Уровень воды в баке индикатор своими. Простой датчик уровня воды своими руками

В вашем домашнем хозяйстве может возникнуть необходимость в различного рода датчиках уровня воды или другой жидкости, каковые можно без особых сложностей сделать своими умелыми руками. Поискал в сети и предлагаю вам для использования несколько вариантов схем для разного рода нужд, связанных с уровнем жидкости, их отслеживанием, контролем, регулированием и прочим.

Варианты схем таковы: светодиодная индикация шести уровней жидкости, автоматическое управление насосом и пару простых схем просто звуковой индикации при наполнении емкости водой.

Для решения необходимости регулировать автоматически уровень воды с помощью откачки либо, наоборот, наполнения насосом, а также просто контроля, будь то визуальный по световой индикации, либо с помощью звуковых сигналов, подобраны схемы на не очень продвинутого пользователя, как и прочие на этом сайте. Постарался подобрать варианты как на интегральных микросхемах, так и на транзисторах.

Для включения и выключения насоса, более удобно использовать при согласовании с управляющей схемой, исполнительное реле на электромагните. Все найденные схемы, используют такую коммутацию. И это логично, так как электронные ключи в случае с двигателями вещь менее надежная. Важно только подобрать реле, подходящее по параметрам к двигателю насоса, чтобы потом не пришлось искать замену при порче его контактов.

Индикатор шести уровней жидкости со световой индикацией

При кажущемся обилии проводов и элементов на приведенной схеме, на самом деле, она до смешного проста. Поскольку из активных элементов лишь одна логическая микросхема, остальные элементы все пассивны, к тому же схема абсолютно не требует никакой наладки, поскольку это «логика» в чистом виде. А все номиналы элементов каждого из шести каналов при каждом логическом элементе одинаковы, так что требуется просто подключить вход и выход каждого и повторить это шесть раз. Далее понятно: контакт 7 общий, а 1-6 это уровни, каждый их них можно расположить на нужной высоте непосредственно в емкости для световой индикации. Светодиоды можно расположить в ряд (либо на другой манер), которые и будут индицировать уровень жидкости в наполняемой емкости: светится от 1 до 2 штук одновременно. При желании можно конечно же применить светодиоды разных цветов.

Разумеется, при сегодняшнем обилии светодиодов, можете применить любые, которые вас устроят. Возможно, для подгона рабочего тока для них, потребуется подбор резистора R13.

Автоматическое управление водяным насосом

Приведенная схема тоже в общем-то не так и сложна, также основа ее логическая микросхема К561ЛЕ5 она состоит из четырех элементов логики 2ИЛИ-НЕ. Собрав и используя данную схему, можно либо наполнять, либо опустошать необходимый резервуар водой. Для передачи исполнения включения/выключения насоса добавлен лишь транзистор и реле.

В качестве датчиков используются два прута — длинный и короткий. Длинный – для минимального уровня, короткий – для максимального уровня воды. Берется за данность, что резервуар в нашем случае металлический. Если у вас не из металла, то в таком случае нужно добавить еще один прут, опустив его до самого дна.

Принцип схемы таков: при соприкосновении воды одновременно с длинным, а также с коротким датчиком, логический уровень на выводах 9 и 1,2 микросхемы DD1 изменяется с высокого на низкий, чем вызывает изменение режима насоса.

При уровне воды ниже обоих датчиков, в микросхеме DD1 на выводе 10 — логический ноль. При повышении уровня воды, даже при соприкосновении воды с длинным датчиком — на выводе 10, также логический ноль. Но при достижении уровня воды короткого датчика, на 10-м выводе появится логическая единица, тогда транзистор VT1 включает реле, а оно — управление насосом, который начинает откачивать воду из резервуара.

Уровень воды начинает уменьшаться, короткий стержень не контактирует с водой, но на выводе 10 все же остается логическая единица, поэтому насос продолжает работать. А вот по достижении уровня воды ниже длинного стержня, на выводе 10 уже появится логический ноль, вот тогда насос остановит работу.

