Применение ионообменная смола для фильтров. Ионообменные смолы: применение


Ионообменные смолы представляют собой мелкие полупрозрачные гранулы сферической формы. Цвет гранул смолы как правило зависит от состава смолы: так, например, сильнокислотные катионообменные смолы обладают ярко-желтым или коричневым цветом, в то время как слабоосновные аниониты представляют собой белые непрозрачные гранулы.Основная сфера применения ионообменных смол - удаление жесткости в установках водоподготовки для энергетических предприятий. Ионный обмен основан на удалении из воды, пропускаемой через слой смолы, ионов, которые замещают находящиеся на активных группах смолы катиона натрия, протоны или гидроксильные группы.

Смолы различаются как по принципу действия (катионообменные, анионообменные), так и по своей структуре (гелевые, макропористые). Выбор для конкретного процесса той или иной смолы определяется характером удаляемой из воды примеси.

Классификация ионообменных смол

1. По составу. Различают аниониты и катиониты. Как и следует из названий, катиониты имеют в качестве функциональной группы катионную, аниониты - анионную. Соответственно, катиониты обменивают (и извлекают из воды) катионы, аниониты - анионы.

2. По типу и силе функциональных групп и степени смолы подразделяются на:

Сильнокислотные катионообменные смолы - используются для умягчения воды и ее обессоливания.

Слабокислотные катионообменные смолы - используются для устранения временной жесткости, а также повышенной щелочности воды.

Сильноосновные анионообменные смолы применяются в основном для обессоливания воды с очень высоким содержанием солей и кремния, что обуславливается высокой скоростью обмена сильноосновных анионитов. Этот способ по скорости и затрачиваемой энергии превосходит обратный осмос.

Слабоосновные анионообменные смолы используются чаще всего для обессоливания органических соединений, в числе которых сахароза, молочная сыворотка, глюкоза и другое.

Афолиты имеют в одной смоле сразу несколько типов функциональных групп (анионных и катионных) в разных или одинаковых пропорциях - используются в основном для обессоливания воды в одну ступень. Соотношение тех или иных функциональных групп определяется соотношением в исходной воде удаляемых ионов.

3. По структуре гранул : полистирольные, гелевые и макропористые. Также возможны смешанные структуры такие как полистирольная-гелевая и полистирольная-макропористая. Возможно применение для очистки воды от извести.

Смолы гелевого типа при контакте с водой набухают сильнее, чем другие, в это время их объем увеличивается в полтора-два раза. Ионный обмен в смолах гелевого типа происходит довольно быстро, однако в скорости эти смолы однозначно уступают смолам с макропористой структурой, которые в отличии от гелевых смол не так сильно набухает.

4. По обмениваемому иону в исходной форме : натриевая, водородная и др. Чаще всего в исходной форме смолы обмениваемыми катионами являются для катионообменной смолы натрий или протон, а в анионообменниках - хлор или гидроксильная группа.

5. По степени однородности размеров гранул различают монодисперсные (бОльшая часть гранул имеет одинаковый размер) и полидисперсные (размер гранул распределен в широких пределах).

Для регенерации ионообменных смол используют: регенерационную соль (для смол в натриевой форме), кислоту (для смол в Н-форме), раствор гидроксида натрия (для смол в ОН-форме).

» закончено. Однако, оказалось, что это совершенно не так. Мы упустили очень важный моментрассчёт умягчения на ионообменной колонне ! В одной из предыдущих статей «Способы умягчения воды. Ионный обмен » мы говорили о наиболее распространённом способе борьбы с жёсткой водой — удалении солей жёсткости с помощью обмена на специальной смоле. Но не говорили о том, как расчитать этот процесс.

Расчёт умягчения на ионообменной колонне состоит из трёх этапов:

  1. Учёт потока воды для подбора собственно корпуса и управляющего клапана.
  2. Учёт характеристик ионообменной смолы для уточнения характеристик корпуса и режимов промывки.
  3. Сопоставление возможностей и количества смолы с реальной жёсткостью воды, которую нужно получить для уточнения всей системы вообще и частоты регенераций в частности.

