Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов. Тайны мирового разума и ясновидение Энергетические механизмы обеспечения организма энергией

Рассмотрим энергетическую систему организма подробнее.

Американский учёный Альберт Сент-Дьерди писал, что жизнь представляет собой непрерывный процесс поглощения, преобразования и перемещения энергии различных видов и различных значений.

Этот процесс самым непосредственным образом связан с электрическими свойствами живого вещества, а конкретнее с его электропроводностью.

Электрический ток- это упорядоченное движение заряженных частиц. Носителями электрических зарядов могут быть электроны, ионы и дырки (в полупроводниках). Так же для полупроводников характерна примесная проводимость. При добавлении в кристалл полупроводника атом другого элемента проводимость его увеличивается. Свойства полупроводников очень интересны. Они очень чувствительны к действию света, тепла, радиации и так далее. Если, например, на полупроводник падает свет, то его проводимость резко увеличивается, т.к. электроны с валентной зоны “отрываются” от ядра атома и обеспечивают электронную проводимость. Живое вещество очень похоже на полупроводник. Однако есть и очень принципиальное отличие. В макромолекулах живого энергия связи составляет всего несколько электрон-вольт, тогда как энергия связи в растворах или жидких кристаллах составляет порядка 20-30 эВ. Это свойство очень важно, так как позволяет обеспечить высокую чувствительность. Проводимость осуществляется электронами, которые переходят от одной молекулы к другой благодаря туннельному эффекту. В белковых и других биологических объектах очень высокая подвижность зарядоносителей. В системе углеродно-кислородных и водородно-азотных связей электрон (возбужденный) благодаря туннельному эффекту перемещается по всей системе белковой молекулы. Поскольку подвижность таких электронов очень высокая, то проводимость белковой системы высока.

В живом организме осуществляется и ионная проводимость. Образованию и разделению ионов в живом веществе способствует наличие воды в белковой системе. От него зависит диэлектрическая постоянная белковой системы. Носителями зарядов в этом случае являются ионы водорода - протоны. Только в живом организме все виды проводимости реализуются одновременно. Соотношение между разными проводимостями меняется в зависимости от количества воды в белковой системе. Чем меньше воды, тем меньше ионная проводимость. Если белки высушены, то проводимость осуществляют электроны.

Вообще влияние воды не только в том, что она является источником ионов водорода и таким образом обеспечивает возможность ионной проводимости. Вода играет более сложную роль в изменении общей проводимости. Дело в том, что вода является примесью- донором. Она поставляет электроны (каждая молекула воды разрывается на протон (ядро) и электрон). В результате электроны заполняют дырки, поэтому уменьшается дырочная проводимость. Она уменьшается в миллион раз. В дальнейшем эти электроны передаются белкам, и положение восстанавливается, но не полностью. Общая проводимость после этого всё же остаётся в 10 раз меньше, чем до добавления воды.

Можно добавить к белковым системам не только донор, но и акцептор, который бы приводил к увеличению числа дырок. Установлено, что таким акцептором является, в частности, хлоранил- вещество, содержащее хлор.

В результате дырочная проводимость увеличивается настолько, что общая проводимость белковой системы растёт в миллион раз.

Нуклеиновые кислоты также играют важную роль в живом организме. Несмотря на то, что их структура, водородные связи и так далее отличаются от таковых и у биологических систем, имеются вещества (небиологические) с принципиально подобными электрофизическими свойствами. В частности, таким веществом является графит. Энергия связи у них так же, как и у белков, мала, а удельная проводимость велика, хотя и на несколько порядков меньше, чем у белков. Но электрофизические свойства аминокислот в целом принципиально такие же, как и свойства белков.

