Охотское море самое холодное. Физико-географическое описание

Между акваториями Японского и Берингова морей размещается Охотское море.

Этот водоем ограничивает территорию Японии и Российской Федерации и выступает важнейшей портовой точкой на карте нашей страны.

Раньше среди названий моря числились Ламское, Камчатское, а у японцев - Хоккай, т.е. Северное.

Берега Охотского моря

Этот водоем принято считать одним из самых масштабных и глубоких в России, а также самым прохладным дальневосточным морем. Площадь акватории - 1603 км 2 , а глубина - свыше 800 м в среднем. Максимальный показатель глубины представляет собой практически 4 тысячи метров. Береговая граница водоема достаточно ровная, вдоль нее проходит несколько заливов. Однако в северной части вод много скал и резких обрывов. Для территории этого моря совершенно нормальным явлением являются штормовые предупреждения.

От Тихого океана море отделено Курилами. Речь идет о 3 десятках небольших участков суши, которые находятся в сейсмоопасной зоне из-за обилия вулканов. Также воды Тихого океана и Охотского моря разделены Камчаткой и островом Хоккайдо. А самый крупный остров этой местности - Сахалин. Некоторые проливы водоема выступают условной границей с Японским морем. Среди самых крупных рек, впадающих в море, стоит отметить Амур, Большую, Пенжину, Охоту.

Города на Охотском море

К основным портам и городам Охотской акватории можно отнести:

  • Аян, Охотск и Магадан на материковой части суши;
  • Корсаков на острове Сахалин;
  • Северо-Курильск на Курильских островах.

Промыслы Охотского моря

(Частный промысел: ловля рыбы на берегу Охотского моря, которая разрешена только в открытый сезон рыбалки, но на определенные виды, например на краба, требуется разрешение, иначе это может считаться браконьерством )

Природные ресурсы данного северного моря весьма разнообразны. На территории водоема активно развивается рыболовство, производство лососевой икры и добыча морепродуктов. Известными обитателями этих краев являются горбуша, нерка, треска, кета, кижуч, камбала, чавыча, сельдь, крабы и кальмары, минтай, навага. Кроме того, на Шантарских островах ведется ограниченная охота на морских котиков. Сейчас также популярностью пользуется добыча моллюсков, морских ежей и ламинарии.

(Рыбацкое судно в Охотском море )

Промышленность в Охотском море начала развиваться с 90-х гг. В первую очередь, речь идет о судоремонтных фабриках и рыбообрабатывающих предприятиях на Сахалине. В районе Сахалина также осуществляется разработка углеводородного сырья. В настоящее время в акватории моря открыто 7 точек с залежами нефти, которые начали разрабатывать еще в 70-е гг. прошлого века.

Разделено условными границами. Охотское море – довольно крупное и глубоководное море нашей страны. Его площадь составляет около 1603 тысяч км2, объем вод 1318 тысяч км3. Средняя глубина этого моря составляет 821 м, максимальная глубина – 3916 м. По особенностям своего это море является окраинным морем смешанного материково-окраинного типа.

В водах Охотского моря мало островов, среди которых наиболее большой . Курильская гряда состоит из 30 различных по величине . Их месторасположение является сейсмически активным. Здесь находятся свыше 30 действующих и 70 потухших. Зоны сейсмической активности могут располагаться как на островах, так и под водой. Если эпицентр находится под водой, то поднимаются огромные .

Береговая линия Охотского моря при значительной протяженности достаточно равная. Вдоль береговой черты имеется много крупных заливов: Анива, Терпения, Сахалинский, Академии, Тугурский, Аян и Шелихова. Также имеется несколько губ: Тауйская, Гижигинская и Пенжинская.

Охотское море

Дно представляет собой широкий спектр различных подводных возвышенностей, . Северная часть моря расположена на материковой отмели, которая является продолжением суши. В западной зоне моря имеется отмель Сахалина, расположенная вблизи острова. На востоке Охотского моря находится Камчатки. Лишь небольшая часть расположена в зоне шельфа. Значимая часть водных просторов находится на материковом склоне. Глубина моря здесь варьируется от 200 м до 1500 м.

Южный край моря является наиболее глубокой зоной, максимальная глубина здесь составляет более 2500 м. Эта часть моря представляет собой своеобразное ложе, которое находится вдоль Курильских островов. Для юго-западной части моря характерны глубокие впадины и уклоны, что не является характерным для северо-восточной части.

В центральной зоне моря находятся две возвышенности: Академии наук СССР и Института океанологии. Эти возвышенности делят морское подводное пространство на 3 котловины. Первая котловина представляет собой северо-восточную впадину ТИНРО, которая находится к западу от Камчатки. Эта впадина отличается маленькими глубинами, около 850 м. Дно имеет . Вторая котловина – впадина Дерюгина, расположена к востоку от Сахалина, глубина вод здесь достигает 1700 м. Дно представляет собой равнину, края которой несколько приподняты. Третья котловина – Курильская. Она является наиболее глубоководной (около 3300 м). представляет собой равнину, которая простирается западной части на 120 миль, а в северо-восточной – на 600 миль.

Охотское море находится под влиянием муссонного климата . Основной источник холодного воздуха расположен на западе. Это связано с тем, что западная часть моря сильно врезана в материк и находится недалеко от азиатского полюса холода. С востока относительно высокие горные массивы Камчатки препятствуют продвижению теплых тихоокеанских . Наибольшее количество тепла поступает с вод Тихого океана и Японского моря через южные и юго-восточные границы. Но влияние холодных воздушных масс доминирует над теплыми воздушными массами, поэтому в целом Охотского моря достаточно суров. Охотское море – самое холодное, по сравнению с и Японским морями.

Охотское море

В холодный период (который продолжается с октября по апрель) существенное влияние на море оказывают Сибирский и Алеутский минимум. В результате на просторах Охотского моря преобладают ветра северного и северо-западного направлений. Мощь этих ветров часто достигает штормовой силы. Особенно сильные ветра наблюдаются в январе и феврале. Их средняя скорость составляет около 10 – 11 м/с.

Зимой холодный азиатский муссон способствует сильному понижению в северных и северо-западных частях моря. В январе, когда температура достигает своего минимального предела, в среднем воздух охлаждается до – 20 – 25°С в северо-западной части моря, до – 10 – 15°С в центральной и до –5 – 6 °С в юго-восточной. В последней зоне сказывается влияние теплого тихоокеанского воздуха.

Осенью и зимой море находится под воздействием континентальных . Это приводит к усилению ветра, а в некоторых случаях к похолоданию. В целом можно охарактеризовать как ясную с пониженной . На эти климатические особенности влияет холодный азиатский воздух. В апреле – мае прекращает действовать Сибирский антициклон, усиливается воздействие Гонолульского максимума. В связи с этим в теплый период наблюдаются небольшие юго-восточные ветра, скорость которых редко превышает 6 – 7 м/с.

В летнее время наблюдаются различные температуры в зависимости от . В августе самая высокая температура отмечена в южной части моря, она равняется +18°С. В центральной части моря происходит понижение температуры до 12 – 14°С. На северо-востоке самое холодное лето, средняя температура не превышает 10 –10,5°С. В этот период южная часть моря подвержена многочисленным океаническим циклонам, из-за которых увеличивается сила ветра, и по 5 – 8 суток бушуют шторма.

Охотское море

В Охотское море несет свои воды большое количество рек, но все они преимущественно небольшие. В связи с этим невелик, он составляет около 600 км 3 в течение года. , Пенжина, Охота, Большая – наиболее крупные , впадающие в Охотское море. Пресные воды оказывают незначительное влияние на море. Воды Японского моря и Тихого океана имеют большое значение для Охотского моря.

Приливные явления в районе Курильской гряды

Приливы являются доминирующим фактором, определяющим динамику вод в проливах, и в значительной мере определяют изменения в вертикальной и горизонтальной структуре вод. Приливы в районе гряды, как и в Охотском море, формируются главным образом приливными волнами, распространяющимися из Тихого океана. Собственные приливные движения Охотского моря, обусловленные непосредственным воздействием приливообразующих сил пренебрежимо малы. Приливные волны в северо-западной части Тихого океана имеют преимущественно поступательный характер и движутся в юго-западном направлении вдоль Курильской гряды. Скорость перемещения приливных волн в океане при подходе к Курильской гряде достигает 25-40 узлов (12-20 м/с). Амплитуда приливных колебаний уровня в зоне гряды не превышает 1 м, а скорость приливных течений составляет около 10-15 см/с. В проливах фазовая скорость приливных волн уменьшается, а амплитуда приливных колебаний уровня увеличивается до 1,7-2,5 м. Здесь скорости приливных течений возрастают до 5 узлов (2,5 м/с) и более. Благодаря многократному отражению приливных волн от берегов Охотского моря в самих проливах имеют место сложные поступательно-стоячие волны. Приливные течения в проливах имеют выраженный реверсивный характер, что подтверждается измерениями течений на суточных станциях в проливах Буссоль, Фриза, Екатерины и других проливах. Горизонтальные орбиты приливных течений, как правило, близки по своей форме к прямым линиям, ориентированным вдоль проливов.