На самом деле первые два пункта лучше доверить специалистам — это их работа и не стоит отбирать у них хлеб 🙂 Но третий пункт является ключевым и менее требовательным к техническим знаниям (особенно если учесть, что в конце статьи вы сможете скачать и пользоваться калькулятором для расчёта умягчения), и третий пункт можно провести самостоятельно, проверяя правильность подбора умягчителя разнообразными копаниями. Поэтому в статье остановимся на третьем этапе. Заодно третий этап позволяет определить, сколько денег вы будете тратить на умягчение воды с помощью ионного обмена.

Для того, чтобы понимать, что к чему и про какой обмен идёт речь, рекомендуем воспользоваться статьёй Способы умягчения воды. Ионный обмен . Ну а пока что продолжаем тему.

Расчёт умячения на ионообменной колонне с точки зрения возможностей смолы и реальной жёсткости воды состоит в следующем. Каждая ионообменная смола имеет паспортные данные. Одна из ключевых характеристикобщая ионообменная ёмкость смолы , которая выражается в грамм-эквивалентах на литр смолы.

Общая ионообменная ёмкость — грубо говоря, это единица, которая показывает, сколько солей жёсткости может удалить данная смола до того, как полностью потеряет способность обмениваться. То есть, когда пишется, что общая ионообменная ёмкость равняется 2 г-экв, то это означает, что один литр смолы может извлечь из воды соли жёсткости в количестве 2 г-экв, после чего потеряет способность что-либо извлекать, и для восстановления этой способности будет необходимо произвести процедуру регенерации смолы концентратом поваренной соли, или же, по научному, натрия хлоридом в таблетированной форме.

Вернёмся немного назад и поговорим про грамм- (милиграмм-) эквиваленты. Это страшное слово, но нам оно не страшно, поскольку жёсткость воды выражается в милиграмм-эквивалентах на литр (или, что равнозначно, в молях на литр), и ничего никуда пересчитывать не надо.

Нужно помнить, что 2 г-экв — это общая ионообменная ёмкость только одного литра смолы. Соответственно, если в вашем умягчителе у вас 100 литров смолы, то ваша общая ионообменная ёмкость составит 200 г-экв.

Теперь о том, как это всё применяется на практике. Мы имеем значение общей ионообменной ёмкости — 2 г-экв. И мы имеем значение жёсткости воды, например, 10 мг-экв/л. Что получается? Получается, что один литр данной ионообменной смолы может удалить соли жёсткости из 200 литров воды. Как мы это узнали?

Мы разделили значение общей ионообменной ёмкости (2000 мг-экв) на значение общей жёсткости воды (10 мг-экв/л). В результате получили 200 литров жёсткой воды.

Вы можете спросить: «И что же, теперь нужно проводить регенерацию солью через каждые 200 литров очищенной воды?» Это так лишь в том случае, если вы используете 1 литр ионообменной смолы. Потому что 2 г-экв — это значение для одного литра смолы.

Соответственно, если вам предложили ионообменный умягчитель, в котором 100 литров ионообменной смолы, то получается, что КАЖДЫЙ литр этой смолы может умягчить 200 литров воды с жёсткостью 10 мг-экв/л. Сколько это получится воды? Это очень просто посчитать: воспользуемся значением общей ионообменной ёмкости для всего умягчителя (200 г-экв) и разделим её на жёсткость воды (0,01 г-экв/л) и получим 20 000 литров.

То есть, если вы умягчаете воду жёсткостью 10 мг-экв/л на ионообменном умягчителе с обЪёмом смолы 100 литров и ионообменной ёмкостью одного литра смолы 2 г-экв, то смола перестанет работать после 20 м 3 очищенной воды.

Можно предположить, что регенерацию нужно проводить каждые 20 м 3 очищенной воды, но на практике регенерация происходит чаще (обычно вдвое), чем это выходит по расчёту. Всё потому, что жёсткость воды является значением непостоянным, и ресурс ионообменной смолы может закончится быстрее. Естественно, делать запас в 50 % — это уже слишком. Но 10-20 % — это самое оно. Поэтому при описанных условиях регенерация должна происходить каждые 16-18 м 3 очищенной от солей жёсткости воды.