Но аминокислоты в составе живого организма обладают и свойствами, которыми белки не обладают. Это очень важные свойства. Благодаря ним механические воздействия в них превращаются в электричество. Это свойство вещества в физике называется пьезоэлектрическим. В нуклеиновых кислотах живого организма тепловое воздействие также приводит к образованию электричества (термоэлектричество). То и другое свойство определяется наличием воды. Ясно, что указанные свойства меняются в зависимости от количества воды. Использование этих свойств в организации и функционировании живого организма очевидно. Так, на зависимости проводимости от освещенности основано действие палочек зрительной сетчатки. Но молекулы живых организмов обладают и электронной проводимостью, как и металлы.

Электрофизические свойства белковых систем и нуклеиновых молекул проявляются только в динамике, только в живом организме. С наступлением смерти электрофизическая активность очень быстро пропадает. Это происходит потому, что прекратилось движение зарядоносителей.

Из сопоставления электрофизических свойств белковых систем и аминокислот с полупроводниками может создаться впечатление, что электрофизические свойства одних и других одинаковы. Это не совсем так. Хотя в белковых системах живого организма имеется и электронная, и дырочная, и ионная проводимость, но они связаны между собой более сложно, чем в неорганических и органических полупроводниках. Там эти проводимости просто складываются и получается суммарная, итоговая проводимость. В живых организмах такое арифметическое сложение проводимостей недопустимо. Здесь 1+1№ 2. Ничего странного в этом нет. Это говорит о том, что эти проводимости не являются независимыми друг от друга. Взаимные их изменения сопровождаются процессами, которые меняют общую проводимость по более сложному закону. Поэтому, говоря об электронной (или другой) проводимости белковых систем, добавляют слово “специфическая”. Процессы, определяющие электрофизические свойства живого, очень сложны. Одновременно с движением электрических зарядов, которое определяет собой электропроводность, действуют друг на друга и электромагнитные поля. Элементарные частицы обладают магнитными моментами, то есть являются магнитиками. Поскольку эти магнитики взаимодействуют друг с другом, то в результате этого воздействия устанавливается определенная ориентация этих частиц. Непрерывно молекулы и атомы меняют свое состояние - они осуществляют непрерывные и скачкообразные (дискретные) переходы из одного электрического состояния в другое. Получая дополнительную энергию, они возбуждаются. Эти переходы оказывают влияние на подвижность зарядоносителей в живом организме. Таким образом, действие электромагнитных полей меняет движение заряженных частиц. С помощью этих зарядоносителей осуществляется передача информации в центральной нервной системе (ЦНС). Сигналы в ЦНС, обеспечивающие работу всего организма как единого целого, являются электрическими импульсами. Но они распространяются значительно медленнее, чем в технических системах. Это обусловлено сложностью процесса. Организм отвечает действием на определенное внешнее воздействие только после того, как он получил информацию об этом воздействии. Ответная реакция организма очень замедлена потому, что сигналы о внешнем воздействии распространяются медленно. Таким образом, скорость защитных реакций живого организма зависит от электрофизических свойств живого вещества. Если же действуют извне электрические и электромагнитные поля, то эта реакция еще больше замедляется. Это установлено как в лабораторных опытах, так и при изучении влияния электромагнитных полей во время магнитных бурь на живые системы. Кстати, если бы реакция живого организма на внешнее воздействие была во много раз быстрее, то человек был бы способен защититься от многих воздействий, от которых он сейчас погибает.

Сегодня люди еще не знают всех свойств комплексной электропроводности живого вещества. Но ясно то, что именно от них зависят те принципиально отличные свойства, которые присущи только живому.

Для раскрытия сущности электрических явлений в живом организме необходимо понять смысл потенциала биологической системы, биопотенциала.

Потенциал-это энергетическая возможность. Для того чтобы оторвать электрон из атома водорода, надо преодолеть силы, которые удерживают его в атоме, то есть, необходима энергия для выполнения этой работы. Энергия элементарных частиц измеряется в электрон-вольтах. Энергия, затраченная на отрыв электрона от ядра атома, называется потенциалом ионизации. Для водорода он равен 13 эВ. Для атомов разных элементов он имеет свои значения.

