Подвижность п3 минимальная водонепроницаемость w4. Все способы повышения водонепроницаемости бетона: от правильного выбора марки до изоляции готовой поверхности

Бетон является одним из самых крепких и распространенных строительных материалов на сегодняшний день. Это неотъемлемая часть раствора для заливки фундамента, штукатурки и кладки стен, а также других важнейших работ. Как и любой другой материал, бетонный состав обладает многими различными свойствами. И одно из таких свойств – его степень водонепроницаемости.

Степенью водонепроницаемости любого бетона называется его способность не пропускать влагу и воду под давлением.

По водонепроницаемости бетон делится на несколько марок. И чем лучше марка бетона по водонепроницаемости, тем большее давление он может выдерживать на себе, при этом не пропуская воду.

Характеристика марок бетона по водонепроницаемости

В ГОСТе 26633 сказано о десяти основных марках водонепроницаемости бетонного состава. Каждая такая марка обозначается латинской буквой W, а рядом указывается определенная цифра. Именно эта цифра и идентифицирует то, насколько этот вид бетона соответствует максимальному водяному давлению, которое выдерживается стандартным цилиндрическим бетонным образцом, высота которого равна 15 см.

Показатели бетона по взаимодействию с водой различают прямые и косвенные. К прямым показателям принято относить водонепроницаемость по и коэффициент фильтрации. К косвенным – водоцементное отношение и водопоглощение по массе. Следует заметить тот факт, что из всех четырех показателей в быту и строительстве принято в первую очередь обращать внимание на первый прямой показатель водонепроницаемости, который считается ориентировочным. Остальные три коэффициента в большинстве случаев используются в научных целях и в процессе самого производства. Это дополнительные показатели по бетонным составам.

Чтобы больше понимать и ориентироваться в характеристике отдельных марок бетона по его водонепроницаемости, следует рассмотреть поочередно сначала три основные марки. Заметьте, что те остальные марки, которые будут стоять в промежутках между этими тремя, будут также характеризовать большую или меньшую степень взаимодействия бетона с водой и влагой.

Марка W4 обладает нормальной степенью проницаемости. То есть этот состав способен поглощать нормальное количество воды, поэтому он мало подходит для работ с отсутствием достаточного уровня гидроизоляции. А марка W2, которая по шкале находится еще до марки W4, обладает еще большей проницаемостью, что характеризует такой бетон как смесь самого низкого качества.

Бетонный состав марки W6 считается смесью с пониженной проницаемостью воды. Он поглощает в себя уже меньше влаги, поэтому считается составом среднего качества и применяется в строительстве чаще всего. При этом между таким бетоном и бетоном марки W4 нет больше бетонов на промежутке шкалы.

А теперь что касается марки W8. Его принято относить к составам с низкой степенью проницаемости. Влаги он поглощает всего до 4,2% по его массе. Это уже более дорогой вариант бетонного состава. За этой маркой следует по шкале ряд бетонов таких марок, как W10, W12, W14, W16, W18, W20. В этих указанных шести марках бетона от начала до конца проницаемость водой постепенно уменьшается. Поэтому можно уверенно сказать, что бетон марки W20 является самым устойчивым к воздействию воды. Но используют его не так часто, потому что он стоит довольно дорого. Зато качество такого состава на сегодняшний день пока не уступает никакой другой марке.

Вернуться к оглавлению

Выбор марки для определенного вида работ

Теперь что касается выбора конкретной марки для устройства каких-либо объектов. Так, для заливки обычного фундамента будет вполне достаточно бетона марки W8. Но это в том случае, если будет обеспечена дополнительная гидроизоляция.

Для оштукатуривания стен марки от W8 до W14 также будут вполне подходящими. Но если помещение достаточно сырое или холодное, лучшим вариантом все же будет выбор бетона более высокой марки. Причем дополнительно нужно будет обработать стену грунтовым составом.