Таким образом, если вам предложили умягчитель, в котором 100 литров ионообменной смолы с общей ёмкостью одного литра 2 г-экв, а регенерацию установили каждые 5 м 3 очищенной воды, то на вас тупо зарабатывают, ведь вам приходится почти в 4 раза чаще покупать таблетированную соль для возобновления работы умягчителя. Возможен другой вариант — при описанных условиях регенерация происходит каждые 30 м 3 воды. Это экономит деньги но делает бессмысленным умягчитель как таковой — поскольку 10 м 3 воды вы получили с исходной жёсткостью.

И наконец — обещанный калькулятор расчёта умягчения на ионообменной колонне.

Его вы можете скачать по ссылке «Калькулятор для рассчёта обЪёма воды между регенерациями «. Пользоваться им очень просто — нужно ввести цифры в зелёные квадратики и посмотреть результат в квадратике жёлтом. Ну а потом сравнить его с тем, что вам насчитали специалисты 🙂

Методики расчёта могут быть разными, и мы НЕ предлагаем обвинять поставщиков в недобросовестности на основании одного лишь рассчёта вручную или с помощью нашего калькулятора. Но несоответствие значений — это сигнал, что нужно к процессу покупки умягчителя в данной компании присмотреться подробнее. Возможно, там есть и другие несоответствия.

Ах, да, чуть не забыли — рассчитав частоту регенераций и зная своё обычное потребление воды, вы можете заранее, перед покупкой умягчителя, узнать, сколько денег вы будете тратить на соль для регенерации. Так, в предложении должна стоять цифра — на одну регенерацию уходит, например, 25 кг соли. Соответственно, если на умягчителе на 100 литров ионообменной смолы вы очищаете 18 м 3 воды с жёсткостью 10 мг-экв/л от регенерации до регенерации, а 18 м 3 воды вы тратите за месяц, то каждый месяц вам будет необходимо высыпать в солевой бак 1 мешок (25 кг) соли. Ну а теперь остаётся узнать цену соли в вашем регионе, и всё — экономический расчёт готов! И вы можете определить, потянете ли вы такие затраты 🙂

Итак, расчёт умягчения на ионообменной колонне — это быстро, просто и полезно!

Повальной проблемой, с которой сталкивается большая часть жителей больших городов, является качество питьевой воды.

Да, с кранов не так уж и часто течет грязная, ржавая вода, либо жидкость воняющая сероводородом, но – вопрос актуальный, и без должного уровня водоподготовки использовать такую воду в питьевых и бытовых целях проблематично по целому ряду причин.

Жесткая вода, не прошедшая стадию очистки и умягчения, приносит существенный вред вашим водонагревающим приборам – стиральной машине, посудомойке, электрическому чайнику. Эти устройства при работе с жесткой водой выйдут из строя гораздо раньше, чем предусмотрено производителем при нормальных условиях эксплуатации.

Это объясняется тем, что на нагревающих элементах образовывается слой накипи, который провоцирует ускоренную коррозию металла.

1 Какая технология умягчения воды с помощью ионов?

Наиболее эффективным способом на сегодняшний день является умягчение воды методом ионного обмена. При водоподготовке методом ионного обмена удается действовать максимально эффективно. Не зря же этот способ водоподготовки так популярен как в быту, так и в промышленности.

Как известно, жесткость воде придают растворенные в ней соли кальция и магния. Суть метода ионного обмена заключается в том, что определенные химические реагенты, которые называются ионообменным материалом, либо просто ионитами, имеют свойство регулировать ионную структуру воды в нужном направлении.

Это позволяет заменить минеральные соли жесткости, на другие химические структуры, которые не придают воде нежелательных свойств.

Чтобы выполнить водоподготовку данным методом используются специальные установки-фильтры, что заполняются ионитами, через которые пропускается вода.

При просачивании сквозь ионообменный материал в жесткой воде происходит замена большей части растворенных в ней ионов электролитов на такое же количество ионов ионитов, вследствие чего происходит изменение химической структуры самой воды, так и химического реагента.

1.1 Плюсы и минусы

2 Необходимое для работы оборудование

Технические особенности оборудования, как и его цена, зависят в первую очередь от сферы его применения: фильтры для сточных вод могут иметь огромные размеры, в то время как устройства для бытового использования обладают достаточно компактными габаритами.

