Теория множеств: сферы ее применения. «Теория систем и системный анализ

История

Наивная теория множеств

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия .

В 1870 году немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Этот подход изложен в двух его статьях, опубликованных в 1879-1897 годах в известном немецком журнале «Математические анналы» (нем. «Mathematische Annalen» ). Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано . При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre ).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер , полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее - дело рук человеческих»). Полностью отвергли теорию множеств и такие авторитетные математики, как Герман Шварц и Анри Пуанкаре . Тем не менее, другие крупные математики - в частности, Готлоб Фреге , Рихард Дедекинд и Давид Гильберт - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык. В частности, теория множеств стала фундаментом теории меры и интеграла , топологии и функционального анализа .

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с бесконечными множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной (см. Кризис математических основ). А именно, был обнаружен ряд теоретико-множественных антиномий : оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний , может быть «доказано» абсолютно любое утверждение).

Аксиоматическая теория множеств

Особенностью аксиоматического подхода является отказ от лежащего в основе программы Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишённой всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы континуум-гипотеза , или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC - теория Цермело - Френкеля с аксиомой выбора . Вопрос о непротиворечивости этой теории (а тем более - о существовании модели для неё) остаётся нерешённым.

Не всеми математиками аксиома выбора принимается безоговорочно. Так, например Эмиль Борель и Анри Лебег считают, что доказательства, полученные при помощи этой аксиомы, имеют другую познавательную ценность, чем доказательства, независимые от неё. Другие же математики, такие как Феликс Хаусдорф и Адольф Френкель, принимают аксиому выбора безоговорочно, признавая за ней ту же степень очевидности, что и за другими аксиомами Цермело - Френкеля.

Основные понятия

В основе теории множеств лежат первичные понятия: множество и отношение быть элементом множества (обозначается как - «x есть элемент множества A», «x принадлежит множеству A»). Среди производных понятий наиболее важны следующие:

  • пустое множество , обычно обозначается символом ;
  • семейство множеств;
  • операции:

    Для множеств определены следующие бинарные отношения :

    • править] Расширения

      Основная статья: Теория комплектов

      Теория комплектов - естественное расширение (обобщение) теории множеств. Подобно множеству, комплект - набор элементов из некоторой области. Отличие от множества: комплекты допускают присутствие нескольких экземпляров одного и того же элемента (элемент входит от нуль раз, то есть, не входит в комплект, до любого заданного числа раз) . (см. например, Мультисочетания).

      Приложения

      См. также

      Примечания

      Литература

      • К. Куратовский , А. Мостовский Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. - М .: Мир, 1970. - 416 с.
      • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.
      • А. Френкель, И. Бар-Хиллел Основания теории множеств / Перевод с английского Ю. А. Гастева под редакцией А. С. Есенина-Вольпина . - М .: Мир, 1966. - 556 с.

Wikimedia Foundation . 2010 .

  • Математический анализ
  • Подмножество

Смотреть что такое "Теория множеств" в других словарях:

    ТЕОРИЯ МНОЖЕСТВ - ТЕОРИЯ МНОЖЕСТВ, раздел математики, начало которому было положено работами Джорджа БУЛЯ в области математической логики, но в настоящее время больше связанный с изучением МНОЖЕСТВ абстрактных или реальных объектов, а не с логическими… … Научно-технический энциклопедический словарь

    теория множеств - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN set theory … Справочник технического переводчика

    ТЕОРИЯ МНОЖЕСТВ - теория, в к рой изучаются множества (классы) элементов произвольной природы. Созданная прежде всего трудами Кантора (а также Р. Дедекинда и К. Вейерштрасса), Т. м. к концу 19 в. стала основой построения сложившихся к тому времени математич.… … Философская энциклопедия

    ТЕОРИЯ МНОЖЕСТВ - раздел математики, исследующий общие свойства множеств. Множеством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли. В Т. м. изучаются общие свойства различных операций… … Энциклопедический словарь по психологии и педагогике

Наивная теория множеств

До второй половины XIX-го века понятие «множества» не рассматривалось в качестве математического («множество книг на полке», «множество человеческих добродетелей» и т. д. - всё это чисто бытовые обороты речи). Положение изменилось, когда немецкий математик разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым . При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre ).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением , полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее - дело рук человеческих»). Тем не менее, некоторые другие математики - в частности, и - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык.