А вот для внешней отделки дома желательно предпочесть только бетон с самой высокой степенью водонепроницаемости. Ведь в этом случае, как правило, он будет постоянно подвергаться воздействию внешних неблагоприятных факторов окружающей среды. То же самое касается и заливки территории на улице.

Вернуться к оглавлению

Принципы увеличения водонепроницаемости бетонного состава

Актуальным вопросом в последнее время стало увеличение степени водонепроницаемости бетонной смеси самостоятельно в бытовых условиях. Это связано по большей мере с тем, что у людей просто не хватает средств на покупку высококлассного бетона. Особенно если его требуется большое количество для осуществления определенных работ.

Разработано на сегодняшний день несколько способов увеличения водонепроницаемости бетона. Каждый из них обладает своей степенью эффективности в определенных условиях. Но все же принято самыми распространенными считать два таких способа. Это увеличение водонепроницаемости путем устранения усадки бетонного состава и путем временного воздействия на бетонный состав.

Вернуться к оглавлению

Искоренение процесса усадки

Сначала нужно выяснить, как можно увеличить водонепроницаемость устранением процесса усадки. Как правило, бетон сам по себе является достаточно пористым веществом. Причем пористость его понижается с улучшением водонепроницаемости. Бетонный состав средних марок обычно имеет достаточное количество мелких пор, через которые в него влага может беспрепятственно проникнуть. Все эти неприятные процессы по большей части связаны с постепенной усадкой бетонного раствора во время застывания.

Чтобы максимально уменьшить степень усадки и тем самым увеличить водонепроницаемость и качество бетона, рекомендуется производить следующие мероприятия. Во-первых, нужно использовать специальные составы для таких целей. Суть их действия состоит в том, что на поверхности вещества образуется защитная пленка, которая препятствует усадке раствора. Только нужно очень внимательно читать инструкцию, так как разные составы могут действовать по-разному.

Во-вторых, полезно, как ни странно, поливать бетон водой. Делать это необходимо через каждые 4 ч. Только действие водой должно длиться только первые четыре дня. Все остальное время бетон должен высыхать естественным образом.

А в-третьих, сразу же после заливки полезно накрывать бетонную конструкцию специальной защитной парниковой пленкой или мешковиной. Это защищает поверхность от излишней влаги и в то же время образует небольшой конденсат, который способствует и не дает ему усаживаться. Только накрывать заливку надо так, чтобы пленка не касалась раствора, а по краям оставались небольшие зазоры.

Устойчивость бетона к воздействию влаги и низких температур является важным показателем его качества и долговечности. Материал способный долгое время выдерживать отрицательное воздействие внешних факторов очень востребован в строительстве особенно при возведении монолитных железобетонных конструкций.

Сопротивление поверхности бетонных изделий проникновению воды дает возможность использования этих материалов при строительстве гидротехнических и подземных сооружений, мостов, набережных, фундаментных опор и других конструкций. Водонепроницаемость бетона обозначается буквой «W» и показывает внешнее давление воды, при котором она начинает проникать через поры на поверхности в тело бетонного монолита. Определенная стандартом величина этого показателя может находиться в пределах W2-W20. Для большинства зданий и сооружений сопротивление проникновению влаги у бетонных элементов марка бетона по водонепроницаемости не превышает W6.

Характеристики различных бетонных смесей согласно ГОСТ

Определения стандарта показывают, что наиболее к распространенным маркам в России следует отнести бетоны с показателями F150 – F250. Классификация по ГОСТ не распространяется на бетоны используемые для дорожного строительства и взлетных полос аэродромов.

Таблица морозостойкости и водонепроницаемости бетона различных марок и класс

Марка бетона Класс бетона Морозостойкость F Водонепроницаемость W
м100 В-7,5 F50 W2
м150 В-12,5 F50 W2
м200 В-15 F100 W4
м250 В-20 F100 W4
м300 В-22,5 F200 W6
м350 В-25 F200 W8
м400 В-30 F300 W10
м450 В-35 F200-F300 W8-W14
м550 В-40 F200-F300 W10-W16
м600 В-45 F100-F300 W12-W18

Методы определения морозостойкости бетона

В Государственном стандарте 10060-2012 указаны 4 способа лабораторных испытаний затвердевших бетонов на морозостойкость и один химический способ. Для каждого из них необходимо приготовить испытательные образцы в виде бетонных кубиков с длиной ребра 100 мм.