Ветровое волнение в прикурильском районе

В летний период как с охотоморской, так и с океанской стороны Курильских островов крупные волны (высота 5,0 м и более) встречаются реже чем в 1% случаев. Повторяемость волн градаций 3,0–4,5 м составляет 1-2% с охотоморской стороны и 3-4% - с океанской. Для градации высот волн 2,0-2,5 м в Охотском море повторяемость составляет 28-31% , а со стороны Тихого океана - 32-33%. Для слабого волнения 1,5 м и менее с охотоморской стороны повторяемость составляет 68-70%, а со стороны океана - 63-65%. Преобладающее направление волнения в прикурильской части Охотского моря - от юго-запада на юге района и центральных Курильских островов, до северо-запада - на севере района. С океанской стороны Курильских островов на юге преобладает юго-западное направление волнения, а на севере - с равной вероятностью наблюдается северо-западное и юго-восточное.

Осенью интенсивность циклонов резко возрастает, соответственно усиливаются скорости ветра, которые генерируют более крупные волны. В этот период вдоль охотоморского побережья островов волны высотой 5,0 м и более составляют 6-7% от общего числа высот волн, а с океанской стороны - 3-4%. Увеличивается повторяемость северо-западного, северо-восточного и юго-восточного направлений. Опасное волнение продуцируется циклонами (тайфунами) с давлением в центре менее 980 гПа и большими градиентами барического давления – 10-12 гПа на 1° широты. Обычно в сентябре тайфуны выходят в южную часть Охотского моря, перемещаясь вдоль Курильской гряды

Зимой интенсивность проходящих циклонов возрастает. Повторяемость волн высотой 5,0 м и более составляет в это время с охотоморской стороны 7-8%, а с океанской – 5-8%. Преобладает северо-западное направление волн и волнение соседних с ним румбов.

Весной интенсивность циклонов резко падает, значительно уменьшается их глубина и радиус действия. Повторяемость крупных волн на всей акватории составляет 1% и менее, а направление волнения меняется на юго-западное и северо-восточное.

Ледовые условия

В Курильских проливах в осенне-зимний период благодаря интенсивному приливному перемешиванию и поступлению более теплых вод из Тихого океана температура воды на поверхности не достигает отрицательных значений, необходимых для начала льдообразования. Однако постоянные и сильные ветры северных румбов в зимний период являются основной причиной дрейфа плавучих льдов в исследуемом районе. В суровые зимы плавучие льды выходят далеко за пределы своего среднего положения и достигают Курильских проливов. В январе отдельные языки плавучего льда в суровые по ледовитости годы выходят из Охотского моря в океан через пролив Екатерины, распространяясь на 30 - 40 миль в открытую часть океана. В феврале у Южных Курильских островов языки льда направляются к юго-западу, вдоль острова Хоккайдо, до мыса Эримо и далее на юг. Ширина ледового массива при этом может достигать 90 миль. Значительные ледовые массивы могут наблюдаться вдоль острова Онекотан. Ширина полосы льдов здесь может достигать 60 миль и более. В марте, в экстремально тяжелые годы, выход льдов в открытый океан из Охотского моря осуществляется из массива на юго-западе моря через все проливы, начиная от Крузенштерна и южнее. Языки льда, выходящие из проливов, стекают на юго-запад, вдоль Курильских островов, а затем - вдоль острова Хоккайдо, к мысу Эримо. Ширина ледового массива в различных его местах может достигать 90 миль. У восточного побережья полуострова Камчатка ширина ледового массива может достигать более 100 миль, а распространиться массив может до острова Онекотан. В апреле плавучие льды могут выходить через любой пролив Курильской гряды от пролива Крузенштерна и южнее, а ширина языков льда не превышает 30 миль.

Влияние атмосферной циркуляции на динамику вод

Особенностью атмосферных процессов прикурильского района, как и всего Охотского моря, является муссонный характер циркуляции атмосферы (рис. 2.3). Это - преобладание юго-восточных ветров в период летнего муссона и обратных направлений ветров - в зимний период. Интенсивность развития муссонов определяется развитием крупномасштабных атмосферных процессов, связанных с состоянием основных центров действия атмосферы, регулирующих атмосферную циркуляцию над морями Дальневосточного района. Выявлена достаточно тесная причинно-следственная связь между особенностями атмосферной циркуляции и изменчивостью интенсивности развития того или иного звена системы течений района Курильских островов, что, в свою очередь, в значительной мере определяет формирование температурного фона вод района.

CO – "циклоны над океаном"; OA – "охотско-алеутский" /

Характеристики течений Соя и Курильского в сентябре 1988-1993 гг. (1Св = 10 6 м 3 /с)

Наименование

Перенос вод в течении Соя на траверзе пролива Екатерины

Положение границы течения Соя

Пролив Екатерины

Пролив Фриза

Пролив Фриза

Остров Итуруп

Остров Итуруп

Остров Итуруп

D T, o C в точке

45 o 30"N, 147 o 30"E

Перенос вод в Курильском течении на траверзе пролива Буссоль

D T,°C в точке

45°00"N, 153°00"E

Приведенные данные о состоянии прикурильских течений в сентябре для периода с 1988 по 1993 гг. свидетельствует о межгодовой изменчивости характеристик системы этих течений.

В весенний период года, при преобладании охотско-алеутского типа атмосферной циркуляции, отмечено значительное проникновение течения Соя в Охотское море в последующем летнем сезоне и, как результат - формирование повышенного температурного фона акватории в южно-курильском районе. При преобладании в весенний период северо-западного типа атмосферной циркуляции в последующий летний сезон, напротив, имело место незначительное проникновение теплого течения Соя в Охотское море, большее развитие Курильского течения и формирование пониженного температурного фона акватории.

Главные особенности структуры и динамики вод прикурильского района

Структурные особенности вод прикурильского района Тихого океана связаны с Курильским течением, являющимся западным пограничным потоком в субполярной круговой циркуляции северной части Тихого океана. Течение прослеживается в водах западной модификации субарктической структуры, имеющей следующие характеристики водных масс :

1. Поверхностная водная масса (0-60 м); весной°С=2-3°, S‰=33,0‰; летом°С=8°, S‰=33,0‰.

2. Холодный промежуточный слой (60-200 м);°С min =0,3°, S‰=33,3‰ с ядром на глубине 75-125 м.

3. Теплый промежуточный слой (200-800 м);°С max =3,5°, S‰=34,1‰ с ядром на глубине 300-500 м.

4. Глубинная (800-3000 м);°С=1,7°, S‰=34,7‰.

5. Придонная (более 3000 м);°С=1,5°, S‰=34,7‰.

Тихоокеанские воды у северных проливов Курильской гряды значительно отличаются от вод района южных проливов. Воды Курильского течения, формирующиеся очень холодными и более опресненными водами восточного побережья п-ова Камчатка и тихоокеанскими водами, в зоне проливов Курильской гряды смешиваются с трансформированными охотоморскими водами. Далее, воды течения Ойясио формируются смесью охотоморских вод, трансформированных в проливах, и водами Курильского течения.

Генеральная схема циркуляции вод Охотского моря в общем представляет собой большой циклонический круговорот, который в северо-восточной части моря формируется поверхностными, промежуточными и глубинными тихоокеанскими водами, поступающими при водообмене через северные Курильские проливы. В результате водообмена через южные и центральные Курильские проливы эти воды частично проникают в Тихий океан и пополняют воды Курильского течения. Характерная для Охотского моря в целом циклоническая схема течений, обусловленная преобладающей циклонической атмосферной циркуляцией атмосферы над морем, корректируется в южной части моря сложным рельефом дна и локальными особенностями динамики вод зоны Курильских проливов. В районе южной котловины отмечается устойчивый антициклонический круговорот.

Структура вод Охотского моря, определяемая как охотоморская разновидность субарктической структуры вод, состоит из следующих водных масс :

1. Поверхностная водная масса (0-40 м) с температурой и соленостью около 2,5° и 32,5‰ в весенний период и соответственно 10-13° и 32,8‰ - в летний.

2. Холодная промежуточная водная масса (40-150 м), формирующаяся в Охотском море в зимнее время, с характеристиками ядра:°С min = -1,3°, S‰ =32,9‰ на глубине 100 м.

Вдоль Курильских островов в Охотском море наблюдается резкий “обрыв” ядра холодного промежуточного слоя с минимальной температурой ниже +1° на расстоянии 40-60 миль от побережья островов. “Обрыв” холодного промежуточного слоя свидетельствует о существовании выраженного фронтального раздела собственно охотоморских промежуточных вод и трансформированных вод в проливах при приливном вертикальном перемешивании. Фронтальный раздел ограничивает распространение пятна более холодных поверхностных вод на акватории вдоль Курильских островов. То есть холодный промежуточный слой в Охотском море не связан с таковым в Курило-Камчатском течении и определяется зимними температурными условиями района.

