Биофильтры для биологической очистки сточных вод. Биологический фильтр для очистки сточных вод

Биологический фильтр - сооружение, в котором сточная вода фильтруется через загрузочный материал, покрытый биологической пленкой, образованной колониями микроорганизмов. Биофильтр состоит из следующих основных частей:

  • а)фильтрующей загрузки (тело фильтра) из шлака, гравия, керамзита, щебня, пластмасс, асбестоцемента, помещенной обычно в резервуаре с водопроницаемыми или водонепроницаемыми стенками;
  • б)водораспределительного устройства, обеспечивающего равномерное с небольшими интервалами орошение сточной водой поверхности загрузки биофильтра;
  • в) дренажного устройства для удаления отфильтровавшейся воды;
  • г)воздухораспределительного устройства, с помощью которого поступает необходимый для окислительного процесса воздух.

Биофильтры - резервуары, в которых размещена инертная пористая загрузка, через которую сверху вниз просачивается сточная вода. Поверхность загрузочного материала обрастает биопленкой. Исходная вода равномерно распределяется по поверхности загрузки, а очищенная собирается в поддоне под загрузкой и отводится во вторичный отстойник для отделения от постоянно смывающейся с загрузочного материала биопленки.

Для задержания избыточной биопленки после биофильтров устанавливаются вторичные отстойники, в основном вертикального типа. Избыточная пленка из вторичных отстойников должна регулярно удаляться на обработку или иловые площадки, в противном случае загнивающий осадок ухудшает качество очищенной воды. В зависимости от режима работы биофильтра (капельный или высоконагружаемый) образуется разное количество избыточной биопленки: для капельных биофильтров - 8 г/(чел.сутки), для высоконагружаемых - 28 г/(чел.сутки). Влажность осадка, выгружаемого из вторичного отстойника, около 96%.

Биофильтры представляют собой железобетонные или кирпичные резервуары, заполненные фильтрующим материалом, который укладывается на дырчатое днище и орошается сточными водами. Для загрузки биофильтров применяют шлак, щебень, пластмассу и др. Очистка сточных вод в биофильтрах происходит под воздействием микроорганизмов, заселяющих поверхность загрузки и образующих биологическую пленку. При контакте сточной жидкости с этой пленкой микроорганизмы извлекают из воды органические вещества, в результате чего сточная вода очищается.

Процессы окисления, происходящие в биофильтре, аналогичны процессам, происходящим в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтре эти процессы протекают значительно интенсивнее.

Проходя через загрузку биофильтра, загрязненная вода оставляет в ней не растворенные примеси, не осевшие в первичных отстойниках, а также коллоидные и растворенные органические вещества, абсорбируемые биологической пленкой. Густо заселяющие биопленку микроорганизмы окисляют органические вещества и отсюда черпают энергию, необходимую для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества и в то же время увеличивается масса активной биологической пленки в теле биофильтра. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра. Необходимый для биохимического процесса кислород воздуха поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра.

Классификация биофильтров.

Биофильтры классифицируются по различным признакам.

По степени очистки -на биофильтры, работающие на полную и неполную биологическую очистку. Высокопроизводительные биофильтры могут работать на полную или неполную очистку в зависимости от необходимой степени очистки. Малопроизводительные биофильтры работают только на полную очистку.

По способу подачи воздуха - на биофильтры с естественной и искусственной подачей воздуха. Во втором случае они часто носят название аэрофильтров. Наибольшее применение в настоящее время имеют биофильтры с искусственной подачей воздуха.

По режиму работы - на биофильтры, работающие с рециркуляцией и без нее. Если концентрация загрязнений в поступающих на биофильтр сточных водах невысока и они могут быть поданы на биофильтр в таком объеме, который достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При очистке концентрированных сточных вод рециркуляция желательна, а в некоторых случаях обязательна. Рециркуляция позволяет понизить концентрацию сточных вод до необходимой величины, так же как и предварительная их обработка в аэротенках - на неполную очистку.

По технологической схеме - на биофильтры одноступенчатые и двухступенчатые. Двухступенчатые биофильтры применяются при неблагоприятных климатических условиях, при отсутствии возможности увеличивать высоту биофильтров и при необходимости более высокой степени очистки.

Иногда предусматривается переключение фильтров, т. е. периодическая эксплуатация каждого из них в качестве фильтра первой и второй ступени.

По пропускной способности - на биофильтры малой пропускной способности (капельные) и большой пропускной способности (высоко-нагружаемые).

По конструктивным особенностям загрузочного материала - на биофильтры с объемной загрузкой и с плоскостной загрузкой.

Биофильтры с объемной загрузкой можно подразделить на: капельные биофильтры (малой пропускной способности), имеющие крупность фракций загрузочного материала 20-30 мм и высоту слоя загрузки 1-2 м;

высоко нагружаемые биофильтры, имеющие крупность загрузочного материала 40-60 мм и высоту слоя загрузки 2-4 м;биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60-80 мм и высоту слоя загрузки 8-16 м. Биофильтры с плоскостной загрузкой подразделяются на: биофильтры с жесткой загрузкой в виде колец, обрезков труб и других элементов. В качестве загрузки могут быть использованы керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100-600 кг/м8, пористость 70-90%, высота слоя загрузки 1-6 м;биофильтры с жесткой загрузкой в виде решеток или блоков, собранных из чередующихся плоских и гофрированных листов. Блочные загрузки могут выполняться из различных видов пластмассы (поливинилхлорид, полиэтилен, полипропилен, полистирол и др.), а также из асбестоцементных листов. Плотность пластмассовой загрузки 40- 100 кг/м3, пористость 90-97%, высота слоя загрузки 2-16 м. Плотность асбестоцементной загрузки 200-250 кг/м3, пористость 80-90%, высота слоя загрузки 2-6 м;биофильтры с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5-60 кг/м3, пористость 94-99%, высота слоя загрузки 3-8 м.

К биофильтрам с плоскостной загрузкой следует отнести и погружные биофильтры, представляющие собой резервуары, заполненные сточной водой и имеющие днище вогнутой формы. Вдоль резервуара несколько выше уровня сточной воды устанавливается вал с насаженными пластмассовыми, асбестоцементными или металлическими дисками диаметром 0,6-3 м. Расстояние между дисками 10-20 мм, частота вращения вала с дисками 1-40 мин-1.

Плоскостные биофильтры с засыпной и мягкой загрузкой рекомендуется применять при расходах до 10 тыс. м3/сутки, с блочной загрузкой- до 50 тыс. м3/сутки, погружные биофильтры - для малых расходов до 500 м3/сутки.

Преимущества биологического метода очистки - возможность удалять из сточных вод разнообразные органические соединения, в том числе токсичные, простота конструкции аппаратуры, относительно невысокая эксплуатационная стоимость. К недостаткам следует отнести высокие капитальные затраты, необходимость строгого соблюдения технологического режима очистки, токсичное действие на микроорганизмы некоторых органических соединений и необходимость разбавления сточных вод в случае высокой концентрации примесей.

Микробиологические основы процессов очистки серосодержащих сточных вод.

Принцип биологической очистки серосодержащих сточных вод основан на протекании биохимических окислительно-восстановительных процессов, осуществляемых микроорганизмами в процессе их жизнедеятельности с превращением разнообразных неорганических и органических соединений серы в безвредные малотоксичные продукты окисления.

Преимуществом биологического метода очистки является возможность удалять из сточных вод разнообразные органические соединения, в том числе токсичные. Так же преимуществом является простота конструкции аппаратуры, относительно невысокая эксплуатационная стоимость, экологичность. Очистка происходит по принципу дублирование одного из этапов биологического круговорота серы в природе.

Считается, что основную роль в биологическом круговороте серы играет 2 группы микроорганизмов:

  • -продуцирующие сероводород (к ним относится гнилостные, сульфатредуцирующие серо восстанавливающие бактерии)
  • -окисляющие сероводород и неорганические соединения серы

Сера является биогенным элементам с активным окислительно-восстановительным циклом и представлены разными по химической природе соединениями со степенью окисления от -2 до плюс +6. Поэтому существуют различные группы микроорганизмов, способных изъять все соединения серы из сточных вод. Подразделяется они в зависимости от используемого источника энергии, углерода и субстрата на соответствующие группы.