До начала испытаний образцы должны набрать проектную . Для этого они выдерживаются в теплом помещении в течение 28 дней. При необходимости расширенного изучения возможно проведение промежуточных испытаний через 4, 7 и 14 дней после заливки бетона в формы.

Для проведения испытаний могут потребоваться:

  • формы для изготовления образцов;
  • стеллажи для хранения образцов;
  • контейнеры для воды и химических реагентов.
  • морозильное оборудование;
  • термическая печь;

Технология лабораторных испытаний заключается в том, что образцы опускают в воду для намокания, а потом подвергают их многоразовой заморозке с последующим нагревом. При этом охлаждение происходит при температуре -130˚C, нагрев в печи при +180˚C. В результате, если бетонные образцы не теряют прочности и на них не образуются трещины, то марка по морозостойкости отвечает заявленным требованиям.

Сам принцип лабораторных испытаний сводится к подтверждению заявленных результатов. Поэтому на практике реальная морозостойкость материалов всегда выше. Это объясняется в принудительном замачивании образцов и большой разнице в скорости охлаждения и нагрева.

Как происходят испытания, видео

Ускоренный химический и визуальный методы

Для проведения экспресс-испытаний подготовленные бетонные образцы опускают на сутки в серно-кислый натрий. Потом производят просушку при температуре 100˚C на протяжении 4-х часов. Эту процедуру повторяют 5 раз и после этого осматривают бетонные кубики. Если на поверхности отсутствуют трещины и дефекты, то морозостойкость материала не менее F300.

Достаточную устойчивость бетона к воздействию низких температур в частном строительстве можно определить визуально, осматривая готовый бетонный образец. На нем не должно быть видно крупнозернистой структуры, трещин и повреждений, мест расслаивания и цветных пятен. Для проверки уровня поглощения воды окуните образец в воду на сутки. Если количество воды за это время уменьшится более чем на 5% от объема образца, то это говорит о высокой пористости и слабой морозоустойчивости.

Способы повышения устойчивости к морозам

Морозостойкость бетона в значительной мере зависит от пористости материала и возможного проникновения влаги внутрь структуры. Поэтому показатели влагостойкости и морозоустойчивости очень сильно связаны между собой.

Кроме этого морозостойкость бетонных материалов повышают путем уменьшения фракции наполнителей и добавления специальных воздухововлекающих примесей. В результате поры приобретают замкнутое строение и не соединяются друг с другом. Это можно сравнить с пенополистиролом – пористым влагонепроницаемым материалом.

Бетон является самым распространённым строительным материалом. Большинство сооружений, предполагающих контакт с водой, выполняют именно из бетона. Одно из важных свойств бетона является его водонепроницаемость.

Водонепроницаемость — способность бетона не пропускать воду под давлением, при этом давление повышают ступенями до достижения определенной величины.

Методы определения водонепроницаемости (ГОСТ 12730.5-84):

  • определение водонепроницаемости по "мокрому пятну" (основан на измерении максимального давления при котором через образец не просачивается вода);
  • определение водонепроницаемости по коэффициенту фильтрации (основан на определении коэффициента фильтрации при постоянном давлении по измеренному количеству фильтрата и времени фильтрации);
  • ускоренный метод определения коэффициента фильтрации (фильтратометром);
  • ускоренный метод определения водонепроницаемости бетона по его воздухопроницаемости.

В связи с тем, что обычные методы испытания занимают достаточно много времени (испытание бетона марки W8 "по мокрому пятну" длится около недели), на практике применяют ускоренные методы определения водонепроницаемости.