Что касается цен, то минимальная стоимость устройства для домашней водоподготовки составляет, по меньшей мере 300 долларов.

На сегодняшний день все фильтры для ионного умягчения выпускаются в двух основных форм-факторах:

  • Небольшие стационарные фильтры со сменным картриджем;
  • Ионообменные колонны – крупногабаритные подключающиеся к водопроводу устройства, которые, в основном, обладают автоматизированным процессом восстановления смолы.

Фильтры колонного типа имеют следующую комплектацию:

  • Рабочая емкость – выполненная в форме герметичного бака, либо баллона, который заполнен ионообменной смолой;
  • Клапан с электронным процессором, который управляет подачей воды;
  • Емкость для восстановительного материала – в основном имеет форму бака, в который засыпается соль.

Работа таких устройств для умягчения полностью автоматизирована: процессор подает в колонну воду, которая, попадая в ионообменную среду, отдает смоле ионы солей жесткости, после чего вода, уже очищенная, сквозь выводящий шланг подается к водопотребляющим устройствам.

Когда ионообменная смола истощается и требуется её восстановление, устройство выполняет подачу небольшого количества жидкости в бак для реагентов, которая после насыщения соляным раствором возвращается обратно к смоле. Циркуляция происходит до тех пор, пока система не будет полностью восстановлена.

В целом, колонны для водоподготовки бытового применения и промышленные устройства для фильтрации сточных вод, отличаются друг от друга лишь размерами рабочей емкости и видом используемых реагентов.

2.1 Восстановление ионной смолы в картридже

В фильтрах с картриджами восстановление смолы выполняется собственноручно, делается это следующим образом:

  1. Перекрывается подача воды в фильтр и сбрасывается внутреннее давление.
  2. Извлекаем картридж со смолой.
  3. Очищаем его от загрязнений, промывая под струей проточной воды.
  4. Если картридж разбирается, то смола высыпается в отдельную посудину и покрывается соляным раствором, если нет – то опускаем в него картридж целиком. Соляной раствор изготавливаем из расчета 100 грамм соли на 1 литр воды. Нам понадобится примерно 2-4 литра жидкости.
  5. Оставляем смолу в растворе на 6-8 часов, после чего сливаем его и промываем смолу чистой, предварительно отфильтрованной, водой 2-3 раза.
  6. Выполняется установка картриджа в исходное положение.
  7. В первых литрах пропущенной через фильтр воды, после восстановления смолы, вы можете почувствовать легкий привкус соли – это нормально, в течении получаса он исчезнет.

Эффективность работы ионообменных фильтров будет максимальной при соблюдении определенных правил по качеству подающейся воды:

  1. Жидкость не должна быть зараженной микробами.
  2. Запрещается с высоким содержанием активного хлора и сероводорода.
  3. Оптимальная температура обрабатываемой воды: 5-40 градусов по Цельсию.
  4. Давление потока: 2-7 кгс\см2.
  5. Концентрация механических загрязнений не должна превышать 1 мг\л.

2.2 Принцип работы (видео)

Ионный обмен – процесс обмена между теми ионами, которые находится в растворе, и ионами, находящимися на поверхностях твердой фазы материалов (ионитов). Сущность метода ионообменной очистки воды определяется областью его применения.

Самым эффективным способом водоподготовки и умягчения воды сегодня считается именно ионный обмен. Данная методика широко применяется и в промышленности, и в быту. Жесткость воде придают растворенные в ней соли магния и кальция, а ионный обмен регулирует их содержание и, соответственно, нормализует состав. В итоге минеральные соли жесткости заменяются на другие химические структуры, и вода сохраняет нужные свойства. Для проведения водоподготовки путем ионного обмена используются специальные фильтрующие устройства – сначала их заполняют ионитами, а потом запускают воду.

Вода просачивается сквозь ионообменный материал, в результате чего в ней большая часть ионов электролитов заменяется на иониты, изменяется химическая структура и жидкости, и реагента, уходит жесткость. В отличие от аэрации, ионная очистка не приводит к выпадению солей жесткости в осадок, а значит, устанавливать дополнительные фильтрующие устройства не требуется.

