Проволока медная изолированная для обмоток. Материалы, применяемые в обмоточно-изоляционном производстве - производство обмоток и изоляции силовых трансформаторов

Компактные многофункциональные инфракрасные камеры серии IC от TROTEC демонстрируют убедительную производительность с точностью термографических измерений в режиме реального времени, обширный температурный диапазон и разнообразие функций - в сочетании с удивительно низкой ценой, имеют непревзойденное соотношение цены и качества.

Выбор электродвигателя за 5 шагов

5 простых шагов, которые позволять выбрать электродвигатель наиболее подходящий для Ваших задач.

Насколько опасны токи, наведенные линиями электропередачи?

Проводящие объекты, помещенные в электрическое поле, накаливают заряд, и человек, коснувшись такого объекта, может ощутить неприятный или пугающий удар тока в тот момент, когда его тело пропускает через себя ток, становясь проводником.

9 вопросов, рассматриваемых при проектировании сети электропередачи

Проекты сетей передачи и распределения электрической энергии носят весьма индивидуальный характер. Это связано с тем, что в каждом случае необходимо учитывать конкретные условия обеспечиваемого энергией региона, требования к нагрузке, географическое условия, технические стандарты и требования, состояние существующих систем, и много другое.

Коммутации и долговечность низковольтных выключателей

Рассмотрены факторы долговечности эксплуатации низковольтных выключателей (сколько времени выдержат контакты) в связи с операциями выключения.

Эффект перекрестного сшивания

СПЭ является признанным сокращением для сшитого полиэтилена. Этот, и другие синтетические материалы с перекрестным сшиванием, из которых наиболее заметными примером является этиленпропиленовый каучук (ERP), все чаще применяются для изоляции кабелей в широком диапазоне напряжений.

Когда потребитель жалуется, что оборудование повредилось из-за отклонения напряжения

В то время как отклонения напряжения и моментальные перебои в электроснабжении вызывают наиболее распространенные проблемы из-за качества электроэнергии, существуют и другие причины вывода оборудования из строя и нарушения в его работе.

Управление техническим обслуживанием электрооборудования 4

На основе оценки различных обсуждавшихся ранее факторов, и оценки других факторов, если таковые существуют, принимается решение о реализации обслуживания на основе мониторинга состояния. Как именно, можно практически реализовать эту программу, рассматривается ниже.

Влияние любых инициатив обслуживания оборудования, включая мониторинг состояния, должно быть предсказуемы и измеримым, а также быть связанным с производительностью и надежностью производственной единицы. Кроме того, следует помнить, что системы мониторинга, особенно полностью интегрированные технологии, и сами подвержены отказам и сбоям, и требуют обслуживания.

Управление техническим обслуживанием электрооборудования 2

Программа управления диагностическим обслуживанием представляет собой программу обслуживания, созданную для электрического оборудования на основе регулярного мониторинга его фактического физического состояния, операционных параметров, эксплуатационной эффективности и других индикаторов. Программа управления обслуживанием на основе мониторинга состояния состоит из методов, которые пытаются "прогнозировать" или диагностировать проблемы в электрическом оборудовании на основе анализа полученных данных.

Управление техническим обслуживанием электрооборудования 1

За последние два десятка лет концепция обслуживания оборудования приобрела различные размерности, и в значительной степени изменилась, возможно, больше, чем какая-либо другая дисциплина управления. Электрическое оборудование, обладающее довольно сложной конструкцией, требует новых методов обслуживания, и изменения взглядов на организацию обслуживания и ответственность, связанную с ней.

Что нужно учитывать при выборе места для подстанции

На стадии выбора места под электрическую подстанцию поднеобходимо определить место, которое будет занимать будущая электрическая силовая подстанция, в том числе, и размещение ее основного оборудования.

Почему необходим непрерывный мониторинг частичного разряда?