3. Переходная водная масса (150-600 м), формирующаяся в результате приливной трансформации верхнего слоя тихоокеанских и охотоморских вод в зоне Курильских проливов (Т°=1,5°, S‰ =33,7‰).

4. Глубинная водная масса (600-1300м), проявляющаяся в Охотском море в виде теплого промежуточного слоя:°С=2,3°, S‰ =34,3‰ на глубине 750-1000 м.

5. Водная масса южной котловины (более 1300 м) с характеристиками:°С=1,85, S‰ =34,7‰ .

В южной части Охотского моря поверхностная водная масса имеет три модификации. Первая модификация - низкосоленая (S‰ <32,5‰), центральная охотоморская формируется преимущественно при таянии льда и располагается до глубины 30 м в период с апреля по октябрь. Вторая - Восточно-Сахалинского течения, наблюдается в слое 0-50 м и характеризуется низкой температурой (<7°) и низкой соленостью (<32,0‰). Третья - теплых и соленых вод течения Соя, являющегося продолжением ветви Цусимского течения, распространяющегося вдоль охотоморского побережья о.Хоккайдо (в слое 0-70 м) от пролива Лаперуза до южных Курильских островов. С марта по май имеет место “предвестник” течения Соя (Т°=4-6°, S‰ =33,8-34,2‰), а с июня по ноябрь - собственно теплое течение Соя с более высокой температурой (до 14-17°) и более высокой соленостью (до 34,5‰).

Проливы Курильской гряды

В Курильском архипелаге длиной примерно 1200 км насчитывается 28 относительно больших островов и много мелких. Эти острова образуют Большую Курильскую гряду и Малую - расположенную вдоль океанской стороны Большой Курильской гряды в 60-ти км к юго-западу от последней. Суммарная ширина Курильских проливов около 500 км. Из общей суммы поперечных сечений проливов 43,3% приходится на пролив Буссоль (глубина порога 2318 м), 24,4% - на пролив Крузенштерна (глубина порога 1920 м), 9,2% - на пролив Фриза и 8,1% - на IV Курильский пролив. Однако глубина даже самого глубокого из Курильских проливов значительно меньше максимальной глубины прилегающих к Курильским островам районов Охотского моря (около 3000 м) и Тихого океана (более 3000 м). Поэтому Курильская гряда представляет собой естественный порог, отгораживающий впадину моря от океана. Вместе с тем, Курильские проливы являются именно той зоной, в которой происходит водообмен между указанными бассейнами. Эта зона имеет свои особенности гидрологического режима, отличающиеся от режима прилегающих глубоководных районов океана и моря. Особенности орографии и рельефа дна этой зоны оказывают корректирующее влияние на формирование структуры вод и проявление таких процессов, как приливы, приливное перемешивание, течения и др.

На основе обобщения данных многолетних наблюдений установлено, что в зоне проливов наблюдается более сложная, чем полагалось ранее, гидрологическая структура вод. Во-первых , трансформация вод в проливах проявляется не однозначно. Трансформированная структура вод, имеющая характерные признаки курильской разновидности субарктической структуры вод (характеризующейся отрицательными аномалиями температуры и положительными - солености на поверхности в теплое полугодие, более мощным холодным промежуточным слоем и более сглаженными экстремумами промежуточных водных масс, в том числе положительной аномалией минимальной температуры), наблюдается преимущественно на шельфе островов, где более выражено приливное перемешивание. На мелководье приливная трансформация приводит к формированию однородной по вертикали структуры вод. В глубоководных областях проливов наблюдаются хорошо стратифицированные воды. Во-вторых , сложность заключается в том, что для зоны Курильских проливов характерно наличие разномасштабных неоднородностей, формирующихся при вихреобразовании и фронтогенезе в процессе контакта струй прикурильских течений, происходящего на фоне приливного перемешивания. При этом, в структуре термохалинных полей происходит изменение положения границ и экстремумов промежуточных слоев. В областях вихрей, а также в областях стрежней течений, несущих и сохраняющих свои характеристики, наблюдается локализация однородных ядер минимальной температуры холодного промежуточного слоя. В-третьих , структура вод в зонах проливов корректируется изменчивостью водообмена в проливах. В каждом из основных Курильских проливов в различные годы, в зависимости от развития того или иного звена системы течений района, возможен либо преобладающий сток охотоморских вод, либо преобладающее питание тихоокеанскими водами, либо двусторонняя циркуляция вод.

IV Курильский пролив

IV Курильский пролив - один из основных северных проливов Курильской островной гряды. Поперечное сечение пролива - 17,38 км 2 , что составляет 8,1% от общей поперечной площади сечений всех Курильских проливов, глубина его - около 600 м. Топографической особенностью пролива является его открытость в сторону Охотского моря и наличие порога глубиной около 400м со стороны Тихого океана.

Термохалинная структура вод IV Курильского пролива

Водная

Весна (апрель-июнь)

Лето (июль-сентябрь)

Масса

Глубина,

Температура,
°С

Соленость, ‰

Глубина, м

Температура,
°С

Соленость, ‰

Поверхностная

0-30

2,5-4,0

32,4-3,2

0-20

5-10

32,2-33,1

Холодная промежуточная

40-200

ядро: 50-150

0,3-1,0

33,2-33,3

30-200

ядро: 50-150

0,5-1,0

33,2-33,3

Теплая промежуточная

200-1000

ядро: 350-400

33,8

200-1000

ядро: 350-400

33,8

Глубинная

> 1000

34,4

> 1000

34,4

Пролив

Поверхностная

0-20

2-2,5

32,7-33,3

0-10

32,5-33,2

Холодная промежуточная

40-600

75-100, 200-300

1,0-2,0

33,2-33,5

50-600

75-100, 200-300

1,0-1,3

33,2-33,5

Придонная

33,7-33,8

33,7-33,8

Поверхностная

0-40

2,3-3,0

33,1-33,3

0-20

32,8-33,2

Холодная промежуточная

50-600

ядро: 60-110

1,0-1,3

33,2-33,3

40-600

ядро: 60-110

0,6-1,0

33,2-33,3

Теплая промежуточная

600-1000

33,8

600-1000

33,8

Глубинная

> 1000

34,3

> 1000

34,3

Из-за сложного рельефа дна в проливе количество водных масс различно. На мелководье вертикальное перемешивание приводит к гомогенизации вод. В этих случая имеет место только поверхностная водная масса. Для основной части пролива, где глубина составляет 500-600 м, наблюдаются две водные массы - поверхностная и холодная промежуточная. На более глубоких станциях с охотоморской стороны, наблюдается и более теплая придонная водная масса. На некоторых станциях пролива наблюдается второй минимум температуры. Поскольку в проливе со стороны Тихого океана существует порог с глубинами около 400 м, то водообмен между Тихим океаном и Охотским морем практически осуществляется до глубины порога. То есть, тихоокеанские и охотоморские водные массы, располагающиеся на больших глубинах, не имеют контакта в зоне пролива.

Пролив Крузенштерна

Пролив Крузенштерна - один из наиболее крупных и глубоких проливов Курильской островной гряды. Площадь поперечного сечения пролива – 40,84 км 2 . Порог пролива, с глубинами 200-400 м расположен с его океанской стороны. В проливе имеется желоб с глубинами от 1200 м до 1990 м, через который может осуществляться водоо6мен глубинными водами между Тихим океаном и Охотским морем. Северо-восточную часть пролива занимает мелководье с глубинами менее 200 м. В отличие от других проливов Курильской гряды, система островов и проливов (проливы Надежды и Головнина), входящих по существу в пролив Крузенштерна, образована группой мелких островов и скал, ограниченной с юга островом Симушир и с севера островом Шиашкотан.

Термохалинная структура вод пролива Крузенштерна

Водная

Весна (апрель-июнь)

Лето (июль-сентябрь)

Масса

Глубина,

Температура,
°С

Соленость, ‰

Глубина,

Температура,
°С

Соленость, ‰

Прилегающий к проливу тихоокеанский район

Поверхностная

Холодная

Промежуточная

ядро: 75-100

ядро: 75-100

Промежуточная

ядро: 250-350

ядро: 250-350

Глубинная

Пролив

Поверхностная

Холодная

Промежуточная

ядро: 75-150

ядро: 75-150

Промежуточная

Глубинная

Прилегающий к проливу охотоморский район

Поверхностная

Холодная

Промежуточная

ядро: 75-150

ядро: 75-150

Промежуточная

Глубинная

Пролив Буссоль

Пролив Буссоль - самый глубоководный и широкий пролив Курильской гряды, расположенный в центральной ее части между островами Симушир и Уруп. Благодаря большим глубинам, площадь сечения его составляет почти половину (43,3%) от площади сечений всех проливов гряды и равна 83,83 км 2 . Подводный рельеф пролива отличается резкими перепадами глубин. В центральной части пролива имеется поднятие дна до глубины 515 м, которое расчленяется двумя желобами – западным, глубиной 1334 м и восточным - глубиной 2340 м. Наличие больших глубин в проливе создает более благоприятные условия для сохранения вертикальной стратификации вод и проникновению тихоокеанских вод в море на больших глубинах.