Переключатель же S1 позволяет переключить всю логику схемы и, соответственно, работы насоса на обратную.



Данная схема также предполагает два контакта: при погружении их в воду, запускается работа звукового генератора, звук излучает динамик ВА1. При указанных на схеме номиналах, частота генерируемого звукового сигнала около 1кГц.

Интегральная микросхема К561ЛА7 состоит их четырех элементов логики «И-НЕ». Чувствительность схемы датчика очень высокая, это обеспечивается использованием в логической микросхеме К561ЛА7 униполярных (полевых) транзисторов с изолированным затвором (КМОП).

Транзистор КТ972, примененный в схеме, составной. Но его можно заменить, соединив два транзистора (КТ3102 и КТ815) как на схеме слева.

Питается схема напряжением 3-15 В. При напряжении питания выше 6-ти Вольт, можно ограничить ток динамика и транзистора, включив последовательно динамической головке резистор.

Иногда требуется узнать, сколько воды или иной токопроводящей жидкости осталось в какой-либо закрытой емкости. Например в металлической бочке закопанной в землю либо поднятой на высоту так, что не возможно определить ее содержимое. Для решения этой проблемы рекомендую собрать схему простого датчик уровня воды. Устройство состоит всего из нескольких радиокомпонентов: резисторов, транзисторов и трех светодиодов.


Из-за меняющегося давления в отопительной системе и нагрева жидкости расширительный бочек делают открытым, поэтому через какое-то время часть воды выкипает, и это приводит к остановке циркуляции воды и перегреву нагревательных элементов. Данное устройство покажет когда уровень воды снизиться ниже датчика.

VT1 и VT2 практически любые маломощные,BC547, BC337-40 или C9014. IC1- LM358 или 741. Светодиоды любые на напряжение 3-4В. Все резисторы мощностью 0.125Вт.

Транзисторы VT1 и VT2 образуют усилитель с гальванической связью. Сопротивление R2 задает смещение на базу второго транзистора и в то-же время являясь нагрузкой первого. Резистор R3 предназначен для нагрузки VT2.

Если контакты устройства находятся в воде или иной токопроводящей жидкости, то плюс питания окажется соединен с резистором R1 через воду, поэтому на базу транзистора VT1 поступает напряжение и он отпирается, при этом VT2 остается закрытым и не инвертирующий вход операционного усилителя будет подключен к минусу через сопротивление R3. На выходе операционного усилителя будет присутствовать логический ноль и первый светодиод засветится, говоря о нормальном уровне воды.

Если уровень жидкости снизится и водяной контакт разомкнется, то напряжения смещения перехода на базе VT1 исчезнет и он будет закроется. Соответственно база VT2 будет соединена с плюсом питания и он отпирается, соединив не инвертирующий вход ОУ с плюсом, и поэтому на его выходе формируется уровень логической единицы, второй светодиод начинает сигнализировать о снижении уровня жидкости.

Индикатор уровня воды можно также подключить и к звуковой индикации. Подсоединив вывод OUT индикатора уровня к выводу блока аудио сигнализации ().

В роли датчика подойдут обычные два провода можно применить толстый двужильный провод, оголив концы. Датчик монтируемый на необходимый нам уровень контроля.

Датчик уровня воды своими руками

Внешний вид датчика уровня жидкости показан на фотографиях ниже. В качестве зондов применяется проволока из нержавеющей стали, которая припаивается к контактам разъема, после чего это пространство заполняется герметиком или клеем.


В состав конструкции входят три зонда: - общий, - включение и - выключение. Изолирующие втулки изготовлены из внутренней изоляции коаксиального кабеля большого диаметра. Конструкция соединяется с блоком автоматики при помощи экранированного кабеля с двумя изолированными жилами. Экранирующая оплетка подключена к общему зонду.