Способность к биологическому окислению или восстановленнию соединений серы присущи представителям всех систематических групп микроорганизмов, при этом бактерии легче других организмов адаптируются к использованию новых органических субстратов.

Среди микроорганизмов, активно окисляющих восстановленные неорганические соединения серы в природных и искусственных экосистемах, можно выделить следующие группы

  • - Тионовые бактерии видов в составе родов Thiobacillus, Themothrix, Thiomicrospira, Thiosphaera
  • - Серобактерии, представленные одноклеточными и многоклеточными формами, относящимся к родам Achromatium, Thiobacterium, Beggiota, Thiotrix, Thioploca
  • - Фотосинтезирующие пурпурный и зеленые серные бактерии, а также некоторые цианобактерии

Хемоорганогетеротрофные организмы: бактерии родов Bacillius, Pseudomoas, актиномицеты и гриббы

Серобактерии в природе широко распространенны и составляет гетерогенную группу, в которой они объединены по одному общему признаку - способности окислять восстановленный или частично окисленные неорганические соединения серы. Использование этого свойства привело к соединению в одной группе многих таксономически невзаимосвязанных родов. Различные группы серокисляющих бактерий отличаются друг от друга типом питания, физиологическими свойствами, и экологическими особенностями.

Среди бесцветных серобактерии встречаются фактически все известные формы клеток и типы подвижности. Рост представителей этой группы можно обнаружить при значении, рН почти во всем диапазоне от 1 до 10,5. Основные признаки, объединяющие бесцветных серобактерий следующие: все они грамотрицательные, аэробные формы, причем некоторое из них способны к денитрификации, являются хемолитотрофами. Бесцветные серобактерии могут быть обнаружены практически везде, где присутствует восстановленные соединения серы.

Тионовые бактерии в морфологическом отношении представляет весьма однородную группу, относительная коды Тhiobacillus.

Клетки палочковидные с закругленными концами, обладающие полярным жгутиком, нейтрофилы, могут расти при рН от 6 до 8, но не растут при значениях ниже рН 3. Могут использовать кислород или в анаэробных условиях нитрат или нитрид как терминальный акцептор электронов.

Некоторые виды в чистой культуры не могут вырасти в анаэробных условиях, участвуя в осуществлении процесса денитрификации, так как способны восстанавливать нитрат только до нитрита, который при накоплении токсичен. Тионовые бактерии, однако, будут активно расти в смешанной культуре с нитритвосстанавливающими микроорганизмами.

Большинство тионовых бактерий - это типичные автотрофы, которые осуществляют хемосинтез, то есть способность ассимилировать CO2 за счёт энергии, получаемой при окислении восстановленных соединений серы, то есть они не нуждаются в органическом источнике углерода, однако для развития некоторых видов одновременно с неорганическим донором электронов требуется органические соединения.

Вторая группа серобактерии обладает отличительным свойством откладывать капли сера внутрь клеток или непосредственно на их поверхности. Одноклеточные бесцветные серобактерии - крупные неподвижные (Acheromatium) и подвижные формы, передвигающиеся с помощью многочисленных перитрихальных (p. Thiovulum) или одного полярного жгутика (p. Macromonas). Нитчатые организмы представлены неподвижными или способными к скользящему движению (pp. Beggiatoa, Thioploca) формами, встречающимися, главным образом, в грязевых водоемах.

Серобактерии доминирует в местообитаниях с относительно низким содержанием сульфида и богатых органическим веществом, например, в микробных сообществах систем очистки бытовых сточных вод, приливно-отливные зонах морей и океанов.

Таким образом, тионовые или несерные и серные бактерии окисляют одни и те же соединения, при отсутствии сероводорода в окружающей среде окисляют серу до тиосульфатов и, далее, до сульфатов. Разница заключается в том, что тионовые бактерии откладывают образующуюся серу вне своих клеток, а истинные серобактерии накапливают внутри клеток.

Фотосинтезирующие пурпурные зеленые серные бактерии способны окисляет сероводород, сера, гипосульфит, сульфит и другие не вполне окисленные соединения серы, используя для этого энергию солнечных лучей. В составе их имеется пигмент бактериохлорофилл, аналогично хлорофиллу растений. У фотосинтезирующих бактерий донором водорода служит сероводород, а в свободном состоянии выделяется сера.

Данные бактерии могут строить свои клетки, используя в качестве единственного источника углерода углекислоту, которая не фиксирует через цикл Кальвина, обитают главным образом в водной среде. Но наружных биологической очистки эти бактерии обычно не встречаются, так как в этих условиях отсутствует один из двух необходимых им факторов: или свет, или анаэробные условия.

Также известны типичные хемоорганогетеротрофные микроорганизмы, участвующие в окислении сероводорода, молекулярной серы и тиосульфата. К их ислу относятся представители родов Bacillius, Pseudomonas, Achromobacter, а также актиномицетов, плесневых грибов, дрожжей. Некоторые из них, в частности, нитчатая многоклеточная бактерия Sphaerotilus natans. В присутствии сероводорода откладывает в клетку серу. Другие способны окислять тиосульфат до тетратионата (Na2S4O6). Отмечено также образование политионатов и сульфата при воздействии смешанных культур гетеротрофных микроорганизмов на элементарную серу. Хемоорганогетеротрофные организмы окисляют серу в присутствии органических веществ. Такое превращение представляется для них побочным процессом в главном направлении метаболизма. Окисление серы хемоорганогетеротрофными микроорганизмами идет довольно медленно и менее активно, при этом в качестве промежуточных продуктов образуется сероводород, метилмеркаптан, диметилсульфид, элементная сера.

При полном окислении соединения серы бактериями должны образовываться сульфаты. Однако в среде, где протекает окислительный процесс, постоянно обнаруживаются промежуточные продукты окисления. Схематически полный путь окисления сульфидов до сульфатов в нейтральной и слабощелочной среде может быть представлен следующим образом

S2- >S0 (S2-n) >S2O32->SmO62->SO32->SO42-

Где n=2-5, m=2-6

При полном окислении соединений серы бактериями должны образовываться сульфаты. Однако способности отдельных видов не вполне одинаковы. Следует учитывать, что не всегда легко установить, какие именно соединения сера окисляется биологическим путем, так как многие из них не устойчива при низком значении pH и могут также окисляться кислородом воздуха. Нередко окисление идет не до конца, и среде могут обнаруживаться различные не полностью окисленные продукты. Так при окислении сероводорода иногда образуются молекулярная сера, а также тиосульфата политионаты. Окисление тиосульфата также часто сопровождается образованием политионатов элементарной серы. Не все эти соединения являются результатом ферментативных процессов я не относится к промежуточным продуктам окисления бактериями исходного субстрата. Многие из них могут образоваться химическим путем или в результате побочных биологических реакций окисления микроорганизмами соединений серы до конца не изучены

Механизм окислительных процессов, вызываемых SR окисляющие бактериями, может быть представлен следующим реакциями

H2S + 1/2O2 >S + H2O2

H2S + 2O2 > H2SO4

  • 2S + 3O2 + 2H2O> H2SO4
  • 5Na2S2O3 + 2O2 + H2O > Na2SO4 + H2SO4 + 4S
  • 2 Na2S2O3 + 1/2O2 + H2O2 > Na2S4O6 + 2 NaOH

Не исключено, что одного и того же организма могут функционировать различные пути окисления соединения серы, и значение того или иного зависит от условий среды и других факторов.

Энергия, выделяющаяся при окислении сульфидов и промежуточных восстановленных соединений серы до сульфата, аккумулируются в микроэргической связи АТФ. Это реакция расходуется на восстановление пиридиннуклеотида, который необходим для фиксации углекислого газа, а также на другие жизненные функции бесцветная бактерий. Ацидофильные нейтральные серые бактерии окисляют соединения серы различными путями. У некоторых ацидофильных видов промежуточным продуктом окисления серы является тетратионат, когда у некоторых нейтрофилов это может быть тиосульфата, которые далее гидролизуется до молекул серы и сульфита. Таким образом, превращения тиосульфата могут быть связаны с расщеплением до элементарной серы, а также окислением до тетратионата и превращением в тритионат и сульфит.