Периодическое проверки, могут оставить ваше оборудование в состоянии, о котором, фактически, ничего неизвестно. За период времени после предыдущей проверки очень быстро могут образоваться дефекты изоляции и износ, которые часто не обнаруживаются традиционными автономными проверками.

Что делать при пожаре на подстанции?

При обнаружении возгорания на подстанции, как правило, в первую очередь необходимо вызвать пожарных, чтобы они были готовы к тушению пожара и обеспечить защиту оборудования и окружающей подстанцию собственности вне зоны возгорания.

Факторы, рассматриваемые для хорошей системы заземления

Промышленное предприятие, или другая организация, которой требуется система заземления какого-либо объекта, должны тщательно рассмотреть изложенные в статье условия.

Наша компания осуществляет продажу различных марок проводов обмоточных алюминиевых из наличия со складов, расположенных по всей России, или под заказ на производство. Специалисты «Кабель.РФ» знают все о данной продукции, поэтому грамотно проконсультируют вас в выборе необходимого провода с учетом технических требований, помогут осуществить своевременную доставку и подобрать соответствующий тип транспорта.

Используется провод обмоточный алюминиевый для изготовления обмоток всевозможных электроустановок высокого и низкого напряжения, работающих на постоянном и переменном токе. В первую очередь это электрические машины — трансформаторы масляного и сухого исполнения, электродвигатели (в большинстве случаев высоковольтного исполнения), генераторы, сварочное оборудование (трансформаторы). Кроме того, с применением алюминиевого провода изготавливают различную пусковую аппаратуру.

Изделие допускается для эксплуатации на суше во всех макроклиматических районах (тропическом, холодном и умеренном). Довольно часто провод может эксплуатироваться в среде электроизоляционного масла, например в масляных силовых трансформаторах. Добавим, что для некоторых исполнений проводов допускается длительный перегрев жилы и механическое воздействие в процессе эксплуатации — например, в электродвигателях, работающих в тяжелых условиях (частые механические перегрузки на валу). Провод предназначен для фиксированного монтажа в специально предназначенных для этого узлах машин и агрегатов.

Для изготовления данного провода применяется жила из алюминиевой монолитной проволоки марки АТ и АМ для круглых сечений и марки ПАМ для прямоугольного сечения. Изолируют токоведущие жилы эмалевой, волокнистой, стекло-волокнистой и бумажной изоляцией. Эмалевая представляет собой, как правило, два слоя из различных электроизоляционных лаков (синтетический, полиамидимидный полиуретановый, а также лак на основе полиэфирных смол для нагревостойкого исполнения). В основе волокнистой изоляции — один или несколько слоев волокнистых материалов (натуральный или синтетический шелк, хлопчатобумажная пряжа, лавсановое волокно). Направление намотки каждого слоя — противоположное. Для стекловолокнистой изоляции применяют обмотку стекловолокном с последующей пропиткой нагревостойким лаком или компаундом. Бумажная изоляция представляет собой обмотку жилы лентами телефонной или кабельной бумаги в несколько слоев.

Основные преимущества:

  • наличие нагревостойкого исполнения провода;
  • разнообразное исполнение провода по материалу изоляции;
  • продолжительный срок службы;
  • более низкая себестоимость изготовления провода по сравнению с медным исполнением.

Провод обмоточный алюминиевый: цена

У нас вы можете купить провод обмоточный алюминиевый по выгодной цене, для этого необходимо оставить заявку на расчет стоимости менеджеру компании.

А. П. Кашкаров, г. Санкт-Петербург

Для изготовления трансформаторов и дросселей используются специальные обмоточные провода. Об основных типах таких проводов отечественного и зарубежного производства рассказано в этой статье.

Отечественные обмоточные провода


Наибольшее распространение получили обмоточные провода в эмалевой изоляции на основе высокопрочных синтетических лаков с температурным индексом (ТИ) в диапазоне 105…200. Под ТИ понимается температура провода, при которой его полезный ресурс не менее 20000 ч.