В живых веществах энергия связи в молекулах составляет 0,01-1 эВ. В неживых молекулах 30-50 эВ. Измерить потенциал ионизации в биологических молекулах очень сложно из-за малости минимальных значений энергии электронов. Поэтому лучше их характеризовать не абсолютными величинами (электрон-вольтами), а относительными. Можно принять за единицу потенциал ионизации воды (речь идет о воде, которая содержится в биологических системах). Теперь можно определить потенциалы ионизации всех других биологических соединений. Тут еще одна тонкость. У атома водорода имеется всего один валентный электрон. Поэтому его потенциал ионизации равен единице. Если атом и молекула более сложные, то их электроны имеют различные энергетические возможности для отрыва. В таких случаях потенциал ионизации относят к валентным электронам, то есть электроны с наименьшей энергией связи.

В биологических системах в результате определенного распределения электрических зарядов имеются электрические поля, поэтому за счет кулоновских сил возможно притяжение и отталкивание электрических зарядов. Энергетической характеристикой электрического поля является разность потенциалов (Δj). Разность потенциалов в биологических системах (биопотенциалов) очень мала до 10 -6 эВ. Величина биопотенциалов является однозначным показателем состояния биосистемы или её частей. Она меняется в том случае, если организм находится в патологическом состоянии. В этом случае меняются реакции живого организма на факторы внешней среды. Электрофизическими свойствами биологических соединений определяется и быстрота реакции живого организма, как единого целого, так и его отдельных анализаторов на действие внешних факторов. От этих свойств зависит и быстрота обработки информации в организме. Её оценивают по величине электрической активности.

Биоэнергетические явления на уровне элементарных частиц являются основой главных функций живого организма, без этих функций жизнь невозможна. Энергетические процессы в клетках (преобразование энергии и сложнейшие биохимические обменные процессы) возможны только благодаря участию в них электронов.

Биопотенциалы тесно связаны с электрической активностью данного органа. Так, электрическая активность мозга характеризуется спектральной плотностью биопотенциалов и импульсами напряжения различной частоты. Установлено, что для человека характерны следующие биоритмы мозга (в Гц): Дельта-ритм – 0,5-3 Гц; Тета-ритм – 4-7 Гц; Альфа-ритм – 8-13 Гц; Бета-ритм – 14-35 Гц; Гамма-ритм – 36-55 Гц.

Имеются, хотя и нерегулярно, и некоторые ритмы с большей частотой. Амплитуда электрических импульсов мозга человека достигает значительной величины – до 500 мкВ.

Кто знаком с электроникой, тот знает, что при передаче информации и её обработке важна не только частота следования импульсов и их амплитуда, но и форма импульсов.

Как формируются эти импульсы? Их характеристики говорят о том, что они не могут создаваться изменениями ионной проводимости. В этом случае процессы развиваются более медленно, то есть они более инерционны. Эти импульсы могут формироваться только движением электронов, масса которых гораздо меньше массы ионов.

Роль формы электрических импульсов можно понять на примере эффективности дефибрилляции сердца. Оказалось, что эффективность восстановления работы сердца зависит от формы импульса подаваемого электрического напряжения. Важна и его спектральная плотность. Только при определённой форме импульсов происходит восстановление обычного движения зарядоносителей в живом организме, то есть восстанавливается обычная электропроводность, при которой возможно нормальное функционирование организма.

В этом методе электроды прикладываются к телу человека в области груди. Но электрические импульсы в данном случае действуют не только непосредственно на сердечную мышцу, но и на центральную нервную систему. Видимо, второй путь наиболее эффективен, поскольку возможности ЦНС по воздействию на все органы самые широкие. Команды всем органам поступают через ЦНС быстрее всего, поскольку её электропроводность значительно выше, чем электропроводность мышечных тканей и кровеносной системы. Таким образом, возвращение организма к жизни происходит в том случае, если удаётся восстановить электрофизические свойства живого вещества, а точнее специфические движения электрически зарядов с теми особенностями, которые присущи живым системам.