Рисунок Условная схема окисления соединения серы у нетрофильных бактерий Th. thioparus 1 - сульфидоксидоредуктаза; 2 - тиосульфатдегидрогиназа; 3 - серадиоксигиназа; 4 - сульфитоксидоредуктаза; 5-аденозинфосфоульфатредуктаза; 6 - АДФ-сульфурилаза

Окисление тиосульфата (S-SO3)2- и полисульфанов (S)n2- осуществляется с помощью S-оксигеназы, и превращается в сульфит через стадию образования промежуточного продукта эквивалентного элементарной серы. Тиосульфат стабилен преимущество при нейтральном и щелочных значениях рH.

Из политионатов наибольший биологический интерес представляет тритионат (S3O62-) и тетритионат (S4O62-) устойчивые в кислых условиях. При окислении тритионата тритионат-дегидрогеназой в числе прочих продуктов образуется тиосульфат.

2S3O62-+ H2O>S2O32- + [S] + SO42- + 2 H+

После чего он окисляется до тетратионатa с помощью тиосульфат дегидрогеназы. Ключевой промежуточный метаболит, тетратионат, расщепляется тетратионатгидролазой, в результате чего регенерируются тиосульфат и образуется элементарная сера

S4O62-+ H2O>S2O32- + [S] + SO42- + 2 H+

Таким образом, механизм окисления восстановленных соединений серы до сульфатов является достаточно сложным и в настоящее время до конца не изученным. Химические и бактериальные пути являются многоступенчатыми, и расшифровка природы промежуточных продуктов окисления восстановленных соединений серы представляется достаточно сложным в силу двойственной природы процессов окисления и невозможности исключить многие побочные реакции, учитывая, что соединение серы не устойчива при низком значении паше могут также окисляется кислородом воздуха.

Следует отметить, что популяция бактерий, окисляющие восстановительной соединение серы, из-за особенности их конструктивного обмена и низкой скорости разложения медленной регенерируется и поэтому является наиболее уязвимым звеном сообщества микроорганизмов биологических очистных сооружений.

Процессор окисления путем иммобилизации микроорганизмов

Анализ по экологии тионовых бактерий в сооружениях водоотведения и особенностей интенсификации биологической очистки сточных вод в биосорбционных установках позволяет предположить, что одним из условий стабильности и активности процессов биоокисления может служить иммобилизация микроорганизмов. Иммобилизация значительно повышает устойчивость сероокисляющих бактерий к стрессовым воздействиям за счет более высокой плотности популяции, а также интенсифицирует биоокисление токсичных примесей в составе сточных вод, что улучшает качество очистки.

На практике наиболее распространённым очистным сооружением с иммобилизованной биомассой является биологический фильтр. Процессы окисления, происходящие в биофильтрах аналогичных процессам, происходящих в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтры эти процессы протекают значительно интенсивнее.

Иммобилизованные клетки приобретает свойства, не характерные для них в свободном состоянии. и сохраняют стабильную, активность и жизнеспособность в течении длительного времени, не подвергаются химической модификации. Использование нативной биомассы микроорганизмов характеризуется достаточно коротким сроком хранения. При длительном хранении в суспензии неизбежно происходит снижение численности микроорганизмов, при этом отмечено снижение титра клеток окисляющей активности микроорганизмов.

Разработка способов очистки сточных вод требует решения двух задач: освобождение воды от загрязняющих веществ, а также от суспендированных микроорганизмов. Обе задачи эффективно решаются при использовании иммобилизованной микрофлорой и фауны.

К атегория: Очистка сточных вод

Биофильтры

Биологические фильтры представляют собой сооружения, в которых процесс биологической очистки сточных вод протекает в искусственно созданных условиях. Биологические фильтры бывают периодического (контактные) и непрерывного действия. Контактные биофильтры вследствие их малой пропускной способности и высокой стоимости в настоящее время не применяют. Биофильтры непрерывного действия по пропускной способности могут быть подразделены на капельные и вы-соконагружаемые, по способу подачи в них воздуха и те и другие могут быть с естественной и с искуственной вентиляцией (аэрофильтры).

Капельные биофильтры. Капельные- непрерывно действующие биофильтры в зарубежной практике иногда называют оросительными или перколяторными.

Непрерывно действующий капельный биофильтр состоит из следующих основных частей: непроницаемого основания, дренажа, боковых стенок, фильтрующего материала и распределительных устройств. Биофильтры могут быть в плане круглые, прямоугольные, квадратные. Поверхность капельного биофильтра орошают сверху равномерно через небольшие промежутки времени; при этом вода подается в виде капель или струй (капельные или оросительные) либо в виде тонкого слоя воды (перколяторные).

В отечественной практике в капельные биофильтры воздух поступает естественным путем - сверху через открытую поверхность биофильтра и снизу через дренаж. Они имеют низкие нагрузки по воде (не более 0,5-1 м3 сточной воды на 1 м3 загрузочного материала), а также меньший по сравнению с высоконагружаемыми биофильтрами размер фракций загрузки (20-40 мм).

Проходя через фильтрующую загрузку биофильтра, загрязненная вода вследствие адсорбции оставляет в ней взвешенные и коллоидные органические вещества, не осевшие в первичных отстойниках, которые создают биопленку, густо заселенную микроорганизмами. Микроорганизмы биопленки окисляют органические вещества и получают необходимую для своей жизнедеятельности энергию. Часть растворенных органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества, а в теле биофильтра увеличивается масса активной биологической пленки. Отработавшая и омертвевшая пленка смывается протекающей сточной водой и выносится из биофильтра.

Биофильтр (рис. 1) работает следующим образом. Осветленная в первичных отстойниках сточная вода самотеком (или под напором) поступает в распределительные устройства, которые периодически напускают воду на поверхность биофильтра. Профильтрованная через толщу биофильтра вода проходит через отверстия в дырчатом дне (дренаже), поступает на сплошное непроницаемое днище, с которого стекает по отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых задерживается выносимая биопленка, отделяемая от очищенной сточной воды. Эффект очистки нормально работающих биофильтров подобного типа очень высок и может достигать по БПКго 90 % и более.

При расчете биофильтра определяют необходимый объем загрузочного материала для очистки поступающей сточной воды, а также рассчитывают распределительные устройства для орошения загрузки водой, дренаж и лотки, собирающие осветленную воду. В отечественной практике проектирования капельных биофильтров объем фильтрующей загрузки определяют по окислительной мощности биофильтра. Окислительная мощность- количество граммов кислорода, которое может быть получено с 1 м3 загрузочного материала в сутки для снижения биохимической потребности сточной воды. Окислительная мощность биофильтра колеблется в широких пределах, так как ее величина зависит от многих факторов: температуры сточной воды и наружного воздуха, свойств поступающей жидкости, материала загрузки, способа подачи воздуха и пр.

Рис. 1. Биофильтр 1 - распределительный слой; 2 - поддерживающий слой; 3 - бетон; 4 - дренаж; 5 - сборный лоток; 6 - подача сточной жидкости

Высоконагружаемые биофильтры. В 1929 г. в СССР и в 1936 г. в США появились новые типы биофильтров, которые в отечественной практике получили название аэрофильтров, а в зарубежной практике - высоконагружа-емых биофильтров. В СССР аэрофильтры были предложены профессорами Н. А. Базякиной и С. Н. Строгановым. Они впервые были построены в 1929 г. на Кожуховской станции биофильтрации и имеют явное преимущество по сравнению с капельными, поэтому получили широкое распространение. Высоконагружаемые биофильтры отличаются от капельных как конструкцией, так и эксплуатационными особенностями.

Конструктивными отличиями являются:
1) увеличение крупности зерен загрузочного материала (40-70 мм по всей высоте загрузки); материалом может служить щебень твердых пород;
2) искусственная продувка материала загрузки воздухом, а в связи с этим изменение конструкции днища и дренажа;
3) увеличение (при необходимости) высоты слоя фильтрующей загрузки.

К эксплуатационным особенностям относятся:
1) обязательное орошение всей поверхности биофильтров поступающей водой и по возможности уменьшение длительности перерывов в подаче воды на поверхность;
2) повышение нагрузки по воде на 1 м2 поверхности в целях создания естественных условий для самопроизвольной промывки фильтров;
3) разбавление в необходимых случаях поступающего стока очищенной сточной водой, т. е. введение рециркуляции.