Датчик уровня жидкости с звуковым оповещением

В роли датчика используются два металлических стержня погруженных в жидкость. Принцип работы преобразователя основана на способности подовляющего большинства жидкостей проводить ток. Высокая чувствительность преобразователя обеспечивается применением логической микросборки КМОП на полевых транзисторах с изолированным затвором. Отечественная микросборка К561ЛА7 состоит из четырех логических элементов «И-НЕ». На DD1.1 и DD1.2 собран классический генератор прямоугольных импульсов, работающий на частоте 3 Гц.

Генератор, выполненный на DD1.3 и DD1.4, работает на частоте 1 кГц. Если погружаемый датчик соприкасается с жидкостью, емкость C1 начинает заряжатся и запускает генератор DD1.1 – DD1.2, который, каждые 350 миллисекунд запускает генератор на DD1.3 – DD1.4. Поэтому на выходе радиолюбительской самоделки появляется генерируется прерывистый звуковой сигнал. Чувствительность можно настраивать подбором сопротивления R1. Чем больше его номинал, тем выше чувствительность. Емкость C1 защищает высокоомный вход микросборки от вероятных помех.

Более простой вариант схемы:

Для сборки этого датчика уровня воды вам потребуется: полевой транзистор IRF540N или аналогичный, например IRFZ44N; Любой Активный зуммер (пищалка); Сопротивление на 1 МОм; Источник питания 12В, например аккумуляторная батарея.


Принцип работы схемы для контроля уровня жидкости показан в видео инструкции ниже:

Для изготовления датчика, или индикатора уровня воды в баке, цистерне, бассейне и другой ёмкости, можно применить микросхему 4093 (отечественная 561ТЛ1) либо на микроконтроллере Ардуино. Начнём с первого варианта.

Необходимые для датчика материалы

  • 2 микросхемы 4093;
  • 2 панельки для микросхем;
  • 7 по 500 ом резисторы;
  • 7 по 2,2 Мом резисторы;
  • батарея 9 В;
  • гнездо для батареи;
  • плата для схемы 10 х 5 см;
  • 8 латунных винтов для датчиков;
  • двухсторонний скотч или шурупы для крепления коробки к стене;
  • сетевой кабель. Длина кабеля зависит от расстояния от резервуара для воды до места, где будет расположен дисплей.

Итак, основа - это CI4093, что имеет четыре элемента. В этом проекте использовано две микросхемы. Тут мы имеем порты с одним входом на высоком уровне, а другие подключенные через резистор, обеспечивая высокий логический уровень. При помещении в эту логику нулевого входного сигнала, выход инвертора будет на высоком уровне и включает светодиод. Всего использовано семь из восьми элементов, из-за ограничений в кабельной сети.

Сбоку размещена линейка светодиодов разных цветов, указывающая на уровень воды. Красные индикаторы - воды совсем мало, жёлтые - бак наполовину пуст, зелёные - полный. Центральная большая кнопка используется для подключения насоса и накачки бака.


Схема работает только при нажатии на центральную кнопку. Остальное время она находится в дежурном режиме. Но даже при срабатывании цепи индикации, ток минимален и батарейки хватит на долго.

Схема подключения датчика

Провода проходят внутри труб. Старайтесь расположить датчики таким образом, чтоб вода, попадающая в поле с помощью поплавкового клапана, никак не могла пройти мимо датчиков. Внутри трубы с датчиками, чтобы сделать нужный вес, был насыпан песок.

В собранном виде схема находится в коробке и установлена на стене.

Второй вариант схемы датчика уровня

Это полностью функциональный контроллер уровня воды, управляемый МК Arduino. Схема отображает уровень воды в баке и переключает двигатель, когда уровень воды опускается ниже заданного уровня. Она автоматически отключает мотор, когда бак полный. Уровень воды и другие важные данные отображаются на ЖК-дисплее 16х2 точек. В авторском варианте схема контролирует уровень воды в дренажном баке (резервуаре). Если уровень бака низкий, электродвигатель насоса не включится, что обеспечивает защиту двигателя от холостого хода. Дополнительно звуковой сигнал генерируется, когда уровень в дренажном баке слишком низкий.