Для бетонов конструкций, к которым предъявляются требования ограничения проницаемости, устанавливают следующие марки по водонепроницаемости: W2, W4, W6, W8, W10, W12, W14, W16, W18, W20 (ГОСТ 26633).

Марка бетона по водонепроницаемости W соответствует максимальному значению давления воды (МПа · 10 -1), выдерживаемому бетонным образцом-цилиндром высотой 150 мм в условиях стандартного испытания (например, бетон марки W4 при стандартном испытании не должен пропускать воду при давлении 0,4 МПа=4 атм).

Проницаемость бетона оценивается маркой бетона по водонепроницаемости или коэффициентом фильтрации (прямыми показателями), а также водопоглощением бетона и водоцементным отношением (косвенными показателями), которые являются ориентировочными и дополнительными показателями.

Условные
обозначения
Показатели проницаемости бетона
прямые косвенные
марка бетона по водонепроницаемости коэффициент фильтрации, см/с (при равновесной влажности), Kf водопоглощение, % по массе водоцементное отношение В/Ц, не более
Н - бетон нормальной проницаемости W4 Св. 2*10 -9 до 7*10 -9 Св. 4,7 до 5,7 0,6
П - бетон пониженной проницаемости W6 Св. 6*10 -10 до 2*10 -9 Св. 4,2 до 4,7 0,55
О - бетон
особо низкой проницаемости
W8 Св. 1*10 -10 до 6*10 -10 До 4,2 0,45
W10-W14 Св. 5*10 -11 до 1*10 -10 0,35
W16-W20 Менее 5*10 -11 0,30

Какой бетон использовать для фундамента?

Для большинства сооружений из монолитного железобетона достаточно, чтобы его марка по водонепроницаемости была не ниже W6 . Однако, даже при наличии бетона с высокой водонепроницаемостью (W6-W8) вода в сооружение проникает по швам, сопряжениям (например, стена-пол, стена-потолок) и другим дефектным участкам в конструкции.

Поэтому для обеспечения надежной защиты подземных сооружений от воздействия воды необходимо устройство водонепроницаемых швов.

Повышение водонепроницаемости бетона

Плотность и пористость

Бетон, будучи капиллярно-пористым телом, при наличии соответствующего градиента давления проницаем для воды.

Водонепроницаемость бетона зависит от множества факторов, среди которых основным является степень и характер пористости материала. Чем более плотный бетон, чем меньше количество и объем пор в нем, тем выше его водонепроницаемость.

Основные причины возникновения пор:

  • недостаточная уплотненность бетона;
  • наличие излишней воды затворения;
  • уменьшение бетона в объеме при высыхании (усадка бетона).

Необходимая уплотненность бетона достигается хорошим размешиванием и тщательной вибрацией.

Химическая реакция клинкерных составляющих цемента с водой (присоединение воды), которая происходит в бетоне во время набора им прочности, называется реакцией гидратации. Реакция продолжается в течение длительного периода времени.

Для полной гидратации цементных частиц количество присутствующей воды должно быть на уровне 40% от массы цемента, что соответствует водоцементному отношению В/Ц=0,4. При этом химически связывается только 60% исходной воды, что соответствует В/Ц=0,25.

Теоретически, для гидратации цемента достаточно В/Ц = 0,25, однако при этом резко возрастает жесткость бетона, поэтому на практике используют бетон с В/Ц отношением около 0,5, что обеспечивает транспортировку и удобоукладываемость бетонной смеси.

Вода, не вступившая в реакцию гидратации цемента, после высыхания образует в бетоне большое количество пор. Часть из них замкнута, а часть образует сквозные каналы, по которым впоследствии может проникнуть вода.

Для повышения водонепроницаемости бетона, количество воды затворения должно быть минимизировано (величину В/Ц=0,4 считают как «оптимальную»).

Снижение водоцементного отношения (например, с В/Ц=0,5 до В/Ц=0,40, т.е. на 20%) при заданной подвижности бетонной смеси достигается за счет применения , при этом количество и объем пор резко уменьшается.

Для получения особо плотного бетона с высокой маркой водонепроницаемости используют различные .