Исследованиями установлено, что биофильтры высокой нагрузки могут обеспечить любую пропускную способность и любую степень очистки в зависимости от тех или иных конструктивных особенностей и режима их эксплуатации, которые заданы.

Высоконагружаемые биофильтры следует классифицировать по таким признакам.

1. По принципу действия - работающие с полной или неполной биологической очисткой. Первоначально биофильтры подобного типа проектировали только на неполную биологическую очистку. Предполагалось, что фильтры могут иметь повышенную пропускную способность только в том случае, если они снимают легкоокис-ляемые загрязнения, находящиеся в сточной воде, и выходящий сток имеет ВПК выше 20 мг/л; кроме того, процесс нитрификации в биофильтрах не происходит. Однако впоследствии исследованиями2 удалось установить, что высоконагружаемые биофильтры могут обеспечивать весьма высокий эффект очистки.

2. По способу подачи воздуха - с естественной и искусственной подачей воздуха; во втором случае они часто носят название аэрофильтров. Если высота загрузки в биофильтрах небольшая (1,5-2 м), то искусственная подача воздуха не обязательна; при большой высоте загрузки необходимо предусматривать искусственное нагнетание воздуха.

Рис. 2. Схема одноступенчатой работы биофильтров с рециркуляцией

3. По режиму работы - с рециркуляцией и без рециркуляции. Если концентрация поступающего загрязненного стока на биофильтр невысокая и расход воды на биофильтр достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При сильно загрязненном стоке рециркуляция желательна, в некоторых случаях обязательна.

4. По числу ступеней - одноступенчатые (рис. 2) и двухступенчатые. Двухступенчатую работу биофильтра предусматривают в том случае, если необходима полная биологическая очистка и биофильтры I ступени нельзя запроектировать достаточной высоты. В этом случае в I ступени будет осуществляться неполная очистка стока, а во II ступени - его доочистка.

5. По высоте - низкие до 2 м, высокие от 2 м и выше.

6. По конструктивным особенностям загрузки - с объемной загрузкой (гравий, щебень, керамзит и пр.) и с плоскостной загрузкой.

Биофильтры с плоскостной загрузкой подразделяются: с жесткой загрузкой в виде колец или обрезков труб из керамических, пластмассовых и металлических засыпных элементов; с жесткой загрузкой в виде решеток или блоков из плоских и гофрированных листов; с мягкой или рулонной загрузкой из металлических сеток, пластмассовых пленок, синтетических тканей, которые крепятся на каркасах или укладываются в виде рулонов.

Высокие биофильтры предназначены для полной биологической очистки, низкие - для частичной.

Биофильтры с пластмассовой загрузкой. Отличительной особенностью этих фильтров является то, что они работают на загрузке из пластмассового материала в виде решеток, пакетов или пластмассовых колец. Благоприятные условия для обтекания воздухом материала загрузки фильтра обеспечивают более высокую пропускную способность, чем биофильтров других типов. Нагрузка в них для городских сточных вод (по исследованиям кафедры канализации МИСИ) может быть доведена до 10 м3 воды на 1 м3 загрузки материала. В качестве загрузочного материала применяют пластмассовые блоки из поливинилхлорида, полистирола и других жестких пластмасс, а также пластмассовую насадку из собранных в блоки или засыпаемых в биофильтр коротко нарезанных перфорированных труб. Такие биофильтры проектируются круглыми или многоугольными в плане высотой 3-4 м. Обычно их располагают в отапливаемом помещении.

Конструкции биофильтров. В отечественной практике наибольшее распространение получили биофильтры прямоугольной или круглой формы. На рис. 3 представлен типовой биологический фильтр прямоугольной формы из сборного железобетона, разработанный Союз-водоканалпроектом. На бетонном водонепроницаемом основании устроен дренаж, который отводит воду и обеспечивает благоприятные условия для аэрации загрузки биофильтра. Чаще всего дренаж выполняют из железобетонных плит, укладываемых на бетонные опоры.

Рис. 3. Типовой биологический фильтр прямоугольной формы со спринклерным распределением воды 1 - сборные блоки; 2 и 3 - балки и плиты перекрытия; 4 - распределительная камера; 5 - площадка обслуживания

Рис. 4. Высоконагружаемый биофильтр из сборного железобетона 1 - бутовый фундамент; 2 -плиты дренажного перекрытия; 3 - сборные элементы стенок; 4 - сборная плита; б - вентиляционные трубы; 6 - колосниковые плиты

Материал загрузки должен иметь развитую поверхность с размерами частиц, обеспечивающими быстрое образование микробиальной пленки. В то же время загрузочный материал должен быть достаточно пористым, так как это способствует хорошей аэрации загрузки фильтра и в значительной мере предотвращает заиление фильтра. Для загрузки биофильтров рекомендуют применять щебень, гальку прочных горных пород и керамзит.

Высоконагружаемые биофильтры при предварительной обработке частично очищенной сточной жидкости в аэротенках и биокоатуляторах, а также высоконагружаемые биофильтры II ступени и капельные биофильтры загружают материалом крупностью 30 - 50 мм. Нижний поддерживающий слой высотой 0,2 м во всех случаях имеет крупность загрузки 60-100 мм.

Высоконагружаемые биофильтры устраивают из сборного железобетона (рис. 4). Биофильтр представляет собой цилиндрический резервуар диаметром 17 м, высотой 2,3 м. Стенки биофильтра выполнены из 48 вертикально расположенных сборных цилиндрических элементов, днище - из монолитного бетона, дренажное перекрытие - из сборных колосниковых решеток.

Надежная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Орошение осуществляется специальными распределительными устройствами, которые бывают неподвижными и подвижными. К неподвижным распределителям относятся дырчатые желоба или трубы и разбрызгиватели (спринклеры), к подвижным - качающиеся желоба, движущиеся наливные колеса и вращающиеся реактивные распределители (оросители). В отечественной и зарубежной практике наибольшее распространение получили спринклерное орошение и орошение g помощью подвижных оросителей.

Спринклерная система состоит из дозирующего бака, разводящей сети и спринклеров. Спринклеры (сприн-клерные головки) представляют собой насадки, надетые на концы вертикальных отростков, ответвляющихся от распределительных труб, проложенных на поверхности или в самом биофильтре. Отверстия спринклерных головок делают небольшого диаметра 18-32 мм. На рис. 5 показан один из типов насадок, применяемых в отечественной практике. Во избежание коррозии спринклеры изготовляют из бронзы или латуни.

Рис. 5. Насадка для орошения поверхности биофильтра 1 - отражательный конус; 2 - головка

Рис. 6. Реактивный ороситель

Для лучшего распределения сточной воды по поверхности биофильтра и улучшения его работы сточная вода должна подаваться в спринклерную сеть периодически с небольшими интервалами. Для этой цели предусмотрен дозирующий бак, автоматически подающий воду в спринклерную сеть при его опорожнении.

Распределительную спринклерную сеть целесообразно проектировать так, чтобы каждую секцйю биофильтра обслуживал отдельный дозирующий бак. Существуют различные конструкции автоматически действующих аппаратов (баков), например автоматы с вращающимися рукавами, цилиндрическим затвором и др. Наибольшее распространение получил дозирующий бак с сифоном, который не имеет движущихся частей.

При расчете распределительной системы определяют расход воды из разбрызгивателя (спринклера), необходимое их число, рассчитывают разводящую сеть, объем и время работы дозирующего бака. Для нормальной работы биофильтры должны быть обеспечены необходимым количеством воздуха. В капельных биофильтрах создается естественная продувка (вентиляция) за счет разницы температур наружного воздуха и тела биофильтра. Основная масса воздуха поступает в тело биофильтров через междудонное пространство и сверху вместе с водой по мере ее движения в фильтре. Если температура сточных вод выше температуры воздуха, то ток воздуха будет восходящий (от дренажа к поверхности), при обратном соотношении-нисходящий, а при равенстве температур вентиляция может вообще отсутствовать. Как показали исследования работы биофильтров, необходимое количество воздуха должно составлять 8-12 м3 на 1 м3 сточной воды.

