потока дымовых газов на современных ТЭС применяют механические и электрические устройства. Значительным недостатком ГЗУ является большой расход вода. Для транспортировки I т золошлаков затрачивается от 10 до 50 м3. В целях сокращения потребления вода на нужды ГЗУ создается оборотная система, когда очистившаяоя от частичек золы и шлака осветленная вода вновь направляется по оборотному трубопроводу на ТЭС в голову системы ГЗУ. В настоящее время в СССГ оборотными системами 1ВУ оборудовано более 57% общего чиола электростанций, сжигающих твердое топливо.[ ...]

Примером использования золы и шлака Иркутской ТЭЦ-1 может служить Ангарский цементно-горный комбинат, забирающий из отвалов ТЭЦ ежегодно около 300 тыс. т отходов. Золошлак там с успехом используется в качестве глинистой составляющей портландце-ментного клинкера, кроме того, комбинат ежегодно перерабатывает до 100 тыс. т сухой золы-уноса. Миллионы рублей «извлек» таким образом Ангарский комбинат, превратив отвалы ТЭЦ-! в своеобразную сырьевую базу. Добавка золы в низкомарочные бетоны и растворы снижает расход цемента на 22-30 % и улучшает качество смесей.[ ...]

Важно отметить, что в ряде случаев зола-унос пригодна для утилизации в промышленности строительных материалов без дополнительной обработки (помола, просеивания и т. п.).[ ...]

При удалении мелкой и легкой фракции золы, которая уносится дымовыми газами из топок и улавливается фильтрами ТЭС в золосборники (такая зола называется золой-уноса), получают золу сухого отбора. Зола сухого отбора поступает с помощью пневмотранспорта либо непосредственно в транспортирующие средства, либо в силосы потребителя. На этих отвалах, имеющихся при каждой ТЭС, хранятся основные массы ЗШМ.[ ...]

Количественное соотношение между шлаками и золой-уносом зависит от конструкции топки и способа сжигания. В агрегатах с твердым шлакоудалением в шлак обычно переходит 10-20% всей золы топлива, с жидким - 20-40, в циклонных топках - до 85-90%.[ ...]

Основными твердыми загрязнителями воздушной среды являются золы уноса, шлаки, сажа.[ ...]

Наиболее качественной для практического применения является зола-уноса сухого отбора, поскольку она всегда отсортирована по фракциям с помощью электрических полей электрофильтров. Такая зола может храниться в силосах в сухом виде и применяться в производстве без дополнительной подготовки. Система подачи золы-уноса в бетоносмесительные узлы аналогична трактам подачи цемента.[ ...]

В процессе сжигания приходится удалять значительные количества золо-шлаковых отходов. С этой целью применяют жидкое или твердое шлакоудаление из нижней части топочных камер и улавливание золы-уноса. При жидком шлакоудалении получают гранулированный материал.[ ...]

Использованию отходов ТЭС должна предшествовать подготовка частиц: у золы-уноса - гомогенизация или фракционирование (сортировка) с целью снизить потери при прокаливании до менее 5%; шлаки, как правило, измельчаются и просеиваются для достижения равномерной зернистости и сохранения постоянного внешнего вида. Поскольку зола-унос ТЭС, сжигающих малореакционные уг и, содержит до 25% горючей массы, разработаны рекомендации по ее обогащению и утилизации с использованием углеродистой фракции в качестве энергетического топлива (Гоголей).[ ...]

Установлено также, что комплексные вяжущие на основе жидкого стекла, гидроксида кальция и золы-уноса обладают повышенными морозостойкостью, водостойкостью и водонепроницаемостью. Высокая прочность выявлена у вяжущих на основе зольной пыли, щелочной или карбонатной добавки натрия или калия в сочетании с лимонной кислотой.[ ...]

А. Т. Логвиненко и М. А. Савинкина проводили опыты с различными образцами полуводного гипса, золой уноса и шлаком. В обрабатываемой воде присутствовало двухвалентное железо (0,3-0,5 мг/л). Их опыты показали, что магнитная обработка воды, как правило, приводит к росту прочности образцов; для гипса наблюдается возрастание прочности во времени. Результаты исследования под электронным микроскопом показали, что в омагниченной воде образуются мелкокристаллические структуры, число мелких кристаллов значительно больше, чем в обычной воде , что обусловливает высокопрочностные характеристики материала .[ ...]