Термохалинная структура вод прилива Буссоль

Водная

Весна (апрель-июнь)

Лето (июль-сентябрь)

Масса

Глубина,

Температура,
°С

Соленость, ‰

Глубина,

Температура,
°С

Соленость, ‰

Прилегающий к проливу тихоокеанский район

Поверхностная

0-30

1,5-3,0

33,1-33,2

0-50

33,0-33,2

Холодная

Промежуточная

30-150

ядро: 50-75

1,0-1,2

33,2-33,8

50-150

ядро: 50-75

1,0-1,8

33,3

Теплая промежуточная

150-1000

34,1

200-900

34,0

Глубинная

> 1000

34,5

> 1000

34,5

Пролив

Поверхностная

0-10

1,5-2

33,1-33,4

0-20

33,1-33,4

Холодная промежуточная

10-600

ядро: 100-150

1,0-1,2

33,3-33,5

20-600

ядро: 200-300

1,0-1,5

33,6

Теплая промежуточная

600-1200

34,2

600-1200

34,2

Глубинная

> 1200

34,5

> 1200

34,5

Прилегающий к проливу охотоморский район

Поверхностная

0-20

1,8-2,0

33,0-33,2

0-30

4-10

32,7-33,0

Холодная промежуточная

20-400

ядро: 75-100

0,8-1,0

33,3-33,5

30-500

ядро: 150-250

0,5-1,0

33,5-33,6

Промежуточная

400-1200

34,3

500-1200

34,3

Глубинная

> 1200

34,5

> 1200

34,5

Пролив Фриза

Пролив Фриза - один из основных проливов южной части Курильской островной гряды. Пролив находится между островами Уруп и Итуруп. Поперечное сечение пролива составляет 17,85 км 2 , что составляет 9,2% от общей площади сечений всех проливов. Глубина пролива – около 600 м. С тихоокеанской стороны имеется порог с глубинами около 500 м.

Термохалинная структура вод пролива Фриза

Водная

Весна (апрель-июнь)

Лето (июль-сентябрь)

Масса

Глубина,

Температура,
°С

Соленость, ‰

Глубина,

Температура,
° С

Соленость, ‰

Прилегающий к проливу тихоокеанский район

Поверхностная

0-30

1,5-2,0

33,0-33,2

0-50

4-13

33,2-33,8

Холодная

Промежуточная

30-250

ядро: 50-75

1,0-1,2

33,2-33,0

50-250

ядро: 125-200

1,0-1,4

33,5

Промежуточная

250-1000

2,5-3,0

34,0-34,2

250-1000

2,5-3,0

34,0-34,2

Глубинная

> 1000

34,4

> 1000

34,4

Пролив

Поверхностная

0-20

1,5-2

33,0-33,2

0-30

4-14

33,2-33,7

Холодная

Промежуточная

20-500

1,0-1,3

33,7

30-500

ядро:100-200

33,7-34,0

Промежуточная

(придонная)

34,3

34,3

Прилегающий к проливу охотоморский район

Поверхностная

0-30

1,0-1,8

32,8-33,1

0-50

8-14

33,0-34,0

Холодная

Промежуточная

30-300

ядро: 75-100

0-0,7

33,1-33,3

50-400

ядро: 100-150

1,0-1,3

33,5-33,7

Промежуточная

300-1200

34,2

400-1000

34,2

Глубинная

> 1000

34,4

> 1000

34,4

Для значительной части пролива, где глубина составляет около 500 м, выделяются лишь две водные массы - поверхностная и холодная промежуточная. На более глубоких станциях, где наблюдаются зачатки верхней границы теплой промежуточной водной массы, из-за небольших глубин пролива (около 600 м) эта водная масса является придонной. Наличие порога со стороны Тихого океана препятствует проникновению вод хорошо выраженного в Тихом океане теплого промежуточного слоя. В связи с этим, теплый промежуточный слой в зоне пролива имеет сглаженные характеристики - более близкие к индексам теплого промежуточного слоя охотоморских вод. Из-за небольших глубин пролива глубинные охотоморские и тихоокеанские водные массы практически не имеют контакта в зоне пролива.

Особенности циркуляции вод связаны с межгодовой изменчивостью непериодических течений данного района, в частности, с изменчивостью интенсивности течения Соя. Как установлено в настоящее время, течение возникает в южной части Охотского моря в весенний период, усиливается и максимально распространяется летом и ослабевает в осенний период. При этом граница распространения течения зависит от его интенсивности и изменяется от года к году. В целом, пролив Фриза не является ни чисто стоковым, ни чисто питающим, хотя в отдельные годы может являться таковым.

Пролив Екатерины

Пролив расположен между островами Итуруп и Кунашир. Ширина пролива в узкости составляет 22 км, пороговая глубина 205 м, площадь поперечного сечения около 5 км 2 . С севера, со стороны Охотского моря подходит желоб с глубинами более 500 м, продолжением которого является глубоководная центральная часть пролива с глубинами более 300 м. Западная часть пролива приглубая, в восточной части пролива глубины к центру увеличиваются более плавно. На подступах к проливу со стороны океана глубины не превышают 200-250 м.

У охотоморского побережья острова Кунашир поверхностная водная масса слагается из более теплых вод течения Соя и поверхностных охотоморских вод соответствующей (в данном случае - летней) модификации. Первые придерживаются северного берега о-ва Кунашир, занимают обычно слой от поверхности до глубины 50-100 м. Вторые располагаются, обычно, мористее северной границы течения Соя и в случае неразвитости последнего приближаются к проливу Екатерины с севера. Их распространение по глубине редко превышает верхние 20-30 м. Вышеназванные обе поверхностные водные массы подпираются собственно охотоморскими водами, составляющими в летне-осенний период года холодный промежуточный слой.

С океанской стороны пролива Екатерины распространение поверхностных и подповерхностных водных масс всецело определяется Курильским течением, омывающим побережье острова Итуруп и берега малой Курильской гряды.

Термохалинные индексы и вертикальные границы водных масс

в проливе Екатерины

Структура

Поверхностная водная

масса

Холодная промежуточная водная масса

Температура,
°С

Соленость,

Границы,

Температура,
°С

Соленость,

Границы,

Курильская

33,2

Тихоокеанская

32,9

0-100

33,3

Воды Соя

14-16

33,5

0-75

Охотоморская

10-11

32,7

0-20

33,2

20-100

В фазы отлива в центральной части пролива выражен поток вод из Охотского моря в океан. Отливное течение усиливает адвекцию тепла с ветвью теплого течения Соя. У побережья скорость течения резко уменьшается и меняет направление, а в отдельных ситуациях у самого берега возникает приливное противотечение. В зонах резкого изменения скорости и направления течения обычно хорошо виден продольный фронт. Смена фаз приливного и отливного течения происходит не одновременно в связи с чем в определенные промежутки времени возникают достаточно сложные по конфигурации зоны дивергенции и конвергенции течений и появляются полосы сулоя.

Для горизонтального распределения температуры воды в проливе характерна пятнистая структура, которая, вероятно, является результатом взаимодействия непериодических течений, рельефа дна и приливных движений. “Очаги изолированной воды” не являются стабильными образованиями и порождаются действием несбалансированных сил.

Сезонная изменчивость циркуляции вод Курильских проливов

Результаты расчетов геострофичесих течений для района Курильской гряды, основанные на данных экспедиционных наблюдений, указывает на формирование двусторонней схемы течений в проливах. Поскольку на картину циркуляции вод конкретного пролива, наряду с приливными явлениями, существенным образом влияет динамика вод прилегающих районов моря и океана, наблюдается изменение баланса расходов в проливах, изменяется характер водообмена через конкретный пролив - преимущественно сточный или наоборот, вплоть до чисто сточного или питающего. Однако данные оценки дают лишь качественную картину, не позволяют судить о расходах через проливы, сезонной и межгодовой изменчивости водообмена.

С использованием математической квазигеострофической модели А.С.Васильева , проведен ряд численных экспериментов для зоны Курильских проливов, включающей в себя наиболее активный в динамическом отношении район Курильской островной дуги - пролив Фриза и пролив Буссоль с прилегающими акваториями. В качестве исходной информации использованы материалы экспедиционных исследований за 80-90 гг. в зоне Курильских проливов, а также имеющиеся архивные данные по температуре, солености на поверхности океана и реальные поля атмосферного давления. Расчеты проводились на равномерной сетке с шагом 10¢ по широте и долготе. Численные расчеты в исследуемом районе проведены с учетом преобладающих для каждого из четырех сезонов типов атмосферной циркуляции (рис. 2.3), для характерных месяцев, когда циркуляция вод максимально учитывает влияние сезонного атмосферного воздействия. Как правило, это последний месяц сезона.