Усадка бетона

Твердение и высыхание бетона сопровождается усадкой, проявляющейся в уменьшении его объема.

Интенсивность и величина усадки зависит от армирования (недостаток армирования приводит к образованию больших трещин при усадке), возможного протекания процесса испарения воды, окружающих условий и состава бетонной смеси.

Водонепроницаемый бетон должен обладать минимальной усадкой.

Решение проблем усадки:

  • увлажнения свежеуложенного бетона (каждые 3-4 часа) в течение первых трех дней
    (в зависимости от температуры окружающей среды);
  • укрытие участка бетонирования влажной мешковиной или пленкой;
  • применение специальных пленкообразующих составов
    (перед применением необходимо изучить характеристики состава, так как на некоторые из них невозможно нанести гидроизоляционное либо другое покрытие после вызревания бетона).

Для бетонов с низким В/Ц отношением сохранение воды в теле бетона от испарения, необходимой для процесса гидратации цемента, является одной из основных задач.

Влияние возраста бетона на его водонепроницаемость

Одной из особенностей бетона является то, что с увеличением его возраста водонепроницаемость бетона повышается . При этом интенсивное и устойчивое повышение водонепроницаемости бетонов может быть достигнуто только при продолжительном влажностном уходе.

Значительное увеличение водонепроницаемости бетонов на портландцементах (при постоянном увлажнении бетона или отсутствии потерь влаги и положительной температуре) имеет место вплоть до возраста 180 дней.

Водонепроницаемость бетонов, твердевших в воздушной среде с низкой относительной влажностью и потерявших за время твердения значительное количество воды затворения, всегда значительно (в несколько раз) ниже водонепроницаемости таких же бетонов, но твердевших в условиях постоянного увлажнения. Так, водонепроницаемость образцов бетона, находившихся после распалубки в воздушной среде с относительной влажностью порядка 50-60 % и испытанных в возрасте 180 дней, обычно оказывается фактически равной или ниже водонепроницаемости таких же образцов бетона, твердевших в условиях постоянного увлажнения - 28 дней.

Наиболее интенсивное повышение водонепроницаемости наблюдается при твердении бетонов в условиях постоянного обильного увлажнения (избыточной влажности окружающей среды).

При твердении бетонов в условиях возможного медленного испарения влаги из бетона (например, при твердении в воздушной среде с относительной влажностью 90-95 % при редком поливе водой или отсутствии полива) водонепроницаемость также значительно повышается (хотя и несколько меньше, чем при постоянном увлажнении и поглощении бетоном воды извне), достигая максимума в возрасте 180 дней -1 год, и в дальнейшем стабилизируется.

При воздушном хранении, в условиях испарения из бетона значительных количеств воды; рост водонепроницаемости бетона замедляется тем больше, чем полнее его обезвоживание. При больших потерях воды рост водонепроницаемости бетона прекращается и, более того, наблюдаются случаи снижения ее первоначальной величины.

Нарастание
водонепроницаемости бетонов
различных составов во времени
в условиях медленного испарения воды из бетона

В/Ц Расход
цемента,
кг/м 3
Водонепроницаемость в %
от 28 - дневной при испытаниях в возрасте
28 дней 180 дней 3 года
0,50 338 100 350 400
0,60 284 100 - 400
0,70 245 100 400 425

Бетон - это универсальный стройматериал, широко использующийся во время выполнения различных строительных работ. Традиционно из него делают перекрытия между этажами, капитальные стены зданий, железобетонные конструкции. Материал имеет много положительных качеств, одно из основных - это отличная водонепроницаемость бетона.

Обычный цементный состав может пропускать через себя воду. Но появляются ситуации, когда для обеспечения необходимых эксплуатационных условий конструкции требуется повышенная влагостойкость бетона. Основными представителями этих конструкций, которые используются в традиционном строительстве, являются:

  • полы в здании, которые находятся ниже нулевой отметки;
  • стены подвалов;
  • ленточные фундаменты.