Решающее значение для жизни и функционирования живого организма имеют именно электрофизические свойства живого. Об этом свидетельствуют и такие факты.

Установлено, что если на человека внезапно действуют раздражающие факторы, то сопротивление тела человека электрическому току резко изменяется. Принципиально важно, что неожиданные внешние воздействия могут иметь различную физическую природу. Это может быть и яркий свет, и прикосновение горячего предмета, и сообщение человеку неожиданной, важной для него информации. Во всех случаях результат один - электропроводность тела человека увеличивается. Это изменение зависит и от силы внешнего фактора. Но во всех случаях увеличение электропроводности происходит очень быстро, а её восстановление к нормальным величинам - значительно медленнее. Быстрое изменение электропроводности может происходить только за счет электронной.

Возьмём воздействие на человека внешнего фактора (электрический ток). Последствия этого воздействия зависят не только от его величины, сколько от состояния нервной системы человека в этот момент. Смерть под действием внешнего фактора наступает в том случае, если нарушается электропроводность ЦНС. Если под действием внешних факторов движение зарядоносителей в клетках головного мозга нарушается, то происходит полное или частичное прекращение питание клеток кислородом.

Конечно, этот вопрос очень непростой. Уже сейчас установлено, что электропроводность разных живых организмов и разных систем в одном живом организме различна. Органы, которые должны быстрее всего реагировать на внешние раздражители, обладают наименее инерционной проводимостью - электронной и электронно-дырочной.

Теперь рассмотрим энергетическую систему организма.

Существуют мнения различных учёных о том, что в организм поступает энергия, которая обеспечивает его функционирование как целого, а также всех составляющих его частей. Заряды энергии могут иметь как положительные, так и отрицательные знаки. В здоровом организме имеется равновесие положительных и отрицательных элементов энергии. Это означает равновесие между процессами возбуждения и торможения. Когда же равновесие между потоками положительной и отрицательной энергии нарушены, то организм переходит в состояние болезни, поскольку нарушено равновесие процесса возбуждения и торможения.

Все процессы деятельности функциональных систем человека и всего организма в целом связано с затратами энергии, которая необходима как для сокращения мышц, так и для генерации и передачи нервных импульсов, биосинтеза необходимых организму сложных органических соединений.

Источником энергии в организме человека служит потенциальная химическая энергия пищевых веществ. В процессе обмена она освобождается и преобразуется в другие виды энергии. Непосредственным и прямым источником энергии является аденозинтрифосфорная кислота, или аденозинтрифосфат (АТФ).

При расщеплении одной молекулы АТФ выделяется 10 ккал энергии:

АТФ  АДФ + НзРО 4 + 10 ккал

Запас АТФ находится в мышцах, однако эти запасы сравнительно малы: их хватает на 2-3 секунды интенсивной работы. Поэтому для продолжения работы большое значение имеет восстановление (ресинтез) АТФ в организме, причем скорость ресинтеза АТФ должна соответствовать его расходу.

В зависимости от особенностей биохимических реакций, протекающих при ресинтезе, принято выделять три метаболические системы восстановления АТФ:

    алактатная анаэробная или фосфагенная, связанная с процессами ресинтеза АТФ за счет другого высокоэнергетического вещества креатинфосфата (КрФ);

    гликолитическая анаэробная, обеспечивающая ресинтез АТФ с помощью реакций расщепления гликогена или глюкозы до молочной кислоты (МК);

    аэробная, связанная с реакциями окисления энергетических субстратов (углеводов, жиров, белков).

Каждый из перечисленных биоэнергетических компонентов характеризуется критериями мощности, емкости и эффективности.

Критерий мощностиоценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкостиоценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективностипоказывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Алактатный метаболический процесс представляет собой наиболее мощный, быстро мобилизуемый источник энергии. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с двумя другими и играет основную роль при энергообеспечении организма при кратковременной работе, осуществляемой с максимальными усилиями: спринтерский бег, прыжки, резкие удары.