Принципы и технология работы ионных умягчителей

Самый популярный химический реагент, используемый для водоподготовки ионным способом – это специальная смола. Она представляет собой твердое вещество неорганического происхождения с пористой структурой. В состав смолы входят различные функциональные добавки, которые и отвечают за протекание реакций ионного обмена. Форма выпуска – гранулы разных размеров (они являются произвольными). Если смола была получена в ходе полимеризации, она будет шаровидной, а если путем поликонденсации, то неправильной формы. При взаимодействии с водой смола набухает.

Смола в процессе замены ионов солей жесткости постепенно утрачивает первоначальный состав, рабочие характеристики в ходе эксплуатации безвозвратно изменяются. Чтобы восстановить работоспособность реагента, обычно используется раствор обычной поваренной соли, реже, но тоже может применяться лимонная кислота. Учтите, что восстановление солью не вернет смоле все первоначальные качества, поэтому со временем ионные фильтры меняют. Если все делать правильно и регулярно очищать вещество, оно прослужит вам около трех лет.

Ионообменный метод очистки воды: плюсы и минусы

К очистке ионообменным способом обычно прибегают в том случае, если нужно подготовить воду с высокой минерализацией – то есть около 100-200 мг солей на один литр. Ионообменные умягчители могут эффективно работать с очень высоким уровнем жесткости. Есть у них минусы? Да, как и у любых других систем, поэтому давайте рассмотрим преимущества и недостатки ионообменной технологии водоподготовки более подробно.

Достоинства:

  • Очень высокое качество очистки и умягчения воды.
  • Снижение содержания в жидкости не только солей жесткости, но и других вредных веществ.
  • Простота эксплуатации и обслуживания.

Недостатки:

  • Высокие расходы на восстановление химических реагентов.
  • Необходимость правильной утилизации использованных реагентов.
  • Низкий показатель гидрофильности смолы.

Впрочем, в передовых системах все минусы являются практически незаметными – расход реагентов в них медленный, а за счет специальных катализаторов процесс обработки воды возрастает в разы.

Технология умягчения воды с помощью ионов: необходимое для работы оборудование

Технические особенности оборудования и его стоимость определяются с учетом сферы применения – фильтры для стоков бывают очень габаритными, в то время как бытовые устройства максимально компактные и малошумные. Минимальный ценник на домашнюю систему подготовки воды составляет 300 долларов. Основные форм-факторы:

  1. Маленькие стационарные устройства со сменными картриджами.
  2. Ионообменные колонны – габаритные устройства, которые подключаются непосредственно к водопроводу.

Бытовая система ионного обмена оснащается несколькими баллонами и насосом. Фильтры колонного типа состоят из:

  • рабочей емкости – имеет вид герметичного бака или баллона, заполненного ионообменной смолой.
  • клапана с электронным процессором, управляющим подачей воды.
  • емкости для восстановительного материала – имеет вид бака, куда засыпается соль.

Работа умягчителей является полностью автоматизированной – процессор подает воду в колонну, та попадает в ионообменную среду и отдает смоле ионы солей жесткости, после чего очищенная вода через шланг вывода подается к устройствам водопотребления. Когда реагент истощается, устройство направляет немного жидкости в специальный бак, и после насыщения соляным раствором она снова возвращается в смоле. Циркуляция продолжается до тех пор, пока система не будет восстановлена. В принципе бытовые и промышленные системы между собой различаются только размерами рабочих емкостей и типами используемых реагентов – принцип действия у них один.

Очистка воды методом ионного обмена и правила восстановления смолы

В фильтрационных установках с картриджами восстановление смолы осуществляется строго вручную. Порядок действий:

  1. Для начала нужно перекрыть подачу воды в фильтр, а затем сбросить внутреннее давление.
  2. Достаньте картридж со смолой и промойте его под проточной водой.
  3. Высыпьте смолу в отдельную посудину и покройте соляным раствором (если картридж разбирается) или опустите в раствор картридж целиком. Раствор готовьте из расчета 100 г соли на литр воды, воды нужно в среднем 2-4 л.
  4. Оставьте смолу в растворе примерно на 6-8 часов, затем слейте раствор и промойте смолу предварительно отфильтрованной чистой водой 2-3 раза.
  5. Установите картридж в исходное положение.