Биофильтры высотой более 2 м должны иметь искусственную вентиляцию. В этом случае воздух нагнетается вентилятором в междудонное пространство между днищем и дренажем под давлением 100 мм вод. ст. (980 Па). В том месте отводного лотка, где вода выходит из-под фильтра, устраивают гидравлический затвор высотой 200 мм, а междудонное пространство со всех сторон закрывают. Это делается для того, чтобы нагнетаемый вентилятором воздух поступал полностью в тело фильтра и не прорывался вместе с выходящей из-под него водой.

Рис. 7. Схема устройства дискового биофильтра 1 - дисковый блок из пластин; 2 - вал; 3-привод дискового блока; 4 и 7 - подводящий и отводящий лотки; 5 - ванна; 6 - водослив

Реактивный вращающийся ороситель состоит из двух или четырех дырчатых труб, консольно закрепленных на общем стояке (рис. 6). Вода из распределительной камеры поступает под некоторым напором в стояк, установленный на шариковых подшипниках; стояк может свободно вращаться вокруг вертикальной оси. Из стояка вода поступает в радиально расположенные трубы и через отверстия в них выливается на поверхность биофильтра. Под действием реактивной силы, возникающей при истечении воды из отверстий, ороситель вращается. Диаметр отверстий в трубах принимается 10-15 мм; расстояние между отверстиями увеличивается от периферии к центру. Союзводоканалпроектом разработаны типовые проекты биофильтров диаметром 15, 21, 27 и 29 м с вращающимися оросителями.

В практике очистки сточных вод при расходах до 500 м3/сут находят применение погружные (дисковые) биофильтры (рис. 7). На вращающихся дисках, погруженных в сточную воду, образуется биологическая Пленка, с помощью которой осуществляется окисление сорбированных на ней органических загрязнений. Сточная вода поступает в корыто с полукруглым днищем через впускное отверстие, а отводится с противоположной стороны. Диски имеют обычно диаметр 2-3 м и вращаются со скоростью 1-40 об/мин. Расстояние между дисками 15-20 мм. Дисковые биофильтры устанавливают в виде полносборных установок заводского изготовления.

Исследованиями, проведенными в МИСИ им. В. В. Куйбышева и Одесском инженерно-строительном институте, установлено, что погружные биофильтры просты и надежны в эксплуатации и потребляют мало энергии для насыщения воды кислородом.

Часть 2

Биофильтры подразделяются на биофильтры периодического действия, или контактные, и биофильтры непрерывного действия. Биофильтры непрерывного действия в свою очередь могут быть подразделены на: а) биофильтры обычного типа; б) аэрофильтры; в) высоконагружаемые.

Контактные биофильтры вследствие их малой производительности и высокой стоимости в настоящее время не применяются.

Непрерывно действующий биофильтр обычного типа состоит из следующих основных частей: непроницаемого основания, дренажа, боковых стенок, фильтрующего материала и распределительных устройств. В плане биофильтры могут иметь форму круга, прямоугольника, квадрата или восьмиугольника. Их можно устраивать с водонепроницаемыми или ажурными стенками. Поступление воды в аппараты, распределяющие ее по поверхности биофильтра, происходит непрерывно, орошается же его поверхность через небольшие интервалы в 3-5 мин. водой, подаваемой из этих аппаратов в виде отдельных капель или струй. Такое орошение способствует лучшему проникновению в тело биофильтра воздуха, необходимого для окислительного процесса. Воздух также поступает через ажурные стенки биофильтра и дренаж. Схема работы непрерывно действующего биофильт. ра заключается в следующем: осветленная в первичных отстойниках сточная вода самотеком (или под напором) поступает g распределительные устройства, при помощи которых вода перио. дически напускается на поверхность биофильтра. Профильтро. вившаяся через толщу биофильтра вода проходит через отверЛ стия в дырчатом дне (дренаже), поступает на сплошное непро. ницаемое днище, с которого стекает по отводным лоткам, расположенным за пределами биофильтра.

Процессы окисления, происходящие в теле биофильтра, аналогичны процессам, которые происходят при естественных методах очистки воды на полях орошения или фильтрации, но отличаются от последних значительно большей интенсивностью. Эффект очистки сточных вод нормально работающими биофильтрами очень высок, БПК выходящего стока снижается на 90% и более.

Расчет биофильтра состоит в определении необходимого объема загрузочного материала для очистки поступающей воды, а также расчета распределительных устройств для орошения воды, дренажа и лотков для пропуска и сбора осветленных вод.

Объем загрузочного материала определяют по так называемой окислительной мощности биофильтра (ОМ), под которой понимается число граммов кислорода, которое может быть отдано 1 мг загрузочного материала в сутки для снижения биохимической потребности сточной воды.

Эта величина окислительной мощности биофильтра сильно -отеблется даже в каждом биофильтре, так как ее значение зависит от многих причин, например, от температуры наружного Б03цуха и сточной воды, концентрации и свойств поступающей жидкости, от материала загрузки, способа подачи воздуха и пр. Величина ее лишь в общем виде отображает процессы окисления органических веществ, происходящих в теле биофильтра. Можно говорить лишь о среднем значении окислительной мощности, определяемом экспериментальным путем на основе натурных измерений.

Рис. 1. Биофильтр прямоугольной формы

Необходимым условием нормальной работы биофильтра является их продувка воздухом. В биофильтрах обычного типа их продувка или вентиляция происходят естественным путем за счет разности температур наружного воздуха и тела биофильтра.

В отечественной практике наибольшее распространение получили прямоугольные фильтры (рис. 1).

Рис. 2. Днище биофильтра из железобетонных плит

Лучшим типом дренажа является дренаж из железобетонных плит, которые укладывают на бетонные или кирпичные опоры (рис. 2). В плитах имеются отверстия квадратной или цилиндрической формы. Другие типы дренажей (из кирпича, из керамических труб) применяются редко.

Днищу биофильтра придают уклон 0,02 к сборным лоткам, располагаемым на расстоянии 2,5-4 м друг от друга (в зависимости от размеров биофильтра) с уклоном 0,005-0,02. Из сборных лотков вода поступает в отводные лотки, имеющие уклон 0,003-0,005. Иногда сборных лотков под биофильтром не устраивают и его днищу придают общий уклон 0,01 в сторону отводных лотков. Фильтры могут быть как наземного, так и подземного типа.

Стенки наземных фильтров делают иногда ажурными, т.е. с отверстиями, через которые поступает воздух. Материалами для стенок могут служить железобетон, кирпич, бут и др.

Материал загрузки должен иметь развитую поверхность с размерами частиц, обеспечивающими быстрое образование микро-биальной пленки. С другой стороны, загрузочный материал должен быть достаточно пористым, так как это способствует хорошей продувке фильтра и в значительной мере предотвращает заиление. Материал должен обладать также достаточной прочностью, стойкостью против выветривания; кроме того, он не должен содержать примесей, которые могли бы повлиять на ба реальную флору биофильтров. Следует по возможности испо| зовать местный недорогой материал. В качестве загрузочного териала для биофильтров до сих пор применяли преимуществ но котельный шлак и кокс. Однако можно также примем щебень твердых пород, щебень из кирпича-железняка, гравий! гальку.

Рис. 3. Биофильтр круглой формы

Нормальная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Это орошение производится специальными распределительными устройствами, которые подразделяются на две основные группы: распределители неподвижные и подвижные.

К неподвижным распределителям относятся: а) дырчатые желоба или трубы и б) разбрызгиватели или спринклер; к подвижным: а) качающиеся желоба; б) движущееся наливное колесо и в) вращающиеся реактивные распределители (просители). При распределении воды по поверхности при помощи желобов или

В последнее время за рубежом начали применять подвижные еактивные распределители, работающие по принципу РрГиерова колеса. Стояк, куда поступает осветленная сточная во-С я установлен на шариковых подшипниках и может свободно вращаться вокруг вертикальной оси. К стояку присоединены две или четыре консольные горизонтальные трубы, расположенные оадиально на расстоянии 0,15 м над поверхностью биофильтра. Трубы удерживаются в горизонтальном положении металлическими растяжками. На трубе имеются отверстия, расположенные на определенном расстоянии друг от друга. Когда из этих отверстий под некоторым напором (от 0,25 до 0,8 м) выливается вода, распределитель под действием реактивной силы движется в противоположную сторону. Недостатком таких распределителей является возможность заиления отверстий и, как следствие этого, неравномерное орошение поверхности биофильтра.