Однако ее емкость невелика в связи с ограниченностью запасов КрФ в мышцах, поэтому в процесс обеспечения организма энергией включается анаэробный гликолиз , который начинается практически с самого начала, но достигает своей мощности лишь через 15-20 секунд и эта мощность не может поддерживаться более 2-3 минут. Энергетическими субстратами при этом служат гликоген.

Гликоген, запасаемый в мышцах и печени, представляет собой цепочку молекул глюкозы (глюкозных единиц – ГЕ), которые в процессе реакции последовательно отщепляются. Каждая ГЕ из гликогена восстанавливает 3 молекулы АТФ (молекула глюкозы только 2) и при этом образует еще 2 молекулы молочной кислоты (МК). Поэтому при большой мощности и продолжительности гликолитической анаэробной работы в крови образуется большое количество МК. До определенной концентрации МК связывается буферными системами крови, при превышении же этой концентрации возможности буферных систем исчерпываются и в крови происходит сдвиг кислотно-щелочного равновесия в кислую сторону, что вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного их торможения. Накопление молочной кислоты в ощущениях выражается болезненными явлениями в мышцах.

При переходе от состояния покоя к мышечной деятельности кислородный запрос возрастает во много раз. Однако, необходимо 1-3 минуты, чтобы усилилась деятельность кардио-респираторной системы, и обогащенная кислородом кровь могла быть доставлена к работающим мышцам. С увеличением длительности упражнений наращивается скорость процессов аэробного образования энергии и, при увеличении продолжительности работы более 10 минут, энергообеспечение осуществляется уже почти целиком за счет аэробных процессов.

Мощность аэробной системы энергообеспечения в 3 раза меньше мощности фосфагенной и в 2 раза анаэробной гликолитической. Вместе с тем, он отличается наибольшей производительностью и экономичностью. В качестве продуктов окисления при этом используются углеводы, жиры и белки, поступающие в организм с пищей.

Аэробное расщепление углеводов в отличие от анаэробного расщепления глюкозы характеризуется тем, что пировиноградная кислота не превращается в молочную, а расщепляется до углекислого газа и воды, которые легко выводятся из организма. При этом из одной молекулы углеводов образуется 39 молекул АТФ. Еще большей энергоемкостью обладают жиры (1 моль смеси жирных кислот образует 138 молекул АТФ). Белки еще более энергоемки, но их вклад в аэробный процесс очень мал.

Во время выполнения физических упражнений не большой мощности (ЧСС 120-160 ударов в минуту) достаточно продолжительное время (до нескольких часов) большая часть энергии поставляется за счет окисления жиров. При увеличении мощности в окислительные реакции вступают углеводы, при работе на максимальной мощности (ЧСС 180-200 ударов в минуту) подавляющую часть энергопродукции обеспечивает уже окисление углеводов.

В реальных условиях физических нагрузок задействованы все 3 биоэнергетические системы. В зависимости от мощности, продолжительности и вида физических упражнений меняется лишь соотношение вклада каждой системы в энергообеспечение (рис. 2.3).

Рис. 2.3. Динамика скорости энергообразующих процессов.

Интенсивность аэробной работы можно охарактеризовать скоростью потребления кислорода. При определенной мощности физической нагрузки достигается индивидуальное для каждого человека максимальное потребление кислорода (МПК). Мощность физической нагрузки, например, скорость передвижения, при которой достигается МПК,называется критической. У молодых здоровых нетренированных мужчин МПКсоставляет в среднем 40-50 мл/кг/мин, а у высокотренированных спортсменов в видах спорта на выносливость – 80-90 мл/кг/мин.

При равномерной непрерывной работе (ЧСС до 150 ударов в минуту) скорость потребления кислорода достигает величины, запрашиваемой работающими мышцами, при этом организм способен удовлетворять этот запрос. Работа на данном уровне мощности физической нагрузки может продолжаться достаточно долго.