Зима (декабрь-март ). Для зимнего периода при северо-западном (СЗ) типе атмосферной циркуляции циркуляция вод соответствует направлению переноса воздушных масс (в зоне южных Курильских проливов перенос с северо-востока). В проливе Буссоль наблюдается двусторонняя циркуляция с хорошо выраженным выносом охотоморских вод. В проливе Фриза - преимущественный вынос охотоморских вод. При этом наблюдается одностороннее движение потоков вдоль островов по обе стороны пролива в южном направлении - и с морской, и с океанской стороны. Оценка интегральных расходов показывает, что пролив Фриза в зимний сезон при северо-западном типе атмосферной циркуляции является сточным проливом с максимальным выносом до 1,10 Св. При типовой атмосферной циркуляции циклоны над океаном (ЦО) схема циркуляции вод существенно корректируется - формируется двусторонняя циркуляция вод. В зоне же пролива Буссоль наблюдается "плотная упаковка" разнонаправленных вихревых образований.

Интегральный перенос вод в Курильских проливах (в Св) (Положительные значения – поступление тихоокеанских вод, отрицательные – вынос охотоморских вод)

Зима (март)

СЗ ЦО

Весна (июнь)

СЗ ОА

Лето (сентябрь)

СЗ ОА

Осень(ноябрь)

СЗ ЦО

Фриза

Буссоль

0- дно

Весна (апрель - июнь ). При северо-западном (СЗ) типе атмосферной циркуляции в зоне пролива Буссоль заметно увеличение числа разнонаправленных круговоротов. В районе западного желоба этого пролива с тихоокеанской стороны хорошо прослеживается циклонический круговорот, контактирующий с антициклоническим образованием далее в Тихом океане. В восточном желобе создаются условия двусторонней циркуляции, более явной, чем в зимний сезон. В проливе Фриза при данном типе атмосферной циркуляции сохраняется и несколько усиливается (до 1,80 Св) преимущественный вынос охотоморских вод в северо-западной части пролива. Другой тип атмосферной циркуляции, характерный также для этого периода - охотско-алеутский (ОА) (перенос воздушных масс в районе южных Курильских островов в направлении с юго - востока), значительно изменяет направление потоков вод, особенно в проливе Фриза. Течения здесь преимущественно направлены в Охотское море, т.е. наблюдается преобладающее поступление через пролив тихоокеанских вод. Баланс расходов через пролив показывает увеличение поступления вод (по сравнению с предыдущим типом атмосферной циркуляции) - от 0,10 Св до 1,10 Св. В районе пролива Буссоль формируется большое число разнонаправленных круговоротов.

Лето (июль - сентябрь ). При северо-западном типе атмосферной циркуляции в проливе Фриза формируется двустороннее направление движения вод (в отличие от предыдущих сезонов, когда при данном типе атмосферной циркуляции здесь наблюдался преимущественный сток охотоморских вод). В проливе Буссоль также отмечаются изменения в циркуляции вод. Поперек восточного желоба пролива проходит резкий фронтальный раздел между циклоническим круговоротом со стороны Охотского моря и антициклоническим образованием со стороны Тихого океана. При этом наблюдается преимущественный вынос охотоморских вод через центральную часть пролива. Оценки расходов через пролив показывают значительную величину стока охотоморских вод – до 9,70 Св, а при поступлении тихоокеанских вод - лишь 4,30 Св. Другой, характерный для летнего сезона охотско-алеутский тип атмосферной циркуляции, несколько корректирует схему циркуляции вод района. В проливе Буссоль формируется второй фронтальный раздел, изменяется ориентация фронтов - вдоль пролива, схема циркуляции усложняется. В центральной части пролива появляется поток тихоокеанских вод в Охотское море. Вынос охотоморских вод разделяется на два потока - через западный и восточный желоба пролива и баланс расходов через пролив уравновешивается (расходы составляют около 8 Св в том и другом направлении). В проливе Фриза при этом наблюдается хорошо выраженная двусторонняя схема течений.

Осень (октябрь-ноябрь ). Осенний период, как и весенний - время перестройки атмосферных процессов над северной частью Тихого океана. Увеличивается продолжительность действия северо-западного типа атмосферной циркуляции, а также вместо охотско-алеутского типа получает большее развитие тип "циклоны над океаном". Заметно существенное ослабление интенсивности циркуляции вод. При северо-западном типе атмосферной циркуляции схема течений в проливе Фриза сохраняет двустороннюю направленность (как и в летний период при данном типе атмосферной циркуляции). В проливе Буссоль схема циркуляции вод представлена вытянутым поперек пролива двух ядровым антициклоническим круговоротом, определяющем двустороннюю циркуляцию вод в каждом из желобов пролива. При типе атмосферной циркуляции "циклоны над океаном" для схемы циркуляции вод в проливе Буссоль отмечается вынос охотоморских вод в западном желобе пролива и двусторонняя циркуляция вод в антициклоническом круговороте в восточном желобе пролива.

Таким образом, по результатам модельных расчетов в проливе Фриза наблюдается преимущественный вынос охотоморских вод в зимний и весенний период при северо-западном типе атмосферной циркуляции, а также в зимний и осенний период при типовой синоптической ситуации "циклоны над океаном". Двусторонняя схема течений имеет место при северо-западном типе атмосферной циркуляции в летний и осенний периоды. Преимущественное поступление тихоокеанских вод наблюдается при охотско-алеутском типе в летний период. В проливе Буссоль преимущественный вынос охотоморских вод отмечается при северо-западном типе атмосферной циркуляции в летний период. Достаточно хорошо выраженная двусторонняя схема циркуляции вод в проливе формируется при северо-западном типе атмосферной циркуляции в зимний и весенний сезоны. При остальных типовых синоптических ситуациях циркуляция в проливе представлена потоками разносторонней направленности, обусловленными "плотной упаковкой" вихревых образований различной ориентации. Прослеживается сезонная изменчивость интенсификации циркуляции вод в проливах. От холодного периода полугодия к теплому величины переноса вод увеличиваются на порядок.

Гидрологическое районирование

Исследование гидрологических условий зоны Курильских проливов и прилегающих районов Тихого океана и Охотского моря выявило ряд сходных черт и особенностей формирования термохалинной структуры вод в каждом из районов.

Охотское море и часть Тихого океана у Курильских островов заполнены водами субарктической структуры - точнее охотоморской, тихоокеанской и курильской ее разновидностями. Каждая - весной, летом и осенью состоит из поверхностной водной массы, холодного и теплого промежуточных слоев и глубинных придонных вод.

В субарктической структуре всех трех разновидностей главными чертами являются: минимум температуры холодного промежуточного слоя и максимум температуры теплого промежуточного слоя. Однако, для каждой из разновидностей характерны свои особенности. Холодный промежуточный слой наиболее резко выражен в охотоморских водах. Температура в ядре холодного промежуточного слоя Охотского моря сохраняется отрицательной на большей части акватории в течение всего теплого периода года. В зоне охотоморского побережья Курильских островов наблюдается резкий “обрыв” холодного промежуточного слоя, оконтуренного изотермой +1°, связанного с хорошо выраженным здесь фронтальным разделом собственно охотоморских вод и трансформированных вод зоны Курильских проливов. Для курильской разновидности субарктической структуры вод в теплое полугодие характерны более низкие температуры и более высокие значения солености на поверхности относительно сопредельных вод моря и океана, расширение границ холодного промежуточного слоя и более сглаженные температурные экстремумы водных масс. В тихоокеанских же водах промежуточные слои достаточно хорошо выражены. В результате, со стороны Тихого океана, вдоль островов, Курильское течение, переносящее воды тихоокеанской субарктической структуры, создает контрасты термохалинных характеристик. Здесь формируется фронтальная зона, хорошо выраженная в поле температуры поверхностных и промежуточных вод.

Теплый промежуточный слой наиболее четко выражен в тихоокеанских водах. В охотоморских водах и в зоне проливов этот слой имеет более сглаженные характеристики. Это обстоятельство дает возможность идентифицировать данную водную массу как тихоокеанскую или как охотоморскую при исследовании водообмена через проливы.

Из-за особенностей топографии Курильских проливов глубинные охотоморские и тихоокеанские воды имеют контакт только в проливах Буссоль и Крузенштерна. При этом охотоморские глубинные воды холоднее тихоокеанских почти на 1° и имеют несколько меньшую соленость - на 0,02‰. Наиболее холодная вода (приносимая Восточно-Сахалинским течением в холодном промежуточном слое к южным и центральным Курильским проливам из мест формирования на шельфе Охотского моря), как и наиболее теплая (связанная с проникновением в поверхностном слое в южную часть Охотского моря теплых вод течения Соя), поступает в океан через пролив Екатерины и Фриза. В океане эти воды питают Курильское течение.

Исследования термохалинной структуры вод посредством анализа разрезов и карт термохалинных полей, а также анализа Т,S-кривых с учетом условий, формирующих эту структуру во всем районе в целом, позволили уточнить данное ранее разделение разновидностей субарктической структуры вод в районе Курильских островов и выделить ряд типов (или разновидностей) структуры с соответствующими индексами слагающих их водных масс.