Медные эмалированные провода с изоляцией на основе масляных лаков (ПЭЛ) выпускаются с диаметром жилы 0,002…2,5 мм. Такие провода обладают высокими электроизоляционными характеристиками, которые практически не зависят от внешнего влияния повышенных температур и влажности.

Проводам типа ПЭЛ свойственна большая зависимость от внешнего воздействия растворителей, относительно проводов с изоляцией на основе синтетических лаков. Обмоточный провод ПЭЛ можно отличить от других даже по внешнему признаку -эмалевое покрытие по цвету близко к черному.

Медные провода типов ПЭВ-1 и ПЭВ-2 (выпускаются с диаметром жилы 0,02…2,5 мм) имеют поливинилацетатную изоляцию и отличаются золотистым цветом. Медные провода типов ПЭМ-1 и ПЭМ-2 (с тем же диаметром, как и ПЭВ) и прямоугольные медные проводники ПЭМП (сечением 1,4…20 мм2) имеют лакированную изоляцию на по-ливинилформалевом лаке. Индекс «2» в соответствующем обозначении проводов ПЭВ и ПЭМ характеризует двухслойную изоляцию (повышенной толщины).

ПЭВТ-1 и ПЭВТ-2 — эмалированные провода с температурным индексом 120 (диаметром 0,05…1,6 мм), они имеют изоляцию на основе по-лиуретанового лака. Такие провода удобно монтировать. При пайке не требуется зачищать лакированную изоляцию и применять флюсы. Достаточно обычного припоя марки ПОС-61 (или аналогичного) и канифоли.

Эмалированные провода с изоляцией на полиэфирамидной основе ПЭТ-155 имеют ТИ равный 155. Они выпускаются с жилами не только круглого сечения (диаметра), но и прямоугольного (ПЭТП) типа с диаметром проводника 1,6-1 1,2 мм2. По своим параметрам провода ПЭТ близки к рассмотренным выше проводам типа ПЭВТ, но имеют более высокую стойкость к нагреванию и тепловому удару. Поэтому обмоточные провода типов ПЭВТ и ПЭТ, ПЭТП особенно часто можно встретить в мощных трансформаторах, в том числе в трансформаторах для сварочных работ.

Отечественные высокочастотные обмоточные провода

На высоких частотах применяются многожильные эмалированные обмоточные провода (литцендраты) типа ЛЭШО в шелковой однослойной изоляции или ЛЭШД — фв двойной шелковой изоляции. Такие провода состоят из пучка медных эмалированных проволочек диметром 0,05…0,1мм и используются для катушек индуктивности (и дросселей). В высокочастотных проводах типов ЛЭШО, ЛЭШД, ПЭЛО, ЛЭЛД, ДЭП, ЛЭПКО жилы скручены из отдельных Эмалированных проволок для уменьшения потерь от поверхностного эффекта (Эффекта близости). В табл.№1 приведены диаметры широко применяемых высокочастотных обмоточных проводов отечественного производства. Для нечетных номеров диаметр провода примерно равен половине суммы диметров двух соседних (четных) номеров.


Обозначение популярных зарубежных обмоточных проводов

В США и Великобритании обозначение диаметров обмоточных проводов записывается словами wire size (размер провода).

Например, в США применяют систему

American Wire Gauge (AWG). Также иногда в США используют систему B&S, а в Великобритании — Standar Wire Gauge (SWG). В табл.2 и табл.3 приведены диаметры широко применяемых типов обмоточных проводов по стандартам AWG и SWG.
Допустимая нагрузка на проводники


Максимальный допустимый ток, который можно пропускать через провода, не тревожась за возгорание или нарушение контакта, определяется в соответствии с табл.4. Максимальный нагрев резиновой или пластмассовой (а также их сочетаний или производных) изоляции проводов не должен превышать температуры +50градусов. От этого температурного параметра зависит продолжительность безопасного воздействия
на проводник максимально допустимого тока (I max A в табл.4)
Журнал «Электрик»