Схема уровня воды с помощью контроллера Arduino показано выше. Датчик в сборе состоит из четырех алюминиевых проволок длинной в 1/4, 1/2, 3/4 и полный уровень в баке. Сухие концы этих проводов подключены к аналоговым входам A1, A2, A3 и A4 Arduino соответственно. Пятый провод размещен в нижней части бака. Резисторы R6 - R9 уменьшают потенциал входов. Сухой конец провода подключен к +5V DC. Когда вода касается конкретного зонда, происходит электрическое соединение между зондом и +5V, потому что вода обладает некоторой электропроводностью. В результате ток течет через зонд и этот ток преобразуется в пропорциональное ему напряжение. Arduino читает падении напряжения по каждому из входных резистор для зондирования уровня воды в баке. Транзистор Q1 включает зуммер, резистор R5 ограничивает ток базы Q1. Транзистор Q2 управляет реле. Резистор R3 ограничивает ток базы Q2. Переменник R2 используется для регулировки контрастности ЖК-дисплея. резистор R1 ограничивает ток через его LED подсветку. Резистор R4 ограничивает ток через светодиодный индикатор питания. Полную

С помощью любимого таймера 555 можно изготовить датчик для воды, для омывайки, тосола и т.д. Стоит отметить, что подобный датчик пригодится как в Вашем автомобиле, так и в бытовых условиях. Схема довольно проста и доступна для повторения. Микросхема получила широкое распространение именно благодаря своей простоте.

Для датчика воды будет использоваться такая схема.

Работа устройства предельно проста. При погружении электродов в жидкость, С1 – конденсатор, зашунтирован. Когда электроды находятся в воздухе, то шунт исчезает, и микросхема начинает работать.

От микросхемы исходят прямоугольные импульсы. С помощью таких импульсов можно управлять при помощи более большей нагрузки. К примеру, можно подавать сигнал на лампочку через транзистор. Такая технология позволяет включить в схему сигнализацию или индикатор. С помощью последнего можно определять наличие воды в баке. Подобный датчик можно установить как в баке, так и в радиаторе. Питание датчика – 12 вольт. Это говорит о том, что с питанием не возникнет вопросов.

Как правило, датчики изготавливают из стеклотекстолита. Но чаще всего используют обычную медь (провода). Для датчика подойдет два одинаковых отрезка провода с сечением 1 миллиметр. Важно заметить, что с проводов нужно счистить лак, который может быть на поверхности металла. Делается это с помощью огня или же наждачной бумаги. Так, длина проводом должна быть до 3,5 сантиметров.


Чтобы провода держались в пробке, их укрепляют силиконом. Потом провода крепятся к самой микросхеме. Провода в крышке можно соединить с микросхемой более тонкими проводниками.

Микросхема может быть навесной – без установочной платы. Когда все будет готово, другой подобной крышкой закрывают полученное устройство. Соединение крышек необходимо герметизировать клеем или другими средствами.

Таким образом, не совершая излишних затрат можно самостоятельно изготовить датчик, который поможет не только в автомобиле, но и в быту. Так, можно избавить себя от частых подъемов на душ для того, чтобы посмотреть уровень воды в баке. Самодельный датчик уровня воды решит проблему. Важно лишь выполнять все работы аккуратно и внимательно, чтобы устройство работало исправно.

Для автоматизации многих производственных процессов необходимо контролировать уровень воды в резервуаре, измерение проводится при помощи специального датчика, подающего сигнал, когда технологическая среда достигнет определенного уровня. Без уровнемеров невозможно обойтись и в быту, яркий пример этому – запорная арматура бачка унитаза или автоматика для отключения насоса скважины. Давайте рассмотрим различные виды датчиков уровня, их конструкцию и принцип работы. Эта информация будет полезной при выборе устройства под определенную задачу или изготовлении датчика своими руками.