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам , может быть «доказано» абсолютно любое утверждение!). Антиномии ознаменовали собой полный провал программы Кантора.

Аксиоматическая теория множеств

Особенностью аксиоматического подхода является отказ от, лежащего в основе программы Кантора, представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику, лишённой всякого содержания, игрой в символы. В частности, писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы , или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC - теория Цермело-Френкеля с

История

Наивная теория множеств

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия .

В 1870 году немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Этот подход изложен в двух его статьях, опубликованных в 1879-1897 годах в известном немецком журнале «Математические анналы» (нем. «Mathematische Annalen» ). Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано . При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre ).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер , полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее - дело рук человеческих»). Полностью отвергли теорию множеств и такие авторитетные математики, как Герман Шварц и Анри Пуанкаре . Тем не менее, другие крупные математики - в частности, Готлоб Фреге , Рихард Дедекинд и Давид Гильберт - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык. В частности, теория множеств стала фундаментом теории меры и интеграла , топологии и функционального анализа .

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с бесконечными множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной (см. Кризис математических основ). А именно, был обнаружен ряд теоретико-множественных антиномий : оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний , может быть «доказано» абсолютно любое утверждение).

Аксиоматическая теория множеств

Особенностью аксиоматического подхода является отказ от лежащего в основе программы Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишённой всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы континуум-гипотеза , или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC - теория Цермело - Френкеля с аксиомой выбора . Вопрос о непротиворечивости этой теории (а тем более - о существовании модели для неё) остаётся нерешённым.

Не всеми математиками аксиома выбора принимается безоговорочно. Так, например Эмиль Борель и Анри Лебег считают, что доказательства, полученные при помощи этой аксиомы, имеют другую познавательную ценность, чем доказательства, независимые от неё. Другие же математики, такие как Феликс Хаусдорф и Адольф Френкель, принимают аксиому выбора безоговорочно, признавая за ней ту же степень очевидности, что и за другими аксиомами Цермело - Френкеля.

Основные понятия

В основе теории множеств лежат первичные понятия: множество и отношение быть элементом множества (обозначается как - «x есть элемент множества A», «x принадлежит множеству A»). Среди производных понятий наиболее важны следующие:

  • пустое множество , обычно обозначается символом ;
  • семейство множеств;
  • операции:

    Для множеств определены следующие бинарные отношения :

    • править] Расширения

      Основная статья: Теория комплектов

      Теория комплектов - естественное расширение (обобщение) теории множеств. Подобно множеству, комплект - набор элементов из некоторой области. Отличие от множества: комплекты допускают присутствие нескольких экземпляров одного и того же элемента (элемент входит от нуль раз, то есть, не входит в комплект, до любого заданного числа раз) . (см. например, Мультисочетания).

      Приложения

      См. также

      Примечания

      Литература

      • К. Куратовский , А. Мостовский Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. - М .: Мир, 1970. - 416 с.
      • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.
      • А. Френкель, И. Бар-Хиллел Основания теории множеств / Перевод с английского Ю. А. Гастева под редакцией А. С. Есенина-Вольпина . - М .: Мир, 1966. - 556 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Теория множеств" в других словарях:

    ТЕОРИЯ МНОЖЕСТВ, раздел математики, начало которому было положено работами Джорджа БУЛЯ в области математической логики, но в настоящее время больше связанный с изучением МНОЖЕСТВ абстрактных или реальных объектов, а не с логическими… … Научно-технический энциклопедический словарь

    теория множеств - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN set theory … Справочник технического переводчика

    Теория, в к рой изучаются множества (классы) элементов произвольной природы. Созданная прежде всего трудами Кантора (а также Р. Дедекинда и К. Вейерштрасса), Т. м. к концу 19 в. стала основой построения сложившихся к тому времени математич.… … Философская энциклопедия

    ТЕОРИЯ МНОЖЕСТВ - раздел математики, исследующий общие свойства множеств. Множеством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли. В Т. м. изучаются общие свойства различных операций… … Энциклопедический словарь по психологии и педагогике

    - … Википедия

    - … Википедия

Лекция 12: Основные понятия теории множеств

Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.