При этом во время сооружения подвала или заливки фундамента, благодаря повышенной водостойкости бетона, можно значительно сэкономить на установке гидроизоляции либо выбрать более бюджетный ее тип.

Водонепроницаемость этого материала актуальна и для промышленных конструкций гидротехнического направления , имеющих непосредственный контакт с

водой и принимающих повышенные нагрузки:

  • плотины;
  • дамбы;
  • подводные тоннели;
  • специальные резервуары.

Общее описание показателя

Противодействие попаданию воды под действием давления определяется показателем водонепроницаемости бетонной смеси, которая обозначается буквой W одновременно с цифровым значением, находящимся в диапазоне 2−20 и меняется с кратностью, равной двум.

Цифровое обозначение определяет допустимое в кг/см² давление воды на эталонный стандарт кубической формы, где стороны равняются 15 см. К примеру, водонепроницаемость бетона W6 составляет давление водного массива на один квадратный сантиметр 6 кг. Причем вода не проникает через этот стройматериал.

С повышением числового индекса, которым описывается марка цементного состава по водонепроницаемости, увеличивается возможность бетонного массива выдерживать давление воды.

Особенности разных марок

Проницаемость бетонной смеси выражается косвенными и прямыми параметрами. К последним относится коэффициент фильтрации и марка бетона по водонепроницаемости. Косвенные показатели - это водоцементное соотношение и водопоглощение. Таким образом, существует определенная таблица водонепроницаемости бетона:

  1. Бетон, который имеет маркировку W2, соответствует цементу М150-М250, быстро впитывающему влагу, и вне зависимости от толщины слоя требует непременного нанесения гидроизоляции.
  2. Бетонный состав W4 соответствует марке цемента М250-М350. Он меньше подвержен воздействию влаги, в отличие от W2, но довольно гигроскопичен. Рекомендуется к применению с использованием слоя гидроизоляции. Материал используется в традиционном строительстве. Показатель водонепроницаемости повышается во время введения в приготовленный состав бетона ингредиентов и добавок, которые вызывают уплотнение массива, а также использования цементов с высоким показателем расширения.
  3. Бетонный раствор W6 (соответствует М350) характеризуется меньшей проницаемостью влаги, что дает возможность широко использовать его во время выполнения строительства. Отличная водонепроницаемость позволяет применять состав для герметизации щелей в железобетонных и монолитных конструкциях для гидроизоляции резервуаров. Он также используется для строительства подвалов на грунте, где близко находятся подземные воды.
  4. Бетонный состав W8 изготавливается из высококачественного цемента М400. Водонепроницаемость W8 составляет приблизительно 5% влаги от общей массы. Бетон отлично себя показал во время выполнения работ по заливке фундамента, сооружения резервуаров и емкостей, которые используются для хранения жидкостей, бомбоубежищ, а также разных гидротехнических конструкций. Используется в традиционном строительстве, если требуется произвести работы по строительству сооружения, которое будет эксплуатироваться при высокой влажности.
  5. Растворы W10−20 (М450−600) отличаются максимальной водонепроницаемостью, не требуют во время применения слоя гидроизоляции. Сферой использования этих составов являются сооружения гидротехнических конструкций, емкостей для хранения жидкости, а также других специальных резервуаров. Наибольшую стойкость к воде имеет бетон W20, он не используется в частном строительстве. Раствор отличается высокой морозоустойчивостью F250-F350, которая позволяет выдерживать значительную разницу температур.

Водонепроницаемость бетонного состава с маркировкой «W» зависит от некоторых факторов. Главными моментами, которые влияют на эту характеристику, являются:

Пористость и плотность

Бетонный состав, являясь пористо-капиллярным телом, во время наличия соответствующего давления проницаем для влаги. Водонепроницаемость значительно зависит от пористости материала.

Причины появления пор:

  • уменьшение объема бетона при высыхании;
  • наличие чрезмерного объема воды в растворе;
  • плохое уплотнение.

Требуемая уплотненность раствора достигается с помощью тщательной вибрации и размешивания цементного состава.