Прекрасно зарекомендовала себя разработанная ВНИИстроем, безотходная технология производства лицевого кирпича на основе зол ТЭС, позволяющая не только сэкономить средства на строительство и эксплуатацию золоотвалов, но и значительно уменьшить загрязнение среды. Поданным Л. С. Бариновойи Ю. С. Волкова (2002), замена в бетоне или растворе 15%-ного цемента на золу уноса или металлургический шлак, что технологически допускается, в перерасчете на мировые объемы их применения, могло бы снизить количество выбросов в атмосферу диоксида углерода (С02) на 300 млн т в год.[ ...]

В ряде случаев в качестве активаторов твердения применены растворы кислот: ортофосфорной (состав вяжущего, %: кислота - 28-40, зола-унос - 30-60, цимот - 12-30); 60%-ной серной в количестве 0,8% от массы золы; 0,4-2,0%-ной концентрированной соляной; 3%-ной соляной с добавлением 0,5-1,0% ССБ. В последнем случае прочность зольных и шлако-зольных бетонов и строительных растворов при нормальном, ускоренном твердении и автоклавной обработке превышает 200 кг/см2.[ ...]

Для тяжелых бетонов она используется взамен части цемента (10-30%) или части песка (150-200 кг/м3), обеспечивая снижение расхода цемента на 30-100 кг/м3. Аналогичны условия утилизации золы-уноса для конструкционных легких бетонов. Для теплоизоляционных легких бетонов зола-унос вводится частично или полностью взамен песка, обеспечивая снижение на 100-150 кг/м3 массы бетона и расхода цемента на 20-40 кг/м3 по сравнению с применением плотного песка. Практически нет экономии цемента и снижения плотности бетона для случаев использования пористого песка.[ ...]

Статистика говорит о том, что 60-90% раковых заболеваний обусловлены экологическими факторами. За 100 лет на Земле в результате разных причин осело более 20 млрд тонн шлаков, 3 млрд тонн зол уноса, миллионы тонн токсичных элементов - кобальта, никеля, мышьяка, цинка и др.[ ...]

В процессе совершенствования производства зольно-щелочных вяжущих предложена технология их получения, не требующая использования дефицитных щелочей (едкий натр, едкое кали) или совместного помола золы-уноса с добавками.[ ...]

Более эффективными аппаратами для улавливания пыли являются различные электрические фильтры, устанавливаемые, например, в котельных тепловых электростанций для очистки дымовых газов от сажи, летучей золы-уноса. К коронирующим и осадительным электродам фильтров (рис. 3.5) подводят постоянный ток высокого напряжения.[ ...]

Оборудование системы "Энвайро - Флок" состоит из высокопроизводительной модернизированной центрифуги фирмы "Alfa-Laval" и оборудования для смешения обезвреженного бурового раствора с обезвреживающим составом на основе цемента с добавками золы уноса ТЭЦ. Сточная вода закачивается в специальную емкость, в которую добавляется регулятор pH, органический или неорганический коагулянт и органический флокулянт (полиакриламид). Обработанная вода из смесительной емкости насосом подается в центрифугу для отделения жидкой фазы. Очищенная вода, т.е. вода, прошедшая центрифугу, пропускается через угольный фильтр и далее сбрасывается на рельеф местности. Система "Энвайро-Флок" смонтирована на специальном трайлере и включает емкость для хранения реагентов, емкости для смешивания и проведения процесса обработки сточной воды коагулянтом и флокулянтом, а также приборы контроля и управления процессом очистки.[ ...]

Температура в топливных камерах современных ТЭЦ достигает 1600 °С, топливо подается в камеру в пылевидном состоянии. Образующиеся из минеральной части топлива частицы пыли имеют различный фракционный состав. При размере до 100 мкм пылевидные частицы уносятся дымовыми газами (зола-унос). Более крупные частицы оседают на пол камеры и оплавляются, образуя стекловидную массу, которую затем подвергают грануляции.[ ...]

Полый центральный вал охлаждается воздухом, нагнетаемым снизу и выходящим из его верхней части. Некоторая часть этого предварительно нагретого воздуха по трубопроводам подается на нижний ярус и подвергается дальнейшему нагреву под воздействием температуры горячей золы и температуры самой печи, по мере того как он перемещается вверх. Затем воздух охлаждается, отдавая свое тепло, которое расходуется на высушивание поступающего на верхний под осадка. Проти-воточное движение воздуха и осадка приводит к оптимальным условиям сгорания. После двукратного прохода через печь воздух отводится в мокрый скруббер для удаления золы-уноса и выбрасывается в атмосферу. При необходимости печь может выполнять функции только сушильного устройства. Горячие газы из выносной топки направляют вместе с осадком сверху вниз; на подах происходит высушивание осадка без его подгорания.[ ...]