Провода обмоточные с эмалевой изоляцией обозначаются буквенно-цифровым кодом, в котором указываются: вид изоляции, форма сечения провода, тип изоляции и через дефис - конструктивное исполнение, температурный индекс, материал проволоки. В условное обозначение провода входят марка провода с добавлением (через интервал) номинального диаметра круглой проволоки или размеры сторон прямоугольной проволоки (для прямоугольного провода) и обозначение стандарта или ТУ на провода конкретных марок. Провода обмоточные с эмалевой изоляцией (ПЭ) классифицированы по различным признакам

  • эмалевой изоляции: поливинилацетатная; винифлекс (В); метальвин (М); полиуретановая (У); полиэфирная (Э); полиимидная (И); полиамидная (АИ); полиэфириримидная (ЭИ); полиэфирцианураатимидная фреоностойкая (Ф).
  • форме сечения: круглые; прямоугольные (П).
  • толщине изоляции: типа 1; типа 2.
  • конструктивному исполнению изоляции: однослойная; двухслойная (Д); трехслойная (Т); четырехслойная (Ч); с термопластичным покрытием, склеивающимся под воздействием температуры (К).
  • температурному индексу (нагревостойкости), °С: 105, 120, 130, 155, 180, 200, 220 и выше.
  • материалу проволоки: медная; медная безжелезистая (БЖ); медная никелированная (МН); алюминиевая мягкая (А); алюминиевая твердая (АТ); биметаллическая: алюмомедная мягкая (АМ), сталемедная (СМ); из сплавов: манганиновая мягкая (ММ), манганиновая твердая (МТ), манганиновая стабилизированная (МС), константановая мягкая (КМ), константановая твердая (КТ), никелькобальтовая (НК); дрогоценных металлов; никелевая; нихромовая (НХ).

Провода обмоточные с эмалево-волкнистой, волокнистой, пластмассовой и пленочной изоляцией подразделяются:

  • по виду изоляции: волокнистая: хлопчатобумажная (Б), из натурального шелка (Ш), капроновая (К), полиэфирная (лавсановая) (Л), из трилобала (Кп), оксалона (Од), аримида (Ар); бумажная (Б); стекловолокнистая (С); стеклополиэфирная (СЛ); пластмассовая (П); пленочная: фторопластовая (Ф), полиамидо-фторопластовая (И), фторопластовая с полиимидно-фторопластовой (ФИ); комбинированная.
  • по числу обмоток: однослойная (О); двухслойная (Д).
  • по виду пропитки: глифталевая, полиэфирная и другие основы (130 °C); кремнийорганическая (155 и 180 °С); органосиликатная композиция (свыше 180 °С).
  • по типу изоляции: нормальная; утонченная (Т); усиленная (У); дополнительная поверхностная лакировка (Л).
  • по отличителным особенностям: транспонированный провод (т); подразделенный провод (П); число элементарных проводников (обозначается цифрой); толщина общей бумажной изоляции (знаменатель дроби).
  • по температуре эксплуатации: 60, 80, 90, 120, 180, 200 °C; нагревостойкости в пропитанном состоянии на классы: У (90°C), A (105°C), E (120°C), B (130°C), Г (155°C), H (180°C), C (более 180°C).
  • материалу проволоки: медная; медная безжелезистая (БЖ); медная никелированная (МН); алюминиевая (А); манганиновая мягкая (ММ); манганиновая твердая (МТ); константановая мягкая (КМ); константановая твердая (КТ); нихромовая (НХ).
  • по сплавам: на основе меди (БрМгЦр); покрытые словом никеля или железа и никеля, нанесенных гальванических способом и сплавом на основе других материалов.
  • по конструктивному исполнению жилы: круглая (однопроволочная, многопроволочная); прямоугольная; полая.