Выделены следующие разновидности структуры вод :

  • тихоокеанский тип субарктической структуры - тихоокеанские воды, переносимые Курильским течением;
  • охотоморский тип - охотоморские воды, характеризующиеся особенно низкими минимальными температурами в холодном промежуточном слое и слабо развитым теплым промежуточным слоем;
  • тип южной части Охотского моря - охотоморские воды, отличающиеся высокими значениями термохалинных характеристик в поверхностном слое, связанными с проникновением вод течения Соя в южно-охотоморский район;
  • тип зоны Курильских проливов (курильская разновидность) – трансформированные воды, характеризующиеся отличающимися термохалинными характеристиками в поверхностном слое (более низкие значения температуры и более высокие - солености, относительно сопредельных вод моря и океана), более мощным по вертикали холодным промежуточным слоем и более сглаженными экстремумами водных масс;

  • тип зоны мелководий - воды, отличающиеся практически однородным вертикальным распределением термохалинных характеристик.

Типизация термохалинной структуры вод района Курильских островов

Весна (апрель-июнь)

Лето (июль-сентябрь)

1.Тихоокеанский тип

Поверхностная

Холодная

промежуточная

Теплая

промежуточная

ядро:250-350

ядро:250-350

Глубинная

Донная

2.Охотоморский тип

Поверхностная

Холодная

промежуточная

ядро: 75-100

Охотоморская

промежуточная

Теплая

промежуточная

Глубинная

3.Тип южной части Охотского моря

Поверхностная

Холодная

промежуточная

Теплая

промежуточная

Глубинная

4.Тип зоны Курильских проливов

Поверхностная

(IV Курильский)

(Крузенштерн)

(Буссоль)

Холодная

промежуточная

(IV Курильский)

(Крузенштерн)

(Буссоль)

ядро:100-150

Теплая

промежуточная

(IV Курильский)

(Крузенштерн)

(Буссоль)

Глубинная

(Крузенштерн) (Буссоль)

5.Тип зон мелководья

Однородные

Обозначения: (с*) - на траверзе IV Курильского пролива, (ю*) - пролива Буссоль.

Выделенные типы структуры вод разделяются фронтальными зонами различной интенсивности. Определены следующие фронты:

  • прибрежный фронт Курильского течения - зона взаимодействия 1-го и 4-го типов структуры вод (внутриструктурный Курильский фронт);
  • прикурильский фронт Охотского моря , прерывистый, связанный с водообменом между Охотским морем и прикурильским районом – зона взаимодействия 2-го и 4-го типов структуры вод. Здесь обнаружен “обрыв” холодного промежуточного слоя охотоморского типа структуры вод. Фронт особенно четко проявляется в промежуточных слоях. Он разделяет холодные воды холодного промежуточного слоя Охотского моря и аномально теплые воды холодного промежуточного слоя зоны Курильских проливов;
  • фронт течения Соя , связанный с вторжением более теплых и соленых вод течения Соя в поверхностном слое, наблюдаемых в южной части Охотского моря в структуре вод 3-го типа. Фронт является зоной контакта вод 2-го и 3-го типов структуры вод.
  • фронты в зонах Курильских проливов , связанные с циркуляцией вокруг островов, с разрывами 1-го или 2-го прикурильских фронтов при вторжении тихоокеанских, либо охотоморских вод в зоны проливов и происходящем при этом вихреобразовании;
  • фронты мелководных зон , возникающие при формировании 5-го типа структуры вод (разделяющие гомогенные воды мелководья и стратифицированные воды 1-го, 2-го, либо 4-го типов структур).

Картина гидрологического районирования акватории Курильских проливов с прилегающими зонами Охотского моря и Тихого океана, а также распространения выделенных типов структуры вод и положения фронтальных разделов - квазистационарна. Сложная динамика вод в районе Курильских островов, обусловленная изменчивостью интенсивности развития и характером взаимодействия прикурильских течений, определяет эволюцию фронтальных разделов. Фронты становятся неустойчивыми, что проявляется в виде образования меандров, вихрей и иных неоднородностей.

Для субарктической структуры вод в Тихом океане вертикальное распределение скорости звука имеет монотонный характер зимой и немонотонный летом. В теплый период года формируется термический тип звукового канала с выраженной асимметрией. Верхняя часть канала обусловлена наличием сезонного термоклина. Положение оси - минимумом температуры в холодном промежуточном слое. Дальнейшее повышение скорости звука с глубиной связано с увеличением температуры в теплом промежуточном слое и повышением гидростатического давления. При этом происходит формирование так называемого плоскослоистого волновода.

Поле скорости звука в водах тихоокеанской структуры неоднородно. В зоне минимальных значений скорости звука вдоль побережья островов выделяется область, отличающаяся особенно низкими ее значениями (до 1450 м/с). Эта область связана с потоком Курильского течения. Анализ вертикальных разрезов поля скорости звука и температуры показывает, что ось звукового канала, соответствующая положению ядра холодного промежуточного слоя, совпадает со стрежнем течения. На разрезах поля скорости звука, пересекающих поток течения, наблюдаются линзообразные области, оконтуренные изотахами минимальной скорости звука (также же как на температурных - линзообразные области минимальной температуры в ядре холодного промежуточного слоя). При пересечении Прибрежного фронта Курильского течения, где величина изменений температуры может доходить до 5° на расстоянии в несколько сотен метров, перепады значений скорости звука составляют 10 м/с.

В охотоморской структуре вод характерные для холодного промежуточного слоя отрицательные значения минимальной температуры обуславливают появление резко выраженного подводного звукового канала. При этом, также как для холодного промежуточного слоя, в поле скорости звука наблюдается “обрыв” плоскослоистого волновода при пересечении Прикурильского фронта Охотского моря. Пространственное распределение скорости звука весьма неоднородно. В распределении скорости звука на поверхности наблюдается уменьшение ее значений в направлении к шельфу островов. Пространственная картина поля скорости звука здесь усложняется из-за наличия разномасштабных неоднородностей термохалинных полей, связанных с наблюдающимся постоянным вихреобразованием. Здесь наблюдаются линзообразные области с более низкими ее значениями (с разницей до 5 м/с) по сравнению с окружающими водами.

В структуре южно-охотоморских вод, формирующейся при вторжении теплых более соленых вод течения Соя в поверхностном слое воды, профили скорости звука отличаются как величинами значений скорости звука, так и формой кривых вертикального распределения и положения экстремумов. Форма вертикальной кривой скорости звука здесь определяется не только температурным профилем, но и немонотонным вертикальным распределением солености, характеризующим структуру проникающих в южно-охотоморский район потоков вод течения Соя. Вертикальное распределение солености в поверхностном слое имеет максимум, препятствующий уменьшению значений скорости звука. В связи с этим, положение оси звукового канала наблюдается несколько глубже положения ядра холодного промежуточного слоя. Следовательно, в данном районе тип звукового канала перестает быть чисто термическим. Для южно-охотоморского типа структуры вод имеет место максимальный диапазон изменения величин скорости звука (от 1490-1500 м/с на поверхности, до 1449-1450 м/с на оси звукового канала).

В зоне проливов и по обе стороны Курильской гряды в результате приливного перемешивания формируется значительное количество фронтальных разделов различного масштаба. При фронтогенезе и вихреобразовании происходит изменение глубины положения сезонного термоклина и соответственно - тахоклина (иногда до выхода его на поверхность), изменяется положение ядра холодного промежуточного слоя, его границ и соответственно - оси звукового канала и его границ. Наиболее яркие особенности структуры поля скорости звука обнаружены в зонах стрежней течений в зоне проливов (как и в районах прилегающих к островам). Наблюдается локализация однородных ядер минимальной температуры в холодном промежуточном слое, совпадающем с зоной максимальных скоростей течений. В плоскостях поперечных термохалинных разрезов этим зонам соответствуют области, ограниченные замкнутыми изотермами. В поле скорости звука наблюдается аналогичная картина - этим зонам соответствуют области, ограниченные замкнутыми изотахами. Подобные, но более выраженные области были обнаружены и ранее при исследовании таких мезомасштабных неоднородностей, как вихревые образования, фронтальные и межфронтальные зоны в районах течений Куросио - Ойясио, Калифорнийского течения. В связи с этим, было выявлено существование особого типа звукового канала в океане, представляющего собой трехмерный акустический волновод. В отличие от известного плоскослоистого волновода здесь имеют место зоны не только повышенных вертикальных, но и горизонтальных градиентов скорости звука, ограничивающие данную область слева и справа. В плоскости поперечных разрезов - это области, ограниченные замкнутыми изотахами. В районе Курильских проливов, наблюдается слабовыраженное подобие трехмерных акустических волноводов. Экспедиционные данные ТОИ ДВО РАН показывают постоянное существование таких волноводов в исследуемом районе.