На рис. 4 показан другой тип подвижного распределителя- распределитель в виде движущегося наливного колеса. Наливное колесо представляет собой длинный полый цилиндр с лопастями на поверхности. Цилиндр расположен над биофильтром и при подаче в него сточной воды движется по рельсам, уложенным на продольных стенах биофильтра. Питание распределителя сточной водой производится из жолоба при помощи сифона, конец которого опущен в жолоб. Сточная вода, поступая на лопасти одной стороны оросителя, приводит его во вра-шение. Ороситель начинает двигаться по рельсам вдоль биофильтра. Для изменения направления движения оросителя служит специальное приспособление, которое состоит из поддона с рукоятками и буфера; рукоятка, наталкиваясь на буфер, поворачивает поддон, вследствие чего сточная вода поступает на другую сторону подвижного колеса и оно движется в противоположную сторону.

К достоинствам таких распределителей следует отнести небольшую величину напора, необходимого для их работы, и равномерное распределение воды. Недостатком их является ненадежная работа зимой, так как при обмерзании рельсов аппарат может остановиться. Поэтому эти распределители могут найти себе применение главным образом для биофильтров, устраиваемых в южных районах, или для биофильтров малых размеров, устанавливаемых в закрытых помещениях.

Для расчета сборной сети лотков, отводящих очищенную жидкость из-под биофильтра (днища), необходимо знать расходы воды.

Рис. 4. Подвижный распределитель

В том месте отводного лотка, где вода выходит из-под фильтра, устраивают водяной затвор высотой 200-250 мм, а междудонное пространство со всех сторон закрывают. Это делается для того, чтобы нагнетаемый вентилятором воздух поступал полностью в тело аэрофильтра и не прорывался вместе с выходящей из-под него очищенной водой. Кроме того, чтобы создать дополнительное сопротивление движению воздуха вдоль внутренней поверхности стен аэрофильтра, их делают с горизонтальными ребрами. Междудонное пространство обычно делают высотой 0,5-0,6 м и перекрывают железобетонными плитами с отверстиями. Плиты покоятся на бетонных столбиках или ребрах. Воду на такие биофильтры подают, как правило, при помощи сприн-клерного распределителя.

Расчет аэрофильтра также ведут по окислительной мощности. Вследствие того что процесс окисления в аэрофильтре идет более интенсивно, чем в биофильтрах других типов, ОМ принимают обычно до 600 г. кислорода в сутки на 1 м3 загрузочного материала. Расход воздуха в сутки в среднем составляет 25- 30 м3 на 1 м3 загрузки. Такие аэрофильтры обычно работают с повышенными нагрузками (до 4-5 м3 воды в сутки на 1 м3 загрузки), поэтому во избежание быстрого заиления тела загрузки сточная вода, поступающая на аэрофильтры, не должна быть высококонцентрированной, т.е. БПК поступающей воды не должна быть выше 100-120 мг!л. Для этого высококонцентрированную сточную воду либо подвергают предварительной очистке на аэротенках (как это делается на Кожуховской станции аэрации), либо концентрированный сток разбавляют очищенной водой (Щукинская биологическая станция).

Аэрофильтры можно загружать шлаком или щебнем. Размеры зерен загрузки принимают различные. Так, например, на Кожуховской станции основной слой загружен щебнем или шлаком крупностью 25 мм; на Щукинской станции в одних секциях имеется загрузка крупностью 50-60 мм, в других - 25-45 мм и т. д.

Высоконагружаемые биофильтры начали внедряться в практику строительства в последнее время. Их отличие от обычных фильтров состоит прежде всего в том, что в них предусматривается иногда не полная биологическая очистка, как в обычных биофильтрах, а частичная очистка. Процесс минерализации органических загрязнений в этих биофильтрах по существу заканчивается стадией окисления легко окисляемых органических веществ; в этом случае сточная вода очищается не полностью. Вследствие этого нагрузка как по воде, так и по загрязнениям на 1 м2 поверхности биофильтра принимается увеличенной.

Рис. 5. Схема высоконагружаемых фильтров, работающих с рециркуляцией

При повышенной нагрузке в теле биофильтра происходит быстрое накопление биологической пленки, что может привести к заилению биофильтра. Промывка его обеспечивается разбавлением поступающих сточных вод очищенной водой, т.е. так называемой рециркуляцией и загрузкой биофильтра гладким материалом (щебнем). Следует указать, что в отдельных случаях увеличение высоты биофильтра может дать такие же результаты, как и применение рециркуляции.

Опыты, проведенные Академией коммунального хозяйства, показали, что для успешной работы таких фильтров необходимо, чтобы концентрация поступающей воды по ВПК не превышала 200 мг/л. Если концентрация сточной воды выше, то необходимо применять разбавление стока, т.е. рециркуляцию.

Исследования таких биофильтров в эксплуатационных условиях Щукинской биологической станции, произведенные кафедрой канализации Московского института инженеров городского строительства совместно с коллективом работников Щукинской станции, показали, что даже при нагрузке до 4,5 м3 на 1 м3 материала качество очищенного стока вполне удовлетворительно. В качестве загрузки наиболее рационально применять гранитный щебень крупностью 25-50 мм. При концентрации сточной воды по ВПК до 170 мг/л рециркуляция не обязательна.



- Биофильтры

Биофильтры – достаточно важная конструкция, успешно применяемая для очистки сточных вод. Поэтому важно понимать особенности их действия и применения.

Фильтр биологической очистки сточных вод представляет собой конструкцию, служащую для очищения сточных вод при помощи специальной биопленки, состоящей из колоний микроорганизмов. Вышеуказанная биопленка разлагает органические компоненты, которые в дальнейшем служат источником питательных веществ для колоний микроорганизмов. Со временем часть пленки биореактора отмирает и отслаивается.

В дальнейшем эти части смываются сточной водой и не задерживаются в системе фильтрации. В роли загрузки для биофильтра могут использоваться те материалы, что обладают малой плотностью вкупе с высокой пористостью – к примеру, отлично подойдут гравий, керамзит, щебень, шлак либо рулоны пластиковой сетки.

Какие же бывают биофильтры

Для того, чтобы выбрать нужный именно вам биофильтр, стоит обратиться к их классификации. Выделяют следующие виды:

  • биофильтры двухступенчатой очистки, незаменимы в тех случаях, когда необходимо достигнуть высокой степени очистки, но при этом невозможно увеличить высоту системы;
  • биореакторы капельной фильтрации, которые обладают сравнительно малой производительностью, однако, способны обеспечить полную очистку.

По типу загрузочного материала, используемого для установки в биофильтре, можно классифицировать их следующим образом:

  • биофильтры с объемной нагрузкой, в которых широко используются щебень прочных горных пород, шлак, галька, керамзит;
  • биофильтры с плоскостной нагрузкой, для работы которых применяются пластмассы, способные выдержать температуру от 6 до 30 градусов С, при этом не теряя запаса прочности.

Конструкция биофильтра

Знание конструкции биофильтра необходимо для его правильной установки. Из каких же составных частей он состоит?

  • тело фильтра, либо же загрузка – это помещенный в резервуар материал высокой пористости и малой плотности, к примеру, керамзит, гравий, шлак и т.д.;
  • водораспределитель, который будет отвечать за равномерное орошение поверхности загрузки биореактора сточными водами;
  • для удаления уже профильтрованной воды необходимо дренажное устройство;
  • воздухораспределитель, необходимый для достаточного поступления в систему кислорода, в присутствии которого происходят окислительные процессы.

Принцип работы

После того, как сточные воды прошли первичную очистку в специальном отстойнике, в котором происходит удаление тяжелых и крупных фракций загрязняющих веществ, они в дальнейшем поступают на последующую биологическую очистку. Загрязненная вода на своем пути проходит через загрузку биофильтра и оставляет содержащиеся в ней нерастворенные примеси, которые не ушли в осадок в отстойнике для воды.

В загрузке также остаются растворенные и коллоидные органические компоненты, которые адсорбируются биопленкой биореактора. Колонии микроорганизмов биологической пленки активно поглощают органические материалы, и расходуют полученную энергию для своей жизнедеятельности. Происходит активный рост колоний микроорганизмов системы биореактора – таким образом, достигается постоянное возобновление численности микроорганизмов, без которых работа фильтра попросту невозможна.