Основные характеристики обмоточных проводов

Марка провода Характеристика изоляции Диаметр
проволоки, мм
Максимальная рабочая
температура,°С
ПЭВ-1 Один слой высокопрочной эмали ВЛ-931 0,02...2,5 105
ПЭВ-2 Два слоя высокопрочной эмали ВЛ-931 0,06...2,5 105
ПЭТ-155 Лак ПЭ-955 на полиэфиримидной основе 0,02...2,5 155
ПЭТВ Высокопрочный нагревостойкий лак ПЭ-939 или ПЭ-943 на основе полиэфиров 0,02...2,5 130
ПЭВД Высокопрочная эмаль с дополнительным термопластичным слоем лака 0,1...0,5 105
ПЭВЛ Высокопрочная эмаль и обмотка из лавсановой нити 0,02...1,56 120
ПЭВТЛ-1 Один слой высокопрочной полиуретановой эмали 0,05...1,56 130
ПЭВТЛ-2 Два слоя высокопрочной полиуретановой эмали 0,05...1,56 130
ПЭВТЛК Высокопрочная эмаль на основе полиуретана и полиамидной смолы 0,06...0,35 130
ПЭЛ Лак на масляной основе 0,02...2,5 105
ПЭЛО Лак на масляной основе и обмотка из полиэфирной нити 0,05...1,56 105
ПЭЛЛО Лак на масляной основе и обмотка из лавсановой нити 0,06...1,56 105
ПЭЛР Высокопрочная эмаль на основе полиамида и резольной смолы 0,06...2,5 120
ПЭЛШКО Лак на масляной основе и обмотка из капронового волокна 0,1...2,1 105
ПЭМ-1 Один слой высокопрочной эмали ВЛ-941 0,02...2,5 105
ПЭМ-2 Два слоя высокопрочной эмали ВЛ-941 0,02...2,5 105
ПЭС-1 Один слой высокопрочного лака на основе поливинилформаля 0,06...2,5 105
ПЭС-2 Два слоя высокопрочного лака на основе поливинилформаля 0,06...2,5 105
ПЭТЛО Высокопрочный нагревостойкий лак на основе полиэфиров и обмотка из лавсановой нити 0,06...0,52 120
ПСД Два слоя обмотки из стекловолокна с пропиткой нагревостойким лаком 0,5...5,2 155
ПСДК Два слоя обмотки из стекловолокта с пропиткой кремнийорганическим лаком 0,5...5,2 180
ПНЭТ Высокопрочная нагревостойкая эмаль на основе полиамидов 0,06...2,5 220
ПЭШО Лак на масляной основе и один слой шелковых нитей 0,05...1,56 105
ПЭБО Лак на масляной основе и один слой хлопчатобумажной пряжи 0,38...2,12 105