Таким образом, в районе Курильских островов наблюдаются следующие особенности гидроакустической структуры вод:

  • сравнительно низкие значения скорости звука на поверхности моря в шельфовой зоне Курильской гряды;
  • размывание оси звукового канала и увеличение в нем скорости распространения звука по направлению к островам;
  • разрушение звукового канала на мелководье островов, вплоть до его полного исчезновения;
  • наряду с плоскослоистым волноводом происходит формирование трехмерных акустических волноводов.

Таким образом, формирование гидроакустической структуры вод в исследуемом районе в целом определяется особенностями гидрологической структуры вод. Каждый район - зона Курильских проливов, прилегающие районы Тихого океана и Охотского моря - характеризуются как определенными типами термохалинной структуры вод, так и определенными особенностями структуры поля скорости звука. В каждом районе наблюдаются свои типы кривых вертикального распределения скорости звука с соответствующими численными индексами экстремумов и видами звуковых каналов.

Структура поля скорости звука в районе Курильских островов

теплое полугодие

Скорость звука, м/с

Глубина, м

тихоокеанский

поверхностный

тахоклин

ось звукового канала

охотоморский тип гидрологической структуры

поверхностный

тахоклин

ось звукового канала

южно-охотоморский тип гидрологической структуры

поверхностный

тахоклин

ось звукового канала

Зоны Курильских проливов

поверхностный

тахоклин

ось звукового канала

Зоны мелководий

поверхность-дно

Для тихоокеанской субарктической структуры вод формирование поля скорости звука в значительной степени связано с Курильским течением, где ось звукового канала, как показали исследования, совпадает со стрежнем течения и зоной минимальной температуры холодного промежуточного слоя. Тип формирующихся звуковых волноводов - термический.

В охотоморской структуре вод отрицательные значения минимальной температуры воды в холодном промежуточном слое обусловливают формирование резко выраженного подводного звукового канала. Обнаружено, что в поле скорости звука здесь, как и для ядра холодного промежуточного слоя, наблюдается “обрыв” плоскослоистого волновода при пересечении Прикурильского фронта Охотского моря.

В структуре южно-охотоморских вод форма вертикальной кривой скорости звука определяется не только вертикальным температурным профилем, но и немонотонным распределением профиля солености из-за вторжения теплых, более соленых вод течения Соя. В связи с этим положение оси звукового канала наблюдается несколько глубже положения ядра холодного промежуточного слоя. Тип звукового канала перестает быть чисто термическим. Особенностью строения поля скорости звука в данном районе является также максимальный диапазон изменения величины скорости звука от поверхности до оси звукового канала, по сравнению с другими рассматриваемыми здесь районами.

Для структуры вод зоны Курильских проливов характерны сравнительно малые значения скорости звука на поверхности, сглаженные экстремумы кривой вертикального профиля скорости звука и размывание оси звукового канала.

В гомогенизированных водах зоны мелководья наблюдается разрушение звукового канала вплоть до его исчезновения. В зоне Курильских проливов и прилегающих к ним районах – как со стороны Тихого океана, так и Охотского моря - наряду с плоскослоистыми волноводами существуют слабо выраженные трехмерные акустические волноводы.

Этот природный водоем считается одним из самых глубоких и масштабных в России. Самое прохладное дальневосточное море находится между акваториями Берингова и Японского морей.

Охотское море разделяет территории Российской Федерации и Японии и представляет собой важнейшую портовую точку для нашей страны.

Ознакомившись с информацией в статье, можно узнать о богатейших ресурсах Охотского моря и истории формирования водоема.

О названии

Раньше у моря были другие названия: Камчатское, Ламское, Хоккай у японцев.

Нынешнее имя море получило по названию реки Охота, в свою очередь происходящему от эвенского слова «окат», что переводится как «река». Прежнее название (Ламское) тоже произошло от эвенского слова «лам» (переводится как «море»). Японское Хоккай переводится буквально как «Северное море». Однако, в связи с тем, что это японское название относится сейчас к морю Северному Атлантического океана, наименование его сменили на Охоцуку-кай, что представляет собой адаптацию названия русского к нормам фонетики японской.

География

Прежде чем перейдем к описанию богатейших ресурсов Охотского моря, кратко представим его географическое положение.

Находящийся между Беринговым и Японским морями водоем сильно уходит в сушу материка. Дугой Курильских островов воды моря отделяются от вод Тихого океана. Водоем имеет в большей своей части естественные границы, а условные границы у него с Японским морем.

Курилы, представляющие собой около 3 десятков небольших участков суши и отделяющие океан от моря, расположены в сейсмоопасной зоне в связи с наличием на них большого количества вулканов. Кроме всего, воды этих двух природных водоемов разделяются островом Хоккайдо и Камчаткой. Крупнейший остров Охотского моря - Сахалин. Крупнейшие реки, впадающие в море: Амур, Охота, Большая и Пенжина.

Описание

Площадь моря составляет примерно 1603 тысяч кв. км, объем вод - 1318 тыс. куб. км. Глубина максимальная - 3916 метров, средняя - 821 м. Тип моря смешанный, материково-окраинный.

Вдоль достаточно ровной береговой границы водоема проходят несколько заливов. Северная часть берега представлена множеством скал и довольно резких обрывов. Шторм - частое и вполне привычное явление для этого моря.

Особенности природы и всех ресурсов Охотского моря отчасти связаны с условиями климата и необычным рельефом местности.

Большей частью берега моря скалистые, высокие. С моря издалека на горизонте они выделяются черными полосами, сверху обрамленными буроватыми зелеными пятнами редкой растительности. Лишь в некоторых местах (западное побережье Камчатки, северная часть Сахалина) береговая линия представляет собой низменные, достаточно широкие участки.

Дно в некоторых отношениях похоже на дно Японского моря: во многих местах под водой имеются ложбины, которые свидетельствуют о том, что область нынешнего моря в четвертичном периоде находилась над уровнем океана, и на этом месте протекали огромные реки - Пенжина и Амур.

Иногда во время землетрясений в океане появляются волны, достигающие нескольких десятков метров в высоту. С этим связан один интересный исторический факт. В 1780 году одной из таких волн во время землетрясения вглубь острова Уруп (от берега 300 метров) было занесено судно «Наталия», которое так и осталось на суше. Этот факт подтверждает сохранившаяся с тех времен запись.

Геологи считают, что территория восточной части моря - одна из самых «неспокойных» областей на земном шаре. И сегодня здесь происходят довольно крупные подвижки коры земной. В этой части океана нередко наблюдаются подводные землетрясения и извержения вулканов.

Немного из истории

Богатые природные ресурсы Охотского моря стали привлекать к себе внимание людей с самого его открытия, которое произошло в периоды первых походов казаков к Тихому океану через Сибирь. Называли его тогда Ламским морем. Затем, после открытия Камчатки, походы по морю и берегу к этому богатейшему полуострову и к устью р. Пенжины участились. В те времена море уже носило названия Пенжинское и Камчатское.

Покинув Якутск, казаки передвигались на восток не прямиком, через тайгу и горы, а по извилистым рекам и протокам между ними. Такая караванная тропа в итоге выводила их на речку, называемую Охотой, и по ней уже они двигались к берегу моря. Вот почему этот водоем был назван Охотским. С тех пор на морском побережье возникло множество значительных и важных крупных центров. Сохранившееся с тех пор название свидетельствует о важной исторической роли порта и речки, с которых люди начали освоение этого огромного богатейшего морского района.

Особенности природы

Природные ресурсы Охотского моря достаточно привлекательны. Особенно это касается районов Курильских островов. Это совершенно особый мир, состоящий в общей сложности из 30 больших и малых островов. В эту гряду входят и скалы вулканического происхождения. На сегодня на островах есть действующие вулканы (около 30), что явно говорит о том, что недра земные здесь и сейчас неспокойны.

На некоторых островах имеются подземные горячие источники (температура до 30-70°С), многие из которых обладают целебными свойствами.

Очень суровы климатические условия для жизни на островах Курильских (особенно на северной части). Здесь длительное время держатся туманы, а в зимнее время очень часто возникают сильнейшие бури.

Реки

В море Охотское впадает множество рек, преимущественно небольших. С чем и связан относительно небольшой материковый сток (примерно 600 куб. км в год) вод в него, причем около 65 % его принадлежит реке Амур.

Другими относительно крупными реками являются Пенжина, Уда, Охота, Большая (на Камчатке), несущие в море намного меньший объем пресной воды. Поступает вода в большей степени в весеннее время и в начале лета.

Фауна

Биологические ресурсы Охотского моря весьма разнообразны. Это самое продуктивное в биологическом смысле море России. Обеспечивает оно 40 % отечественных и более половины дальневосточных уловов рыбы, ракообразных и моллюсков. При этом считается, что биологический потенциал моря на сегодня недоиспользован.

Огромное разнообразие глубин и рельефа дна, гидрологических и климатических условий в отдельных частях моря, хорошая обеспеченность кормами рыб - все это обусловило богатство ихтиофауны этих мест. Северная часть моря содержит в своих водах 123 вида рыб, южная - 300 видов. Эндемичными являются примерно 85 видов. Это море - настоящий рай для любителей рыбалки морской.