Микроорганизмы можно подразделить на типы, в зависимости от их взаимодействия с кислородом:

  • аэробные микроорганизмы для своей жизнедеятельности нуждаются в кислороде, без него их существование невозможно. Анаэробные микроорганизмы используются в системе биореакторов;
  • анаэробные микроорганизмы чувствуют себя комфортно при отсутствии свободной циркуляции кислорода, наоборот, в условиях, когда доступа кислорода нет, происходит их активное размножение.

Поэтому при установке биофильтра необходимо обеспечить достаточный доступ кислорода в систему фильтрации – для этого конструкция оснащена воздухораспределителем. Это способствует активному размножению и полноценному жизнеобеспечению аэробной микрофлоры биофильтра, и препятствует активности анаэробов. Последние отвечают за появление гнилостных образований и зловонного запаха сточных вод — следите за исправностью воздухораспределителя.

Принципы эффективной очистки сточных вод

Вода – источник жизни для всех жителей нашей планеты. И в данном случае мы говорим не только лишь о человеке, животных или растениях – микроорганизмы также нуждаются во влаге, которая является отличной средой для их размножения. Нередко микроорганизмы относятся к группе болезнетворных, поэтому стоит обеспокоиться о качественной и эффективной очистке сточных вод в вашем доме.

Еще врачи далекого прошлого заметили, что здоровье населения на определенной территории напрямую связано с водными запасами данной местности. Провести установку биологической фильтрации – значит, надежно обезопасить себя от размножения болезнетворных микроорганизмов.

От чего же зависит эффективность очистки сточных вод в таком фильтре? На это влияет целая группа факторов:

  • биологическая потребность в кислороде очищаемой воды;
  • скорость окислительных реакций в данной среде;
  • потребность микроорганизмов в кислороде;
  • толщина биологической пленки биофильтра;
  • температура воды и окружающей среды;
  • состав колоний микроорганизмов биопленки.

Как мы видим, на эффективность очистки влияет множество факторов. Поэтому стоит со всей ответственностью подойти к выбору данного биологического очистителя, подходящему именно для ваших условий с целью наиболее качественной очистки.

Что из себя представляет биофильтр? Это приспособление имеет ёмкость определённой формы, которая при использовании биоматериалов очищает сточные воды.

Что из себя представляет биофильтр? Это приспособление имеет ёмкость определённой формы, которая при использовании биоматериалов очищает сточные воды. Данные биоматериалы состоят из различных микроорганизмов. С помощью перепадов температуры атмосферы и очищаемой жидкости, в процессе очистительных работ осуществляется бесперебойная циркуляция воздуха. Это нужно для того, чтобы микроорганизмы в ёмкости получили кислород, который необходим им для жизни.

Разновидности биологических фильтров.

В биофильтрах существуют различные материалы, которые в них загружают. Можно выделить такие, как:

  1. Фильтры, использующие объёмную нагрузку. В них может содержаться галька, щебень и так далее.
  2. Технология плоской нагрузки. Производятся из крепких видов пластмассы, функционирующие в температурном спектре от 6 до 30 градусов.
  3. По технологическим схемам разделяют:

  • Биофильтры с двумя этапами очистки, производящие воду высокой степени очищенности. Их обычно используют при тяжёлых погодных условиях или ограниченности высоты прибора.
  • Биологические фильтры с одним этапом.

По качеству очистки разделяют следующие виды:

  • Полная очистка.
  • Не полная очистка.

По типу передачи воздуха фильтры подразделяются на:

  • С природной подачей.
  • С искусственной циркуляцией воздуха.

Так же можно выделить 2 режима функционирования биофильтров:

  • С рециркуляцией - сильно загрязнённая жидкость подаётся небольшими объёмами для более качественной очистки.
  • Без рециркуляции - применяется, если вода загрязнена не очень сильно.

В зависимости от количества очищенной воды за промежуток времени выделяют:

  • Капельные - с небольшой проходимостью воды.
  • Высоконагружаемые - с возможностью очистки больших объёмов.

Биологические фильтры применяющие объёмную нагрузку подразделяются на:

  • Капельные. Им свойственна небольшая производительность. Если размер слоя будет 2 метра, то их загрузка составит 2-3 сантиметра.
  • Высоконагружаемые. При 4-ёх метровом слое их загрузка составит 4-6 сантиметра.
  • Башенные фильтры производятся высотой в 16 метров и имеют зернистость 4-6 сантиметров.

Все вышеперечисленные разновидности биофильтров могут быть реализованы, смонтированы и запущены нашей компанией сайт.

Фильтры использующие плоскую загрузку.

Усиленная загрузка производится элементами труб, кольцами и похожими компонентами. В резервуар закладывают металлическую или пластмассовую крошку. Слой очистки может составлять до 6 метров.

Смягчённая нагрузка производится металлической сеткой, синтетикой или пластмассовой плёнкой. Нагрузку закладывают рулонным методом или прикрепляют на корпус. Высота нагрузки составит 8 метров, а пористость не менее 95 процентов.

Биологические фильтры для погружения - ёмкости с вогнутым дном. Металлические, пластмассовые или асбестовые диски прикрепляются выше уровня очищаемой жидкости. Эти диски прикрепляются на расстояние 1-2 сантиметра друг от друга.

Схема функционирования биофильтра.

Подача воды может быть двух типов: струйным и капельным. Воздушные массы собираются с поверхности. Очищенные до этого сточные воды с низким загрязнением сами протекают в распределительное отделение, которое частями выдаёт её поверх массы загрузки. После этого, водная масса течёт в систему дренажа, затем на лотки за границами биофильтра. С другого отстойника убирается биоплёнка.

Биологические фильтры капельного типа подразумевают работу с небольшой, органической загрузкой. Для того, чтобы фильтр своевременно очищался от мертвой плёнки, производится гидравлическая загрузка.

Биофильтры капельного типа не могут быть отрегулированы под переменчивость внешних факторов. При использовании смотрят на степень загрязнённости и состояние фильтров. Намного выгоднее производить полную смену загрузки, так как её очистка стоит очень дорого. В фильтр должны заливаться сточные воды с концентрацией взвешенных частиц не более 100 миллиграмм на литр.

Очень значимым фактором при использовании является аэризация биофильтра. Количество кислорода не должно быть ниже, чем 2 миллиграмма на литр. Время от времени важно производить очистку углубления под дренажем и над дном.

Биофильтр капельного типа очень тяжело реагирует на зимние холодные ветра. Для качественной эксплуатации фильтра устанавливают защиту от ветра. Разная нагрузка ведёт за собой заболачивание биофильтра, которую можно убрать сменой загрузки. Эксплуатации фильтра так же могут вредить посторонние вещества в загрузке и дозирующих ёмкостях.

Высоконагружаемые биологические фильтры

Данному виду биофильтров характерен увеличенный воздухообмен и, следственно, окислительная мощность. Производится увеличенный воздухообмен большой фракцией загрузки и увеличенной нагрузки воды.

Очищаемые водные массы передвигаются на высокой скорости и сносят трудно-окисляемые вещества и биоплёнку. На остальное загрязнение тратится кислород.

Фильтрам с высокой нагрузкой характерен высокий слой загрузки, увеличенная зернистость дренажа и дно специального типа для того, чтобы была произведена искусственная циркуляция воздушных масс.

Промывка данного типа биофильтра может осуществляться только при бесперебойной и постоянной подаче воды.

Чем выше высота загрузки, тем эффективнее биологический фильтр и наоборот.

Устройство и функционирование фильтров

К составу биофильтров могут относиться:

  • Тело биофильтра - загрузка для фильтрации, которая находится в ёмкости, открытой для поступления в неё водных масс. Наполнители обязаны быть с невысокой плотностью и увеличенной площадью поверхности.
  • Приспособление, которое распределяет воду. Оно обеспечивает планомерное орошение загрузки неочищенной водой.
  • Дренаж.
  • Приспособление, которое распределяет воздушные массы. Производит реакции окисления с помощью кислорода. Эти реакции в биологических фильтрах похожи на орошение земельных угодий, но в более высоком темпе.