Основные параметры обмоточных проводов круглого сечения для трансформаторов

Номинальный
диаметр провода
по меди, мм
Сечение провода
по меди, мм2
Диаметр провода с изоляцией, мм Сопротивление
1 м провода
при 20°С, Ом
Допустимый
ток при
плотности
2 А/м2, А
ПЭВ-1 ПЭВ-2 ПЭЛ ПЭТВ ПНЭТ ПЭЛШО
0.02 0.00031 0.027 - 0.035 - - - 61.5 0.0006
0.025 0.00051 0.034 - 0.04 - - - 37.16 0.001
0.03 0.00071 0.041 - 0.045 - - - 24.7 0.0014
0.032 0.0008 0.043 - 0.046 - - - 22.4 0.0016
0.04 0.0013 0.055 - 0.055 - - - 13.9 0.0026
0.05 0.00196 0.062 0.08 0.07 - - 0.14 9.169 0.004
0.06 0.00283 0.075 0.09 0.085 0.09 - 0.15 6.367 0.0057
0.063 0.0031 0.078 0.09 0.085 0.09 - 0.16 4.677 0.0063
0.07 0.00385 0.084 0.092 0.092 0.1 - 0.16 4.677 0.0071
0.071 0.00396 0.088 0.095 0.095 0.1 - 0.16 4.71 0.0078
0.08 0.00503 0.095 0.105 0.105 0.11 - 0.16 6.63 0.0101
0.09 0.00636 0.105 0.12 0.115 0.12 - 0.18 2.86 0.0127
0.1 0.00785 0.122 0.13 0.125 0.13 0.125 0.19 2.291 0.0157
0.112 0.0099 0.134 0.14 0.125 0.14 0.135 0.2 1.895 0.021
0.12 0.0113 0.144 0.15 0.145 0.15 0.145 0.21 1.591 0.0226
0.125 0.0122 0.149 0.155 0.15 0.155 0.15 0.215 1.4 0.0248
0.13 0.0133 0.155 0.16 0.155 0.16 0.16 0.22 1.32 0.0266
0.14 0.0154 0.165 0.17 0.165 0.17 0.165 0.23 1.14 0.0308
0.15 0.01767 0.176 0.19 0.18 0.19 0.18 0.24 0.99 0.0354
0.16 0.02011 0.187 0.2 0.19 0.2 0.19 0.25 0.873 0.0402
0.17 0.0227 0.197 0.21 0.2 0.21 0.2 0.26 0.773 0.0454
0.18 0.02545 0.21 0.22 0.21 0.22 0.21 0.27 0.688 0.051
0.19 0.02835 0.22 0.23 0.22 0.23 0.22 0.28 0.618 0.0568
0.2 0.03142 0.23 0.24 0.23 0.24 0.23 0.3 0.558 0.0628
0.21 0.03464 0.24 0.25 0.25 0.25 0.25 0.31 0.507 0.0692
0.224 0.0394 0.256 0.27 0.26 0.27 0.26 0.32 0.445 0.079
0.236 0.0437 0.26 0.285 0.27 0.28 0.27 0.33 0.402 0.0875
0.25 0.04909 0.284 0.3 0.275 0.3 0.29 0.35 0.357 0.0982
0.265 0.0552 0.305 0.315 0.305 0.31 0.3 0.36 0.318 0.111
0.28 0.0615 0.315 0.33 0.315 0.33 0.31 0.39 0.285 0.124
0.3 0.0708 0.34 0.35 0.34 0.34 0.33 0.41 0.248 0.143
0.315 0.078 0.35 0.365 0.352 0.36 0.35 0.43 0.225 0.158
0.335 0.0885 0.375 0.385 0.375 0.38 0.37 0.45 0.198 0.179