Химическая реакция компонентов бетона с водой, которая проходит в массиве во время набора прочности, называется гидратацией. При этом реакция длится на протяжении долгого времени.

Для полноценной гидратации частиц цемента объем воды обязан находиться на уровне 45% от общей массы бетона, это соответствует водоцементному соотношению В/Ц=0,45. Причем связывается химическим способом лишь 55% общего количества воды в растворе, это соответствует В/Ц=0,20.

В теории для гидратации бетона хватает В/Ц=0,20, но в тоже время значительно увеличивается жесткость раствора, потому на практике применяют бетонную смесь с В/Ц соотношением приблизительно 0,5, это вполне обеспечивает удобную доставку и заливку раствора.

Вода, которая не вступила в реакцию гидратации, после застывания последнего образует в массиве множество пор. Часть из которых закрыта, а часть создает сквозные тоннели, по которым в дальнейшем начинает проходить влага.

Для улучшения водонепроницаемости количество влаги при затворении необходимо минимизировать (В/Ц=0,45 является оптимальной величиной).

Уменьшение водоцементного соотношения (к примеру, с В/Ц=0,6 до В/Ц=0,45, т. е. на 25%) при определенной подвижности цементного состава достигается благодаря использованию пластификаторов, причем количество пор значительно снижается.

Для получения максимально плотного раствора с высокой маркой водонепроницаемости применяют разные гидроизоляционные присадки.

Улучшение характеристик

Задача повышения водонепроницаемости бетонной смеси актуальна как во время гражданского и промышленного строительства, так и во время проведения соответствующих работ в частных постройках. Так как не все время, производя бетонные работы, есть возможность приобрести высококачественный цемент.

Есть эффективные методы, которые дают возможность добиться повышенной устойчивости , осложняющие попадание влаги через застывший бетон:

Способы контроля

Варианты определения показателей указаны ГОСТом. Этот документ указывает следующие способы проверки водонепроницаемости бетонной смести:

Во время необходимости срочного определения водонепроницаемости применяют ускоренные варианты контроля, поскольку точные лабораторные методы потребуют для испытания не менее одной недели.

Выбор требуемой марки бетонных растворов по морозоустойчивости и водонепроницаемости обязан производиться с учетом климатических условий вашего региона, а также количества циклов замерзания и оттаивания на протяжении зимы. Нужно не забывать, что наилучшими показателями обладают составы с повышенной характеристикой плотности.

Бетон используют повсеместно для возведения самых разнообразных сооружений. У него масса специфических характеристик, позволяющих подобрать нужный раствор под конкретные условия строительства, чтобы получить максимально долговечную конструкцию. При выборе этого стройматериала необходимо принимать во внимание его морозостойкость и прочность. Но немаловажна и водонепроницаемость бетона, обозначаемая в маркировке буквой «W». Чем она выше, тем дольше прослужит монолитная конструкция.

Водонепроницаемость бетона – это его способность не пропускать внутрь своей структуры влагу под давлением. Обозначается литерой «W» и четной цифрой от 2 до 20. Последняя указывает на давление в МПа х 10 в «-1» степени, при котором бетонная поверхность начинает впитывать и пропускать воду.

Чем выше водонепроницаемость бетона, тем меньше влаги он сквозь себя пропустит и дольше прослужит

Водостойкость напрямую зависит от капиллярно-пористой структуры стройматериала. Если он относится к плотным маркам, то пор в нем минимум и непроницаемость по воде выше. Самыми неустойчивыми в этом отношении являются различные пено- и газобетоны. У них изначально внутри формируется масса воздушных полостей, которые повышают теплоизоляционные характеристики, но понижают водонепроницаемость.

Обычная бетонная смесь после заливки в форму начинает постепенно высыхать и усаживаться. Однако если процесс затвердевания происходит слишком быстро, армирование может оказаться слабым. В результате внутри бетона образуются трещины и пузырьки воздуха, что снизит его водоустойчивость.