Золошлаковые материалы первой группы (активные) способны к самостоятельному твердению, поэтому их можно использовать взамен цемента для устройства оснований из укрепленных грунтов и местных малопрочных каменных материалов. Способностью к самостоятельному твердению обладает только зола-уноса сухого отбора. Ее называют самостоятельным медленно твердеющим вяжущим, от портландцемента она отличается меньшим содержанием клинкерных минералов, отсутствием алита, содержанием минералов низкой активности, извести, ангидрита и полуводного гипса, округлых сплавившихся частиц, оксидов щелочноземельных металлов, наличием стеклообразной фазы и органических веществ, что определяет замедленную гидратацию и замедленное по сравнению с укрепленными портландцементом твердение укрепляемых ею материалов.[ ...]

В настоящее время на большинстве ТЭЦ топливо сжигают в пылевидном состоянии, причем температура в топочной камере достигает 1200-1600°С. При этом конгломераты различных соединений, образующихся из его минеральной части, выделяются в виде пылевидной массы. Мелкие и легкие частицы (размеры от 5 до 100 мкм), содержащиеся в золе в количестве до 80-85 %, уносятся из топок конгломератов дымовыми газами, образуя так называемую золу-унос. Более крупные частицы оседают на под топки, оплавляются в кусковые шлаки или стекловидную массу, которую затем подвергают грануляции. Количественное соотношение между образующимися шлаками и золой-уносом различно, оно зависит от конструкции топки на ТЭЦ и ГРЭС. Так, в топках с твердым шлакоудалением в шлак обычно переходит 10-20 % всей золы топлива. В топках с жидким шлакоудалением в шлак переходит 20-40 %, а в циклонных топках - до 85- 90 % всей золы топлива. Топливные шлаки и зола-унос различаются по составу и свойствам в зависимости от вида топлива и способа его сжигания.[ ...]

В Иркутске по этой технологии освоено производство наружных стеновых панелей из неавтоклавного газоэолобетона для двухэтажных жилых домов и зданий соцкультбыта. Изделия изготовляют на агрегатно-поточной и конвейерной линиях комбината строительных конструкций. С целью снижения их усадки и повышения трещиностойкости используются ячеистые смеси повышенной вязкости следующего состава, на 1 м3: цемент М400 - 330 кг, зола-унос - 450 кг, алюминиевая пудра - 0,9 кг и В/Т=0,4. Необходимая степень поризации смесей обеспечивается за счет применения при формовании специальных прерывистых режимов вибрирования. Бетон стеновых панелей имеет среднюю плотность 800г900 кг/м3 и класс по прочности при сжатии Б2,5-В3,5, морозостойкость его составляет около 50 циклов, коэффициент теплопроводности 0,19-0,21 Вт/м°С. По результатам натурных наблюдений, стеновые панели после 6 лет эксплуатации имели трещины шириной 0,1-0,2 мм.[ ...]

Разработка составов и способов повышения противоэрозионной устойчивости почвенно-грунтовых систем криолитозоны . Физико-химические методы упрочнения грунтов широко применяются в строительстве, особенно в автодорожном, а также для борьбы с эрозией почв и грунтов. В качестве вяжущих используются различные химические вещества минерального и органического происхождения или их смеси. В составе минеральных вяжущих находят применение цементы, известь, гипс, золы уноса, золошлаковые смеси, а также водные растворы хлористых солей кальция, натрия, алюминия и др. К важнейшим компонентам органических структурообразователей грунтов относятся смолы, битумы, сырые нефти. С теоретических и практических позиций авторами данной работы обосновано использование тяжелых нефтяных остатков нефтепереработки в качестве органических структурообразователей грунтов.[ ...]

Расчет степени улавливания обычно ведется для каждой фракции частиц отдельно. Содержание той или иной фракции Ф, можно найти из кривой остатков на сите вычитанием остатков на сите на концах заданного изменения диаметров частиц (рис. 2.1, в). При расчете золоуловителей диаметр принимают постоянным, равным среднеарифметическому диаметру на его концах. Так, в диапазоне изменения диаметров от 10 до 20 мкм в расчетах принимают в качестве среднего значения 15 мкм. В табл. 2.1 приведен фракционный состав золы уноса некоторых топлив СССР.[ ...]