Понятие множества — является одним из тех фундаментальных понятий математики, которым трудно дать точное определение, используя элементарные понятия. Поэтому ограничимся описательным объяснением понятия множества.

Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества — «множество есть многое, мыслимое нами как целое».

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

  • a ∈ X — «элемент a принадлежит множеству X»;
  • a ∉ X — «элемент a не принадлежит множеству X»;
  • ∀ — квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
  • ∃ — квантор существования: ∃y ∈ B — «существует (найдется) элемент y из множества B»;
  • ∃! — квантор существования и единственности: ∃!b ∈ C — «существует единственный элемент b из множества C»;
  • : — «такой, что; обладающий свойством»;
  • → — символ следствия, означает «влечет за собой»;
  • ⇔ — квантор эквивалентности, равносильности — «тогда и только тогда».

Множества бывают конечные и бесконечные . Множества называются конечным , если число его элементов конечно, т.е. если существует натуральное число n, являющееся числом элементов множества. А={a 1 , a 2 ,a 3 , ..., a n }. Множество называется бесконечным , если оно содержит бесконечное число элементов. B={b 1 ,b 2 ,b 3 , ...}. Например, множество букв русского алфавита — конечное множество. Множество натуральных чисел — бесконечное множество.

Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|. Пустое множество — множество, не содержащее ни одного элемента — ∅. Два множества называются равными , если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Множества не равны X ≠ Y, если в Х есть элементы, не принадлежащие Y, или в Y есть элементы, не принадлежащие Х. Символ равенства множеств обладает свойствами:

  • Х=Х; — рефлексивность
  • если Х=Y, Y=X — симметричность
  • если X=Y,Y=Z, то X=Z — транзитивность.

Согласно такого определения равенства множеств мы естественно получаем, что все пустые множества равны между собой или что то же самое, что существует только одно пустое множество.

Подмножества. Отношение включения.

Множество Х является подмножеством множества Y, если любой элемент множества Х ∈ и множеству Y. Обозначается X⊆Y.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из Х, то используют символ строгого включения ⊂: X⊂Y. Связь между символами ⊂ и ⊆ дается выражением:

X⊂Y ⇔ X⊆Y и X≠Y

Отметим некоторые свойства подмножества, вытекающие из определения:

  1. X⊆Х (рефлексивность);
  2. → X⊆Z (транзитивность);
  3. ∅ ⊆ M. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество А по отношению к его подмножествам называется полным множеством и обозначается I.

Любое подмножество А i множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества Х и пустого множества ∅, называется булеаном Х и обозначается β(Х). Мощность булеана |β(Х)|=2 n .

Счетное множество — это такое множество А, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) а 1 , а 2 , а 3 , ..., а n , ... так, чтобы при этом каждый элемент получил ишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример. Множество квадратов целых чисел 1, 4, 9, ..., n 2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств.

  • перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M={m 1 ,m 2 ,m 3 ,..,m n });
  • описанием — указывается характерное свойства, которым обладают все элементы множества.

Множество полностью определено своими элементами.

Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием Q={n/m, m, n∈Z, m≠0}.

Способы задания множества описанием:

а) заданием порождающей процедуры с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — рекурсивный, индуктивный.

X={x: x 1 =1, x 2 =1, x k+2 =x k +x k+1 , k=1,2,3,...} — мн-во чисел Фибониччи.

{мн-во элементов х, таких, что х 1 =1,х 2 =1 и произвольное х k+1 (при к=1,2,3,...) вычисляется по формуле х k+2 =х k +х k+1 } или Х=}