Принцип работы биологического фильтра

Загрузка производит очистку воды от не растворившихся веществ, которые прошли через отстойники. Микроорганизмы в ней существуют с помощью окисления органики. Остальные органические вещества служат для повышения биологической массы. Производится 2 эффективных процесса: в воде убиваются ненужные органические вещества и повышается биоплёнка. Массы сточной воды заберут с собой мёртвую часть биоплёнки. Вентиляция подаёт кислород двумя способами: искусственным и естественным.

Расчёт фильтров

Биофильтры капельного типа

Расчёт нужен для того, чтобы найти эффективный размер загрузки и параметров устройства водораспределения, а так же размера лотка, для отвода жидкости. Размер загрузки вычисляется по мощности окисления - ОМ. Мощность окисления - это количество обязательного кислорода в день. На неё оказывает влияние температура жидкости и воздуха, материалы загрузки, способы подачи воздуха и так далее. При среднегодовой температуре ниже трёх градусов, биологический фильтр должен быть перенесён в более обогреваемую среду с 5-кратной подачей воздуха.

Для биологических фильтров с высокой нагрузкой существует точный метод подсчёта:

Рассчитывается предельная концентрация загрязнения входящей водной массы. Далее, с помощью формул определяется коэффициент рециркуляции. Существуют методики подсчёта биофильтров, для которых используются усложнённые формулы, но которые дадут результаты высокой точности.

Вентилирование биофильтров

Как упоминалось выше по тексту, биологические фильтры имеют 2 типа передачи кислорода, естественный и искусственный. Тип вентилирования выбирают в зависимости от вида биофильтра и погодных условий.

Для фильтров с высокой нагрузкой применяют вентиляцию с невысоким давлением. Что касается аэрофильтров, то для них используют искусственное вентилирование. Установка фильтра в замкнутом пространстве подразумевает обязательную подачу воздушных масс в него.

Должна производиться постоянная циркуляция воздуха, ведь перебои могут повысить температуру до 60 градусов и вызвать появление неприятных запахов от гниения биологической плёнки.

Фильтр эффективно функционирует при температурах более шести градусов. В случаях, когда температура жидкости ниже шести градусов, нужно подогревать её перед подачей.

Для того, чтобы в холодные времена года биофильтр не замерзал, используют защиту от ветра и понижают коэффициент неравномерной подачи воды. Далее проводят ограничения по поступлению прохладного воздуха: за 60 минут на 1 кв. метр производится подача не более 20 куб. метров. Вентилируемые решётки оснащаются жалюзями, защитой из ткани.

Ширина биологической плёнки прямо влияет на равновесие в биофильтре. Чем больше ширина, тем больше вероятность, что воздушные массы перестанут поступать и начнётся процесс гниения. С этой проблемой чаще всегда сталкиваются при использовании фильтров капельного типа.

Раньше думали, что естественное поступление кислорода возможно только из-за различных температур. Но в итоге стало известно, что на него оказывает влияние процессы диффузии.

Данное очистное сооружение Flotenk-BF применяется при проектировании и строительстве комплексных систем очистки хозяйственно-бытовых сточных вод.

В работе очистных сооружений применяется метод гравитационного отстаивания и биологической очистки с использованием биоферментных препаратов.

Технические характеристики

Биофильтр представляет собой водонепроницаемую ёмкость, изготовленную методом машинной намотки. Материал: полиэфирный стеклопластик, изготовлен с использованием полиэфирных смол и стеклоармирующих материалов. Расчеты по очистному сооружению выполнены в соответствии со СНиП 2.04.03-85 Канализация. Наружные сети и сооружения.

В комплект поставки биофильтра "Flotenk-BF" входит:

  • корпус, со встроенным стеклопластиковым люком
  • патрубок входной, с тройником, ПВХ
  • заглушка ПВХ на выходном отверстии
  • насос
  • установка обеззараживания воды
  • керамзит

Не забудьте посмотреть:




Сточная вода из жилого дома после очистки в септике по канализационным трубам самотеком поступает в биофильтр, где равномерно распределяется по поверхности инертной загрузки. Благодаря присутствию бактерий в исходной сточной воде, на загрузке в течение первых двух-трех недель эксплуатации образуется биопленка. Бактерии, а также возможные грибы, образуют нижний трофический уровень. Они окисляют поступающие в биофильтр органические соединения, служат пищей для находящихся в биопленке различных видов простейших, коловраток, инфузорий и др., благодаря чему происходит постоянное омолаживание биопленки.

По мере просачивания сточной воды через загрузку происходит аэробное окисление углерода и водорода с образованием углекислоты и воды, затем окисление аммонийного азота сначала до нитритов, а затем до нитратов.

Из биофильтра сточная вода стекает в водоприемный колодец, в котором расположен насос, выкачивающий очищенный сток на точку сброса.

В случае использования биофильтра в качестве блока доочистки и обеззараживания в комплексах BioPurit и BioDrafts в камеру дополнительно устанавливается УФ-лампа.


Очистное сооружение FloTenk-BF обслуживается по истечении 1-го года эксплуатации (при нагрузке менее 20% от максимальной в сутки срок обслуживания очистного сооружения может быть продлен до 1,5-2-х лет).

Обслуживание биофильтра FloTenk-BF заключается в визуальном контроле поверхности керамзита не реже одного раза в год. При увеличении объема биопленки на поверхности керамзита до объема препятствующему, свободному прохождению потока сточных вод, необходимо: 1-утилизировать излишки биопленки с поверхности керамзита. 2- промыть струей воды керамзитовую загрузку. При засорении инертной загрузки (керамзита) строительными смесями (мел, цемент, и пр.) а также неочищенными сточными водами керамзит необходимо заменить. При визуальном контроле биопленка выглядит как илистые отложения темно-коричневого цвета.


Действие любой системы очистки сточных вод, в том числе и биологической, основано на том, что различные культуры микробов разлагают и удаляют коллоидные и растворенные органические вещества из сточных вод. От активности микрофлоры зависит работа установки, степень очистки сточных вод, а также наличие или отсутствие неприятных запахов.

Наиболее важными факторами, влияющими на биологическую активность микроорганизмов, являются:

  • температура сточной воды (оптимально 10-35 С)
  • наличие органики в сточных водах
  • поступление в установку кислорода
  • значение рН (кислотность)
  • отсутствие токсичных веществ

Для того чтобы создать наиболее благоприятные условия для микроорганизмов и работы очистной биологической установки, рекомендуется выполнять следующие условия:

  • не бросать в канализацию остатки пищи, мусора
  • не допускать недогрузки или перегрузки установки. При длительном отсутствии стоков бактерии начинают гибнуть
  • регулярно пользоваться горячей водой, чтобы температура стоков была оптимальна
  • стирать порошками с нормируемым пенообразованием (для машин-автоматов)
  • не пользоваться отбеливателями на основе хлора, химическими препаратами на основе формальдегида
  • не допускать попадания в канализацию сильнодействующих кислот (типа щавелевой), растворителей, щелочей, токсичных веществ

Для обработки сантехники и очистки труб предпочтительней всего пользоваться препаратами, специально разработанными для биологических систем. Появление сильного запаха из продуха установки свидетельствует о снижении эффективности работы биофильтра в результате нарушения одного из вышеперечисленных условий эксплуатации.


Биофильтр для доочистки хозяйственно-бытовых стоков до концентраций, допустимых для отведения в водоемы рыбохозяйственного, хозяйственно-питьевого и культурно-бытового назначения.

Наименование Стоимость, руб. с НДС Примечание
1 FloTenk-BFU, биофильтр ∅ 1200 мм
(до 12м3/сут.)
с подводящей трубой
до 1000 мм
199 900 Фильтр доочистки
2 FloTenk-BFU, биофильтр ∅ 1600 мм
(до 24м3/сут.)
с подводящей трубой
до 1000 мм
279 900 Фильтр доочистки
3 FloTenk-BFU, биофильтр ∅ 2000 мм
(до 32м3/сут.)
с подводящей трубой
до 1000 мм
449 900 Фильтр доочистки
4 FloTenk-BFU, биофильтр ∅ 2300 мм
(до 48м3/сут.)
с подводящей трубой
до 1000 мм
549 900 Фильтр доочистки
5 FloTenk-BFU, биофильтр ∅ 3000 мм
(до 60м3/сут.)
с подводящей трубой
до 1000 мм
699 900 Фильтр доочистки

Под заказ изготавливаются биофильтры с любыми подводящими трубами от уровня земли. Цена по запросу.