0.355 0.099 0.395 0.414 0.395 0.41 0.39 0.47 0.177 0.2
0.38 0.1134 0.42 0.44 0.42 0.44 0.42 0.5 0.155 0.226
0.4 0.126 0.44 0.46 0.442 0.46 0.44 0.52 0.14 0.251
0.425 0.142 0.465 0.485 0.47 0.47 0.46 0.53 0.124 0.283
0.45 0.16 0.49 0.51 0.495 0.5 0.5 0.57 0.11 0.319
0.475 0.177 0.525 0.545 0.495 0.53 0.51 0.6 0.099 0.353
0.5 0.196 0.55 0.57 0.55 0.55 0.53 0.62 0.09 0.392
0.53 0.2206 0.58 0.6 0.578 0.6 0.58 0.66 0.0795 0.441
0.56 0.247 0.61 0.63 0.61 0.62 0.6 0.68 0.071 0.494
0.6 0.283 0.65 0.67 0.65 0.66 0.64 0.72 0.062 0.566
0.63 0.313 0.68 0.7 0.68 0.69 0.67 0.75 0.056 0.626
0.67 0.352 0.72 0.75 0.72 0.75 0.72 0.8 0.05 0.704
0.71 0.398 0.76 0.79 0.77 0.78 0.75 0.82 0.044 0.797
0.75 0.441 0.81 0.84 0.81 0.83 0.8 0.87 0.039 0.884
0.8 0.503 0.86 0.89 0.86 0.89 0.86 0.95 0.035 1.0
0.85 0.567 0.91 0.94 0.91 0.94 0.91 1.0 0.031 1.13
0.9 0.636 0.96 0.99 0.96 0.99 0.96 1.05 0.0275 1.27
0.93 0.6793 0.99 1.02 0.99 1.02 0.99 1.08 0.0253 1.33
0.95 0.712 1.01 1.04 1.02 1.04 1.01 1.1 0.0248 1.42
1.0 0.7854 1.07 1.1 1.07 1.11 1.06 1.16 0.0224 1.57
1.06 0.884 1.13 1.16 1.14 1.16 1.13 1.21 0.0199 1.765
1.08 0.9161 1.16 1.19 1.16 1.19 1.16 1.24 0.0188 1.83
1.12 0.9852 1.19 1.22 1.2 1.23 1.2 1.28 0.0178 1.97
1.18 1.092 1.26 1.28 1.26 1.26 1.25 1.34 0.0161 2.185
1.25 1.2272 1.33 1.35 1.33 1.36 1.33 1.41 0.0143 2.45
1.32 1.362 1.4 1.42 1.4 1.42 1.39 1.47 0.0129 2.72
1.4 1.5394 1.48 1.51 1.48 1.51 - 1.56 0.0113 3.078
1.45 1.6513 1.53 1.56 1.53 1.56 - 1.61 0.0106 3.306
1.5 1.7672 1.58 1.61 1.58 1.61 - 1.68 0.0093 3.534
1.56 1.9113 1.63 1.67 1.64 1.67 - 1.74 0.00917 3.876
1.6 2.01 1.68 1.71 1.68 1.71 - - 0.0086 4.03
1.7 2.2697 1.78 1.81 1.78 1.81 - - 0.0078 -
1.74 2.378 1.82 1.85 1.82 1.85 - - 0.00737 -
1.8 2.54468 1.89 1.92 1.89 1.92 - - 0.00692 -
1.9 2.8105 1.99 2.02 1.99 2.02 - - 0.00612 -
2.0 3.1415 2.1 2.12 2.1 2.12 - - 0.00556 -
2.12 3.5298 2.21 2.24 2.22 2.24 - - 0.00495 -
2.24 4.0112 2.34 2.46 2.34 2.46 - - 0.00445 -
2.36 4.3743 2.46 2.48 2.36 2.48 - - 0.00477 -
2.5 4.9212 2.6 2.63 2.6 2.62 - - 0.00399 -