На территории моря активно развивается рыболовство, добыча морепродуктов и производство икры лососевой. Обитатели морских вод этого края: горбуша, кета, треска, нерка, камбала, кижуч, минтай, сельдь, навага, чавыча, кальмары, крабы. На островах Шантарских ведется охота (ограниченная) на котиков морских, а также популярной становится добыча ламинарии, моллюсков и морских ежей.

Из животных особую промысловую ценность имеют белуха, тюлень и нерпа.

Флора

Ресурсы Охотского моря неисчерпаемы. Растительный мир водоема: в северной части преобладают арктические виды, в южной - в большей степени виды умеренной области. Планктон (личинки, моллюски, ракообразные и пр.) дает в течение года для рыб обильную пищу. Фитопланктон моря представлен в большей степени диатомовыми водорослями, а донная флора содержит множество видов красных, бурых и зеленых водорослей, а также обширные луга морской травы. В общей сложности в составе прибрежной флоры моря Охотского насчитывается около 300 видов растительности.

В сравнении с Беринговым морем донная фауна здесь более разнообразна, а в сравнении с Японским - менее богата. Основными полями питания рыб глубоководных является северное мелководье, а также восточносахалинский и западный прикамчатский шельфы.

Минеральные ресурсы

Минеральные ресурсы Охотского моря особенно богаты. Только вода моря содержит практически все элементы таблицы Д. И. Менделеева.

Дно моря имеет исключительные запасы глобигериновых и диамантовых илов, состоящих в основном из панцирей одноклеточных мельчайших водорослей и животных простейших. Илы являются ценным сырьем для производства изоляционных строительных материалов и цемента высокого качества.

Перспективен шельф моря и для поисков месторождений углеводородов. Реки водораздела Алдано-Охотского и низовья Амура славятся с давних времен россыпями ценных металлов, что говорит о том, что есть вероятность нахождения в море подводных рудных месторождений. Возможно, есть много еще неразведанных сырьевых ресурсов Охотского моря.

Известно, что нижние шельфовые горизонты и часть материкового склона, граничащая с ними, обогащены конкрециями фосфоритовыми. Есть еще одна более реальная перспектива - извлечение редких элементов, содержащихся в костных останках млекопитающих и рыб, а такие скопления имеются в глубоководных осадках котловины Южно-Охотской.

Нельзя умолчать и о янтаре. Самые первые находки этого полезного ископаемого на побережье Сахалина восточном датируются серединой XIX века. На тот момент здесь работали представители Амурской экспедиции. Следует отметить, что Сахалинский янтарь очень красив - прекрасно полируется, вишнево-красный и довольно высоко оценен специалистами. Самые крупные куски древесной ископаемой смолы (до 0,5 кг) были обнаружены геологами у поселка Остромысовского. Содержится янтарь и в древнейших отложениях п-ова Тайгонос, а также на Камчатке.

Заключение

Если говорить кратко, ресурсы Охотского моря чрезмерно богаты и разнообразны, все их не перечислить и тем более не описать.

На сегодня значение Охотского моря в народном хозяйстве определяется использованием его богатейших природных ресурсов и транспортными морскими перевозками. Главным богатством этого моря являются промысловые животные, в первую очередь рыбы. Однако уже сегодня довольно высокий уровень опасности загрязнения промысловых зон моря нефтепродуктами в результате сбросов нефтесодержащих вод рыболовецкими судами создает ситуацию, требующую определенных мероприятий для повышения уровня экологической безопасности проводимых работ.

Охотское море - одно из самых крупных водоемов на всей планете. Оно также является одним из богатейших и в отношении биологических ресурсов. Море обеспечивает порядка 60% всей РФ. В его водах обитают редкие и исчезающие виды, а на берегах находятся шумные «птичьи базары».

Западная граница Охотского моря проводится по восточному берегу двух островов: Сахалин и Хоккайдо. По своим физико-географическим характеристикам оно представляет собой внутреннее море. Охотское море также относится к морям так называемого смешанного материково-окраинного вида. Его площадь равняется 1603 тыс. кв. км. А средняя глубина - 821 м. Максимальная же глубина охотского моря - 3916 м.

Проливы Охотского моря

Амурский лиман, а также - это те каналы, при помощи которых соединяется с Японским Охотское море. Какой океан дает начало Японскому морю? Оно, как и Охотское, принадлежит водам Тихого океана. С помощью огромного числа Курильских проливов море также соединяется с Тихим океаном. Самые глубокие - это проливы островов Буссоль и Крузенштерна. В соответствии с классификацией ученого-географа Н. Зубова, Охотское море относится к категории бассейновых морей. Глубина его проливов намного меньше глубины котловины.

Острова Охотского моря

То, частью какого океана является Охотское море, определяет и его очертания. В этой части Тихого океана расположено большое количество островов различного генеза. Но сама береговая линия считается относительно ровной. Острова моря отличаются по своей форме. Здесь есть и те, что расположены в водах компактно сжатыми группами. Есть и одиночки. Карта Охотского моря испещрена множеством островов, в том числе теми, которые находятся в зоне сейсмической активности (к примеру, это Курилы). Ученые выделяют также и так называемые острова переходной зоны. В первую группу относятся те, что образованы единой с материком литосферной плитой.

А ко второй географы относят те, что имеют форму вытянутых архипелагов. К первой группе относятся маленькие островки, расположенные недалеко от Восточного Сахалина. Это Тюлений и Камень Опасности. Тюлений остров имеет плоскую поверхность и крутые берега. А Камень Опасности, по сути, представляет собой группы голых камней, расположенных в проливе Лаперуза. В двухстах км. от о. Сахалин находится о. Ионы со скалистыми берегами. Его высота составляет порядка 150 м. А на северо-западе расположен Шантарский архипелаг, в которых входит порядка 15 островов, территория которых составляет 2,5 км 2 . В Южные Курилы включены острова так называемой Большой Курильской Гряды.

Соленость и температура

Соленость вод определяется тем, частью какого океана является Охотское море. Показатели солености моря во многом схожи с данными Тихого океана. Поверхностные воды Охотского моря имеют соленость 32,8-33,8 промилле. Промежуточный слой обладает соленостью в 34,5 промилле. Известно, что в Тихом океане этот показатель в среднем равен 30-35 промилле. Температура у поверхности воды в море в холодное время года составляет от -1,8°С до +2°С. Летом показатели поднимаются до +18°С. Но на глубине около 50-150 метров температура воды остается постоянной круглогодично. Составляет она порядка -1,7°С. Через Курильские проливы на территорию моря поступают более теплые воды с температурой порядка 2-3°С.

Принадлежность моря

С марта 2003 года официальным правом на анклав моря признана Россия. Охотское море, а точнее, значительная часть его шельфа площадью порядка 52 тыс. кв. км. теперь находится в распоряжении РФ. Особенно важным это событие стало для местных рыбаков. Ведь раньше они не могли заниматься рыбной ловлей в любой точке моря. После передачи Охотского моря России у них уже не будет конкурентов из других стран, которым раньше приходилось отдавать часть выловленной рыбы. Кроме того, у других работников промышленной индустрии с той поры появилась возможность пересекать морскую территорию по самому удобному маршруту.

Биологическое разнообразие

«Охотское море - бассейн какого океана?» - этот вопрос также нередко задается и в связи с описанием его морских богатств. Животный мир моря богат видами, которые пришли в эти воды с тихоокеанских территорий. Здесь обитают крабы, креветки, морские ежи и звезды, тюлени, киты, морские котики. По некоторым оценкам, оно занимает первое место в мире по количеству крабов. Именно в водах Охотского моря обитает гигантский камчатский краб, размах ног которого может достигать 1,5 м.

В море водится также около 200 видов рыб - это сельдь, треска, навага, минтай, мойва. Также на этой территории нередко можно повстречать акул. Видовой состав их аналогичен Берингову морю: здесь водится катран, полярная и лососевая акулы.

Другие богатства

Охотское море богато не только рыбными запасами, крабами и различными моллюсками. Геологи утверждают, что порядка 40% территории его шельфа являются источниками черного золота - нефти. А также здесь находятся богатые месторождения природного газа. Многие эксперты склонны считать, что количество нефтяных залежей на дне моря превосходит три миллиарда баррелей. Но полная передача моря России означает также и некоторые обязательства России. Государство должно охранять от браконьеров, незаконно промышляющих на территории моря.

Особенности дна

Дно моря отличается большим разнообразием. Здесь есть и впадины, и желоба, и множество возвышенностей. То, частью какого океана является Охотское море, определяет и характер его шельфа. По своим характеристикам он родственен с дном Тихого океана. Известно, что в Тихом океане находится самое большое число глубоководных желобов на планете. Охотское море находится в переходной зоне между Азиатским континентом и Тихим океаном. Регион моря представляет собой огромную литосферную плиту, которая находится между Евразийской, Северо-Американской и Тихоокеанской плитами. Тихий океан на карте мира отделяется от Охотского моря Курило-Камчатским глубоководным желобом.