Наряду с перечисленными выше методами уменьшения размеров кусковых материалов и их разделения на классы крупности в практике рекуперадионной технологии твердых отходов большое распространение имеют методы, связанные с решением задач укрупнения мелкодисперсных частиц. ВМР, имеющие как самостоятельное, так и вспомогательное значение и объединяющие различные приемы гранулирования, таблетирования, брикетирования и высокотемпературной агломерации. Их используют при переработке в строительные материалы рада компонентов отвальных пород добычи многих полезных ископаемых, хвостов обогащения углей и золы - уноса ТЭС, в процессах утилизации фосфогипса в сельском хозяйстве и цементной промышленности, при подготовке к переплаву мелкокусковых и дисперсных отходов черных и цветных металлов, в процессах утилизации пластмасс, саж, пылей и древесной мелочи, при обработке шлаковых расплавов в металлургических производствах и электротермофосфорном производстве и во многих других процессах утилизации и переработки ВМР.

Зола-уноса – это тонкодисперсные частички, вырабатывающиеся во время сгорания минеральных веществ топлива в печах, с высокой температурой плавления, доходящей в своем максимуме до +800 ° . Мелкие пылеобразные хлопья, в силу своего малого удельного веса, не осыпаются в поддон, а улетучиваются в окружающее воздушное пространство.

Для сбора мелкодисперсной пыли применяются специальные уловители, которые затягивают и накапливают отходы сгорания.

В ТЭЦ золу-уноса получают в большом количестве, чем где-либо. В дальнейшем этот компонент широко используется во многих отраслях народного хозяйства. В частности, заводы, занимающиеся производством бетона , применяют зола-уноса для значительного улучшения его технических характеристик.


Зола уноса для бетона бетона

Положительное изменение основных характеристик бетонной смеси происходит за счет правильного составления пропорций ингредиентов, входящих в состав, и его тщательного вымешивания до плотной, однородной массы. Зола-уноса отчасти удешевляет композит за счет замены более дорогих составляющих. В некоторых случаях она составляет 25% от всего объема смеси, частично заменяя дорогостоящий цемент.

Бетон, полученный с добавлением золы-уноса, существенно экономит трудозатраты на укладку, так как он становится более податливым и легко укладывается на поверхность или более рационально и плотно заполняет необходимую пустоту. При работе обогащенным бетоном потребность в воде существенно снижается, а масса выглядит однородной и становится удобоукладываемая по сравнению с другими аналогами.

Эксперты отмечают повышенную прочность, долговечность, улучшение устойчивости к воздействию воды, в том числе и агрессивной конструкций, выполненных из бетона с добавлением зола-уноса. Время появления первых трещин и разрывов существенно «отодвигается». Именно поэтому такая добавка оправдана и рациональна.

Это нашло широкое применение почти во всех отраслях народного хозяйства. Его применяют для укрепления береговой линии, строительства плотин, дамб, причалов и портов. В строительной сфере часто используется шлакобетон и блоки и другие изделия, которые значительно «выносливее», чем их аналоги.

Наша компания реализует для заводов, занимающихся изготовлением бетона, качественную продукцию зола-уноса по цене , ниже, установленной на сегодняшний день на рынках сбыта. Вся продукция соответствует ГОСТу и сопровождается необходимыми документами.

Предлагаем удобные и выгодные условия сотрудничества. Предварительные переговоры помогут нам понять ваши требования, желания и объемы закупок, а вам, как купить зола-уноса , способы оплаты, технические характеристики, методы доставки. Также, мы расскажем об условиях получения дополнительных скидок при больших объемах, закупаемых на постоянной основе.

Улучшайте свой бизнес вместе с нами. Наша продукция является «ключиком» к открытию новых возможностей, перспектив и процветания компании.

Цена на золу уноса

Зола-уноса поставляется в биг-бэгом весом 400-450 кг. Стоимость одного биг-бэга - 2000 руб. При объеме от 20 мешков - 1700 руб.

Сегодня не секрет, что при изготовлении бетонных смесей производители применяют сухую золу в виде пыли. А для чего? Что именно этот отход в прямом смысле слова дает бетону?

Бетоны, имеющие в своем составе золу, менее расслаиваются при транспортировке на объекты, обладают большей подвижностью и слабой водопроницаемостью.