В первых литрах воды, пропущенных через только что очищенный фильтр, может ощущаться легкий вкус соли – это нормально.

Умягчение воды катионированием

Кроме ионной водоподготовки, процесс умягчения воды часто называется как катионирование. Под катионированием подразумевается процесс обработки жидкости с применением методики ионного обмена, в результате чего происходят процессы катионного обмена. С учетом типа ионов (Н+ или Na+), которые находятся объеме катионита, выделяют два вида катионирования – Н и Na.

Натрий-катионитовый метод

Натрий-катионитовый метод применяется для умягчения воды с процентным содержанием взвешенных веществ до 8 мг/л и цветностью воды не больше 30 град. снижается при одноступенчатом натрий-катионировании до 0,05-0,1 мг-экв/л, а при двухступенчатом до 0,01 мг-экв/л. Преимущества способа – доступность, низкая цена, простая утилизация продуктов регенерации.

Водород-катионитовый метод

Водород-катионитовый метод используется для глубокого умягчения воды. Он основывается на фильтровании жидкости через слой катионита. При Н-катионировании рН фильтрата снижается в значительной мере, происходит это за счет образующихся в ходе процесса кислот. Углекислый газ уделяется дегазацией. Регенерация Н-катионита в этом случае производится 4 – 6% раствором кислоты (HCl, H2SO4).

Другие физико-химические методы очистки воды

Все физико-химические способы очистки воды направлены на удаление растворенных в ней примесей, а в ряде случаев и взвешенных частиц. Многие методики физико-химической очистки также требуют глубокого предварительного выделения из стоков взвешенных включений, для чего применяется процесс коагуляции. Основные методики физико-химической очистки воды:

  • сорбция;
  • и ионообменная очистка;
  • нейтрализация;
  • гиперфильтрация;
  • экстракция;
  • эвапорация;
  • выпаривание, испарение, кристаллизация.

При этом самым востребованным способом является именно метод флотации, направленный на извлечение из водных масс нефтепродуктов и других гидрофобных частиц с помощью газовых пузырьков. В основе процесса очистки лежит молекулярное слипание частичек масла и пузырьков тонкодиспергированного газа. Образование пузырьков зависит от интенсивности их столкновения, а также химического взаимодействия веществ в воде, избыточного давления газа, прочих факторов.

Почему полезно умягчать воду методом ионного обмена? Перспективы применения метода

Ионный обмен – это, пожалуй, одна из самых популярных сегодня методик умягчения, опреснения и обессоливания воды, а также практичный способ рекуперации ионных компонентов. Он позволяет извлекать, а затем утилизировать ценные примеси, поэтому широко применяется в промышленности, аналитической химии. Посредством ионного обмена концентрируются следовые количества определяемых веществ, рассчитывается суммарное солесодержание растворов, удаляются мешающие анализу ионы, разделяют компоненты сложных смесей. Ионный обмен используется для получения обессоленной и умягченной воды в таких отраслях как цветная металлургия, электронная промышленность, атомная и тепловая энергетика, пищевая отрасль, очистка сточных вод, пр. Ведутся активные работы, направленные на создание станций для извлечения ценных компонентов из океанских глубин.

" статьёй Способы умягчения воды . Где опишем основные существующие способы и , как можно из жёсткой воды сделать мягкую воду. А также подробнее остановимся на одном из них, наиболее распространённом и надёжном.

Способы умягчения воды можно разделить на три и большие группы:

  1. химические способы.
  2. физические.
  3. экстрасенсорные.

Перед тем, как перейти к описанию способов, давайте для начала определимся с терминами. А именно с термином "умягчение воды ". Ранее, в статье "Жёсткая вода " мы затрагивали вопрос жёсткости воды и причин, которые её вызывают — а также последствий использования жёсткой воды. Соответственно, существует несколько определений термина "умягчение воды ", в зависимости от того, на каком этапе идёт воздействие —

  • на этапе борьбы с причинами жёсткости воды или
  • на этапе борьбы с последствиями использования жёсткой воды.