С увеличением интенсивности нагрузки (ЧСС 180-200 ударов в минуту) до критической потребление кислорода возрастает до МПК. Этот уровень не может поддерживаться долго, даже у тренированных людей не больше 6-8 минут. При дальнейшем продолжении работы на уровне МПК потребности организма в кислороде уже не удовлетворяются, т.к. исчерпаны возможности ССС или исчерпана окислительная способность дыхательных ферментов в мышечных клетках. В этом случае опять активизируются анаэробные системы энергообеспечения. Организм работает как бы «в долг». При возрастании мощности работы и соответственно увеличении потребления кислорода более 50% от МПК, содержание МК в крови резко увеличивается. Эта граница выраженного перехода от преимущественно аэробного энергообеспечения к смешанному аэробно-анаэробному называется порогом анаэробного обмена (ПАНО). ПАНО является критерием аэробной эффективности.

На практике это вполне определенное значение: чтобы нетренированный человек был способен длительное время выполнять работу, в которой задействованы большие мышечные группы, он не должен превышать ПАНО или мощности, соответствующей 50%-му уровню МПК.

Человек, систематически занимающийся физическими упражнениями, не только увеличивает МПК, но поднимает ПАНО до 60%-го уровня от МПК, а также минимизирует свои энергозатраты за счет совершенствования техники выполнения движений. Путь повышения физической работоспособности через увеличение аэробной эффективности наименее рискован и наиболее приемлем, т.к. не требует значительного увеличения ЧСС и потому доступен всем возрастным категориям. Именно с этим связано широкое применение на занятиях по физической культуре циклических видов упражнений (бег, лыжи, плавание) и гимнастических упражнений аэробного характера, а также использование направленного, избирательного тренировочного воздействия на отдельные компоненты физической работоспособности.

Джон Циссик
IM № 7, 2000

Тренируйтесь для повышения взрывной мощности

АТФ - главный поставщик энергии в организме человека. Он состоит из аденозина и трех фосфатных групп. Когда связь между фосфатной группой и аденозином разрывается, вырабатывается энергия, используемая в вышеуказанных случаях. Проблема в том, что организм человека не в состоянии накапливать АТФ. Он содержится в мышцах в количестве, достаточном лишь для работы длительностью в 1 секунду (5).

Что же происходит, когда вы продолжаете работать? Ведь большинство видов деятельности длятся дольше.

Человеческий организм использует несколько систем энергоснабжения, каждая из которых по-разному производит и использует АТФ. При выполнении какой-либо работы вы тренируете одну или несколько энергетических систем, а когда принимаете пищевые добавки - пытаетесь усилить их. Поэтому понимание принципа их работы позволит вам не только повысить результаты тренировок, но и более грамотно потреблять пищевые добавки.

Главными энергетическими системами являются фосфагенная (система быстрого реагирования), анаэробный гликолиз, аэробный гликолиз и окислительная энергетическая система, иногда называемая электронно-транспортной цепью. Аэробный гликолиз и окислительная система используются организмом при длительных, изнурительных нагрузках, и они неприменимы в бодибилдинге. Мы не будем на них подробно останавливаться. Наша статья - о фосфагенной энергетической системе и анаэробном гликолизе.

Как работает система быстрого реагирования

Когда организму для осуществления какого-либо движения срочно требуется энергия, он расщепляет имеющийся АТФ.

При отщеплении одной фосфатной группы от аденозина выделяется энергия. В результате остается молекула с двумя фосфатными группами или аденозина дифосфат (АДФ).

АТФ => АДФ + энергия

Помните ли вы, что запаса АТФ хватает только на очень короткое время? При длительных энергозатратах "горючего" требуется больше. Тут вам поможет вещество, хорошо знакомое культуристам - это креатина фосфат (КФ).

Он состоит из молекулы креатина и молекулы фосфата. Когда вам нужно больше АТФ, фосфат креатина входит в реакцию с АДФ, в ходе которой восполняет недостающую фосфатную группу аденозину.