Наиболее применяемыми являются сухие золы, т.к. они не обладают вяжущими свойствами. Их активность дает о себе знать, взаимодействуя с цементным вяжущим. И от того, каким образом зола взаимодействует с цементом бетона и самой бетонной смесью, удается значительно уменьшить расход цемента в производстве. Для иллюстрации можно привести такие цифры: если при изготовлении бетона класса В10-В30 применять 150 кг золы на каждый 1 м3 смеси, то можно сэкономить 40-80 кг цемента! А если бетон обрабатывают в тепловых условиях, то использование золы экономит 25% цемента!

А в гидротехнических сооружениях еще более потрясающий эффект - введение золы заменяет до 50% цемента!

Если мы заменяем цемент золой до 40% цемента, то при их совместном измельчении прочность бетона через 28 суток близка к обычной прочности бетона (без добавки).

Во время возведения Братской ГЭС (60-е годы) была произведена первая укладка бетона (5000 м3!) с добавкой 15-20% золы. А в Днестровском узле в вяжущее ввели 25% золы, и это не повлияло на прочность сооружения в целом, только увеличив эффективность использования цемента.

А за что «любят» бетоны золу?

За одно из важнейших ее характеристик - гидравлическую активность. Стандартно она определяется по способности золы поглощать известь из известкового раствора. Сегодня используют также т.н. микрокалориметрический метод. Его суть в том, что активность золы определяется по величине теплоты ее смачивания в жидкостях.

С чем связана гидравлическая активность? Прежде всего с химическими реакциями входящих в нее оксидов кремния (SiO2) и алюминия (Al2O3) с гидроксидом кальция, с образованием гидросиликатов и гидроалюминатов кальция. При гидратации формируется т.н. стекловидная фаза золы.

Зола имеет несколько классификация в целях ее рационального использования: в зависимости от конструкций, в которых она используется, в зависимости от вида бетона, для которого она служит добавкой и т.д.

В чем состоит задача при подборе состава бетона с добавкой золы? Необходимо определить такое соотношение компонентов (и золу тоже), при котором нужные свойства бетона можно достичь при минимальном расходе цемента. Это и есть главная задача вообще использования каких-либо добавок: уменьшить расход цемента. А в случае с золой, в смеси она не просто добавка, она еще и микронаполнитель, который улучшает структурообразование бетона. Также вам будет интересна облицовка цоколя гранитом.

В каких случаях более разумно стремиться к уменьшению расхода цемента при введении золы? Тогда, когда марка используемого цемента больше рекомендуемой. Нормы дают предельные значения снижения типовой нормы расхода цемента в различных конструкциях. Количество золы при этом назначается пропорционально значению этой нормы.

Введение правильного количества золы, основанного на расчете по справочным формулам, позволяет существенно снизить водоотделение бетона и сделать его более устойчивым для транспортировок на дальние расстояния.

Состав и строение золы зависят от многих факторов, таких как вид сжигаемого топлива, его зольность, тонкость помола при его подготовке, химический состав минеральной части топлива и т.д.

Зола-уноса применяется:

Для улучшения свойств тяжелых бетонов: взамен части песка, как самостоятельный компонент и вместо части цемента.

При производстве легких бетонов. При подготовке оснований автодорог используются малоцементные бетоны. Зола-уноса также используется в шлакосиликатных бетонах, которые применяют для ремонта дорог, аэродромов, мостов, а также при устройстве полов, стойких к кислоте, в химических цехах, животноводческих комплексах, металлургических производствах.

При производстве пенобетона, введение её в пенобетонную смесь повышает агрегативную устойчивость смеси в период между началом и окончанием схватывания цементного теста, что позволяет предотвратить перемещение компонентов и предупредить негативное влияние на формирование структуры.

Зола-уноса легко заменяет цемент в производстве строительных растворов, товарных бетонов, готовых изделий. Она применяется в качестве добавки к цементу, при этом не снижая его активность, используется в приготовлении бетонов для строительства дорог, а также в качестве добавки к глине во время изготовления черепицы и кирпича.

Удобоукладываемость.

Влияние золы уноса тем больше, чем частицы мельче (в цементах на золе-уносе удельная поверхность частиц достигает 5000 см2/г). В каждом отдельном случае имеется оптимальная дозировка золы, которая позволяет получить наилучшую удобоукладываемость. Оптимум определить легко – строим график, где по оси абсцисс отложена дозировка золы в процентах, а по оси ординат пластичность смеси, определенная испытанием на расплыв на встряхиваю­щемся столике

Таким образом, введение золы в состав смеси позволяет снизить расход воды затворения при той же удобоукладываемости, повысить однородность и плотность бетонной смеси на основе цемента М-500 и улучшить ее укладку, создать наилучшие условия для распалубки.