Конструкция и принцип действия

Конструктивное исполнение измерительных устройств данного типа определяется следующими параметрами:

  • Функциональностью, в зависимости от этого устройства принято делить на сигнализаторы и уровнемеры. Первые отслеживают конкретную точку заполнения резервуара (минимальную или максимальную), вторые осуществляют беспрерывный мониторинг уровня.
  • Принципом действия, в его основу может быть положены: гидростатика, электропроводность, магнетизм, оптика, акустика и т.д. Собственно, это основной параметр, определяющий сферу применения.
  • Методом измерения (контактный или бесконтактный).

Помимо этого, особенности конструкции определяет характер технологической среды. Одно дело – измерять высоту питьевой воды в баке, другое – проверять наполнение резервуаров для промышленных стоков. В последнем случае необходима соответствующая защита.

Виды датчиков уровня

В зависимости от принципа действия, сигнализаторы принято делить на следующие виды:

  • поплавочного типа;
  • использующие ультразвуковые волны;
  • устройства с емкостным принципом определения уровня;
  • электродные;
  • радарного типа;
  • работающие по гидростатическому принципу.

Поскольку эти типы наиболее распространены, рассмотрим каждый из них в отдельности.

Поплавковый

Это наиболее простой, но, тем не менее, действенный и надежный способ измерения жидкости в баке или другой емкости. С примером реализации можно ознакомиться на рисунке 2.


Рис. 2. Поплавковый датчик для управления насосом

Конструкция состоит из поплавка с магнитом и двух герконов, установленных в контрольных точках. Кратко опишем принцип действия:

  • Емкость опустошается до критического минимума (А на рис. 2), при этом поплавок опускается до уровня, где расположен геркон 2, он включает реле, подающее питание на насос, закачивающий воду из скважины.
  • Вода доходит до максимальной отметки, поплавок поднимается до места расположения геркона 1, он срабатывает и реле отключается, соответственно, двигатель насоса прекращает работать.

Такой герконовый сигнализатор сделать самостоятельно довольно просто, а его настройка сводится к установке уровней включения-выключения.

Заметим, что если правильно выбрать материал для поплавка, датчик уровня воды будет работать, даже при наличии слоя пены в резервуаре.

Ультразвуковой

Этот тип измерителей может использоваться как для жидкой, так и сухой среды, при этом у него может быть аналоговый или дискретный выход. То есть, датчик может ограничивать заполнение по достижению определенной точки или отслеживать его постоянно. Устройство включает в себя ультразвуковой излучатель, приемник и контроллер обработки сигнала. Принцип работы сигнализатора продемонстрирован на рисунке 3.


Рис. 3. Принцип работы ультразвукового датчика уровня

Работает система следующим образом:

  • излучается ультразвуковой импульс;
  • принимается отраженный сигнал;
  • анализируется длительность затухания сигнала. Если бак полный, она будет короткой (А рис. 3), а по мере опустошения начнет увеличиваться (В рис. 3).

Ультразвуковой сигнализатор бесконтактный и беспроводной, поэтому он может использоваться даже в агрессивных и взрывоопасных средах. После первичной настройки, такой датчик не требует никакого специализированного обслуживания, а отсутствие подвижных частей существенно продлевает срок эксплуатации.

Электродный

Электродные (кондуктометрические) сигнализаторы позволяют контролировать один или несколько уровней электропроводящей среды (то есть, для измерения наполнения бака дистиллированной водой они не подходят). Пример использования устройства приведен на рисунке 4.


Рисунок 4. Измерение уровня жидкости кондуктометрическими датчиками

В приведенном примере задействован трехуровневый сигнализатор, в котором два электрода контролируют заполнение емкости, а третий является аварийным, для включения режима интенсивной откачки.

Емкостной

При помощи этих сигнализаторов можно определять максимальное заполнение емкости, причем, в качестве технологической среды могут выступать как жидкость, так и сыпучие вещества смешанного состава (см. рис. 5).