Чуть ли не главный вопрос у всех радиолюбителей чем можно намотать трансформатор? Простейшие методики расчета трансформаторов мы уже знаем (кто подзабыл можно заглянуть вот сюда), а вот самое главное где взять провод? Да и еще именно какой провод необходим для намотки трансформатора?

Куда делись, например, провода марок ПЭЛШО , ПЭЛБО и другое, продававшиеся в советское время в наборах и катушками? Первый из вышеназванных проводов необходим для намотки контурных катушек на низкочастотные диапазоны, дросселей, трансформаторов на ферритовых кольцах и пр. Второй необходим для намотки обмоток мощных силовых трансформаторов.
Ведь преимущество таких проводов перед обычными (с лаковым покрытием) - большое.
Прежде всего, это создаваемый за счет оплетки провода шаг намотки. В мощных сетевых трансформаторах разность напряжений в обмотках между соседними проводниками составляет 1 В и более, тонкая лаковая изоляция при нагреве и вибрации с частотой сети постепенно стирается от трения друг об друга вибрирующих витков и осыпается. В результате возникают межвитковые замыкания .

Для иллюстрации приведу простой расчет . Возьмем трансформаторное железо с площадью сечения керна S=10 см2. По простой прикидке Pr=S2 определяем, что габаритная мощность будущего трансформатора составит примерно 100 Вт. Количество витков на 1 В:
w1 =50/S=50/10=5(вит./В),
Соответственно межвитковое напряжение:
U1=1/5=0.2(В)
Если трансформаторное железо - с площадью сечения S=50 см2, габаритная мощность трансформатора в этом случае Pг=2500 Вт, а w1 =50/50=1 (вит./В), что равно межвитковому напряжению в обмотках. При дальнейшем увеличении габаритной мощности межвитковое напряжение возрастает, опасность пробоя изоляции увеличивается, а надежность трансформатора, естественно, снижается.
Как выйти из создавшегося положения? Следует вспомнить, что провода бывают не только обмоточными. Для намотки трансформатора можно применить монтажный провод во фторопластовой изоляции (МГТФ) с соответствующим требуемому току сечением. Так как в таких проводах принято указывать не диаметр, а сечение (по жиле), то следует воспользоваться переводной формулой
d=2 (Sп/3.14)^0,5
где Sп - сечение провода, мм2; d - диаметр провода, мм. Например, провод МГТФ-0.35 имеет d-0,66 мм. Диаметр провода, в зависимости от требуемого тока I (А), определяем по формуле:
d = 0,8 I0,5.
Тогда ток в проводе обмотки:
I=(d/0.8)^2 =0.68 (А)
Отличное качество изоляции проводов МГТФ позволяет обходиться при намотке без межслойных прокладок, а ее термостойкость позволяет мотать трансформаторы, работающие при повышенных температурах (фторопластовая изоляция не плавится и не обугливается).

Порой для балансных схем требуется намотать трансформатор со строго идентичными обмотками.
Такое можно осуществить, взяв в качестве проводов обмоток плоский кабель, например, используемый в компьютерных соединительных шлейфах. Отделив от кабеля нужное число проводников, наматывают ими обмотку, которую затем используют в качестве нескольких идентичных, изолированных друг от друга. Изоляция плоского кабеля достаточно термоустойчива.


Для получения больших токов вторичные обмотки трансформаторов блоков питания наматывают достаточно толстыми проводами и шинами. Работа эта, надо сказать, требует не только материальных (денежных), но и физических затрат, поскольку требуется внатяг сгибать упругую медную шину (провод), стараясь уложить ее виток к витку.

В качестве альтернативы моточного провода , предлагаю воспользоваться акустическим шнуром, которым обычно соединяют усилитель с акустическими системами. Акустический шнур имеет большое сечение жилы и. будучи двойным, обеспечивает идентичность полуобмоток для двухполупериодного выпрямителя со средней точкой. На идентичность этих полуобмоток мало обращают внимание, а это влечет за собой увеличение фона, к которому так чувствительна современная высококачественная аппаратура.

Идентичность обмоток можно обеспечить и другим способом, например, намотав их микрофонным шнуром (при стереошнуре получим три обмотки). Таким образом можно намотать обмотку (обмотки) с электростатическим экраном. Для этого экранирующая оплетка микрофонного шнура соединяется (с одной стороны) с общим проводом.

Коаксиальный кабель , вследствие большой разницы в сечениях внутренней жилы и оплетки, мало пригоден для симметричных обмоток, но может быть использован в качестве обмоточного провода, когда экран и внутренняя жила соединены между собой. Внутреннюю жилу кабеля можно использовать и для измерительных целей.

Во всех случаях не следует забывать о термоустойчивости изоляции проводов. Повышенная относительно лаковой толщина изоляции проводов, с одной стороны, уменьшает количество витков обмотки, которые можно разместить в окне сердечника трансформатора, с другой, делает ненужным применение межслоевой изоляции (вплоть до межобмоточной), что ускоряет изготовление трансформатора, а при термостойкой изоляции проводов повышает надежность трансформаторов.

В.БЕСЕДИН, гТюмень.