Добавление золы к бетонной смеси (в пределах 30-100 кг/м3) позволяет улучшить ее гранулометрию и в конечном итоге скоррек­тировать состав песков, в которых не хватает мелких фракций. Зола может даже заменить часть песка (например на 20-30%). Введение золы в условиях стройки особенно целесообразно при наличии жесткой, тощей смеси с небольшим расходом цемента. Повы­шенное содержание золы способствует ускорению сроков схватыва­ния, которые можно регулировать и с помощью добавок в холодное время года. Сроки схватывания заметно изменяются при нормальной температуре (20±5°С) у смесей одинаковой пластичности при содержании золы до 20-30%. Последние исследования показали, что существуют весьма эффективные ускорители твердения, применяе­мые в холодное время года, которые позволяют сократить сроки схватывания и повысить механическую прочность в самом раннем возрасте. Среди них наилучшим образом себя зарекомендовали алю­минат натрия 2 Na20-Al203 и каустическая сода NaOH. Эти добавки применяются в пределах 0,2-0,5% в пересчете на натрий. Более высокое содержание алюмината или силиката натрия вызывает своего рода желатинирование в промежутках, заполненных водой. Подобное изменение порога сдви­га может оказаться полезным при изго­товлении бетонных изделий с немедленной распалубкой.

Уменьшение теплоты гидротации.

Теплота гидратации, выделяемая в процессе схватывания, уменьшается пропорционально содержанию золы. Это свойство представляет интерес при бетонировании массивных конструкций в жаркое время года.

Капиллярное поглощение и морозостойкость.

Капиллярное водопоглощение с добавлением к цементу золы-уноса повышается при­мерно на 10-20% на каждые 10% золы. Лабораторными испытания­ми было установлено, что морозостойкость при этом немного снижается. Это уменьшение весьма незначительно при содержании 20% золы и не превышает допустимых пределов при равной удобоукладываемости теста. Известно, впрочем, что морозостойкость можно улучшить посредством воздухововлечения. Наилучшая защита затвердевшего бетона от замораживания- введение воздухововлекающих добавок. В целом цементы на золах уноса требуют несколько более высокой добавки для получения того же количества вовле­ченного воздуха. Причина, несомненно, заключается в поглощении золой части поверхностно-активной добавки (углерод золы фик­сирует гидрофобную область поверхностно-активных молекул).

Стойкость в агрессивной воде.

Можно констатировать, что при­менение цементов, на 20% состоящих из зол, или введение золы-уно­са в бетонную смесь повышает стойкость материала в агрессивных водах при полном погружении (в морской или сульфатной воде). Это повышение объясняется тонкодисперсностью золы, увеличением абсолютного объема вяжущего, присутствием в небольших количест­вах извести и, главное, уменьшением содержания трехкальциевого алюмината клинкера (главного элемента, способствующего разру­шению под воздействием сульфатов).

Заключение о преимуществах и недостатках применения зол- уноса.

Применение золы-уноса дает следующие преимущества: снижение стоимости вяжущего; некоторое улучшение помола; некоторое повышение конечной прочности; улучшение удобоукладываемости, облегчение распалубки; уменьшение усадки и снижение начального тепловыделения при гидратации; удлинение срока трещинообразования при испытании по методу кольца; повышение стойкости к чистым и сульфатным водам; снижение объемной массы бетона; повышение огнестойкости и сопротивления тепловому удару; меньший расход клинкера и удешевление вяжущего.

Среди недостатков применения золы следует отметить изменение цвета цемента (это относится к золам с высоким содержанием недо­жога, но на современных угольных электростанциях это содержание весьма невелико); снижение начальной прочности, особенно при низких температурах, хотя цемент с золой можно подвергать более тонкому помолу, не­сколько уменьшая расход воды при той же удобоукладываемости (в настоящее время известны весьма эффективные добавки-ускорители); снижение морозостойкости, хотя имеются средства для ее по­вышения (воздухововлекающие добавки). Кроме того, применение золы увеличивает число составляющих смеси, подлежащих контролю.

В заключение следует отметить, что преимущества золы-уноса далеко превосходят значение указанных выше недостатков.