Рис. 5. Емкостной датчик уровня

Принцип работы сигнализатора такой же, как у конденсатора: проводится измерение емкости между пластинами чувствительного элемента. Когда она достигнет порогового значения, подается сигнал на контроллер. В некоторых случаях задействовано исполнение «сухой контакт», то есть уровнемер работает через стенку бака в изоляции от технологической среды.

Данные устройства могут функционировать в широком температурном диапазоне, на них не влияют электромагнитные поля, а срабатывание возможно на большом расстоянии. Такие характеристики существенно расширяют сферу применения вплоть до тяжелых условий эксплуатации.

Радарный

Этот вид сигнализаторов можно действительно назвать универсальным, поскольку он может работать с любой технологической средой, включая агрессивную и взрывоопасную, причем, давление и температура не будут влиять на показания. Пример работы устройства приведен на рисунке ниже.


Устройство излучает радиоволны в узком диапазоне (несколько гигагерц), приемник ловит отраженный сигнал и по времени его задержки определяет наполняемость емкости. На измеряющий датчик не влияет давление, температура или характер технологической среды. Запыленность также не отражается на показаниях, чего не скажешь о лазерных сигнализаторах. Также необходимо отметить высокую точность приборов данного типа, их погрешность составляет не более одного миллиметра.

Гидростатический

Эти сигнализаторы могут измерять как предельное, так и текущее заполнение резервуаров. Их принцип действия продемонстрирован на рисунке 7.


Рисунок 7. Измерение заполнения гиростатическим датчиком

Устройство построено по принципу измерения уровня давления, произведенного столбом жидкости. Приемлемая точность и небольшая стоимость сделали данный вид довольно популярным.

В рамках статьи мы не можем осмотреть все типы сигнализаторов, например, ротационно-флажковых, для определения сыпучих веществ (идет сигнал, когда лепесток вентилятора застрянет в сыпучей среде, предварительно вырыв приямок). Так же нет смысла рассматривать принцип действия радиоизотопных измерителей, тем более рекомендовать их для проверки уровня питьевой воды.

Как выбрать?

Выбор датчика уровня воды в резервуаре зависит от многих факторов, основные из них:

  • Состав жидкости. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях.
  • Объем резервуара и материал, из которого он изготовлен.
  • Функциональное назначение емкости для накопления жидкости.
  • Необходимость контролировать минимальный и максимальный уровень, или требуется мониторинг текущего состояния.
  • Допустимость интеграции в систему автоматизированного управления.
  • Коммутационные возможности устройства.

Это далеко не полный список для выбора измерительных приборов данного типа. Естественно, что для бытового назначения можно существенно сократить критерии отбора, ограничив их объемом резервуара, типом срабатывания и схемой управления. Существенное сокращение требований делает возможным самостоятельное изготовление подобного устройства.

Делаем датчик уровня воды в резервуаре своими руками

Допустим, есть задача автоматизировать работу погружного насоса для водоснабжения дачи. Как правило, вода поступает в накопительную емкость, следовательно, нам необходимо сделать так, чтобы насос автоматически выключался при ее заполнении. Совсем не обязательно для этой цели покупать лазерный или радиолокационный сигнализатор уровня, собственно, никакой приобретать не нужно. Несложная задача требует простого решения, оно показано на рисунке 8.


Для решения задачи понадобится магнитный пускатель с катушкой на 220 вольт и два геркона: минимального уровня – на замыкание, максимального – на размыкание. Схема подключения насоса проста и, что немаловажно, безопасна. Принцип работы был описан выше, но повторим его:

  • По мере набора воды поплавок с магнитом постепенно поднимается, пока не дойдет до геркона максимального уровня.
  • Магнитное поле размыкает геркон, отключая катушку пускателя, что приводит к обесточиванию двигателя.
  • По мере расхода воды, поплавок опускается, пока не достигнет минимальной отметки напротив нижнего геркона, его контакты замыкаются, и поступает напряжение на катушку пускателя, подающего напряжение на насос. Такой датчик уровня воды в резервуаре может работать десятилетиями, в отличие от электронной системы управления.