Понятное дело, этап воздействия на причину жёсткости воды будет бороться и с последствиями жёсткой воды. Но не наоборот. Соответственно, теперь можно перейти к способам умягчения воды. Химические реагентные способы умягчения воды мы затронем в другой статье, а сейчас поговорим про ионный обмен .

Химический способ борьбы с жёсткой водой основан на обмене. Обменом заведует ионо-обменная смола. Ионо-обменная смола — это длинные молекулы, собранные в полупрозрачные желтоватые шарики.

Из этих молекул торчат многочисленные отростки (очень-очень маленькие), к которым присоединяются частицы соли. Простой поваренной соли (ионы натрия).Один ион натрия на один отросток.

В процессе умягчения вода проходит через смолу, пропитывает её насквозь. Соли жёсткости заменяют натрий, связанный со смолой. То есть, происходит обмен — натрий высвобождается и течёт далее, а соли жёсткости остаются связанными со смолой. Причём важно знать, что вымывается из смолы в два раза больше солей, чем оседает, что связано с разницей в зарядах ионов.

Соответственно, рано или поздно (зависит от ёмкости смолы, количества очищенной воды и количества солей жёсткости) все соли натрия в смоле заменяются на соли жёсткости. И после этого смола перестаёт работать — так как больше нечего обменивать.

Для каждой смолы есть свой предел, который она может достигнуть, после чего перестаёт работать. После чего возможны два варианта обращения со смолой, которые зависят от того, в каком виде вы использовали эту смолу. Так, существует два варианта, в каких ионообменная смола работает.

Первый вариант — простой картридж, который располагается в стандартном корпусе, как для или для . Пример картриджа с ионообменной смолой:

Другой вариант — смола, которая насыпается в большой баллон (или не очень большой, зависит от фантазии инженеров). Поскольку баллон чаще всего похож на колонну (пропорциями), то он называется "ионообменная колонна". Она же называется "умягчитель", "ионообменник". Пример ионообменной колонны:

Отличия этих двух вариантов заключаются в количестве ионообменной смолы:

  1. Картридж с ионообменной смолой годится только для того, чтобы пить воду и иногда на ней готовить.
  2. Ионообменная колонна предназначена для очистки воды на всю квартиру, дом, производство.

Второй вариант, помимо большей стоимости при покупке, имеет нюанс: он требует постоянных затрат на покупку соли, которой восстанавливается фильтрующая способность смолы. Здесь мы возвращаемся к тем возможностям, что можно сделать с ионообменной смолой, когда она перестаёт работать. Так, вариант с картриджем таков — выкинуть. Хотя иногда встречаются люди, которые применяют к нему второй вариант, как к ионообменной колонне.

Ионообменная колонна всегда имеет спутника — бак с рассолом.

В этом баке специальная таблетированная соль растворяется и образует рассол.

Периодически (зависит от того, какой тип управления используется и от показателей воды) раствор соли протекает через смолу, вымывает соли жёсткости и меняет их на исходную соль. После промывок смола восстанавливает свои способности к ионному обмену.

Ионообменная смола так же может удалять и железо в небольших количествах. Трёхвалентное железо портит ионообменную смолу, смола необратимо забивается, и её нужно менять. Так что будьте внимательны и вовремя делайте анализ воды .

Какой фильтр лучше покупать? Какой больше нравится. И, естественно, тот, который в наибольшей степени позволяет вам достичь ваших целей (о чём говорилось в статье "Выбор фильтра для воды: сколько тратить? ").

Также следует учитывать особенности, связанные с размером эксплуатационных расходов на использование ионообменного фильтра. Так, для разных установок умягчения воды требуется разное количество соли на одинаковую производительность. И нужно следить, чтобы расходы на соль были минимальными . Так же показатель — количество сброса воды в канализацию при промывках. Чем больше тратится воды, тем дороже выходит обслуживание. Для ориентира — минимальный расход соли, который мне когда-либо встречался, при производительности 1,5 м3/час составлял 1,14 кг соли на регенерацию.

Ионный обмен — способ умягчения воды, который воздействует на причину жёсткости воды, чем делает её мягкой.

Другие способы умягчения воды мы рассмотрим в дальнейшем.