АДФ + КФ => АТФ + К

То есть, КФ способствует ресинтезу АТФ.

Понятно, что количество АТФ - это не всецело определяющий фактор. Конечно, это макроэргическое вещество весьма важно для организма. Это одна из тех вещей, которых никогда не бывает слишком много. Но гораздо важнее, сколько КФ вы имеете перед началом тренировки. Чем больше, тем дольше вы можете упражняться и поддерживать интенсивность.

Как используется эта система

По данным исследователей, система быстрого энергоснабжения покрывает энергозатраты в течение 6-10 секунд. Она предназначена для обеспечения короткой, высокоинтенсивной работы - такой, как первые несколько повторений при работе с отягощениями, короткие спринтерские забеги, прыжки и т.д.

Существуют специальные тесты, проверяющие работу именно этой системы. Некоторые из них очень популярны среди тренеров и наставников. Это одно максимальное повторение, вертикальный прыжок, прыжок с места, спринт на 30 м. Одно максимальное повторение показывает, какой вес вы в состоянии поднять один раз. Оно демонстрирует вашу способность мобилизовать необходимые мышечные группы для развития максимального усилия. Другие тесты показывают, как быстро вы можете это делать.

Тот, кто стремится к силе и мощности, должен иметь хорошо тренированную фосфагенную энергетическую систему. Пауэрлифтеры, тяжелоатлеты, метатели, спринтеры, прыгуны и футболисты - все входят в эту категорию. Так как же тренировать эту систему?

Тренировка фосфагенной энергетической системы

Суть тренировки - в увеличении количества креатина фосфата, который необходим для ресинтеза АТФ во время высокоинтенсивных упражнений.

Существует три основных способа: работа с отягощениями, плиометрические упражнения и спринт. В первом случае атлеты должны применять базовые, компаундные упражнения с большими весами и продолжительным отдыхом между сетами.

Для улучшения работы фосфагенной системы не лишним будет и включение в тренировочную программу различных вариаций темповых тяжелоатлетических упражнений.

Примеры силовой и мощностной программ, способных улучшить энергетические системы человека, будут приведены ниже. Используйте их как часть периодизированного мезоцикла или просто на пару месяцев включите в свою тренировочную программу. Количество повторений указано для максимального веса - то есть того, с которым вы сможете выполнить упражнение указанное количество раз. Как вы увидите, программы состоят из базовых, компаундных упражнений с добавлением некоторых тяжелоатлетических движений. Рабочие веса очень большие и требуют продолжительного отдыха между подходами.

Фосфагенную систему можно тренировать плиометрическими упражнениями и спринтами. Забеги, длящиеся менее 10 секунд, повысят способности нижней части тела к хранению и использованию креатина фосфата. А плиометрию можно применять и к нижней, и к верхней части тела, и даже к прессу.

Пищевые добавки и фосфагенная энергетическая система

Отрегулировав тренировочную программу, можно приступить к изменениям в питании. Лучшими добавками для достижения ваших целей будут креатин и рибоза. Креатин эффективен в любой форме - как моногидрат, так и фосфат (3). Креатиносодержащие добавки повысят уровень фосфата креатина в мышцах, что позволит поддерживать высокий уровень АТФ в течение тренировки, а, следовательно, вы сможете заниматься интенсивней и дольше (6). Из-за своей способности влиять на фосфагенную энергетическую систему креатин увеличивает силу, мощность и скорость (4). Рибоза работает в паре с ним и еще больше повышает уровень фосфата креатина.

Как лучше их применять? Ко мне часто обращаются атлеты с жалобой на то, что после приема креатина в течение 2-3 лет они не почувствовали результатов. Вот мои рекомендации.

1. Загрузочная фаза. Принимайте по 20 г креатина в день на протяжении пяти дней, деля их на четыре дозы по 5 г (2,4).
2. Поддерживающая фаза. Снизьте дозу до 2-3 г в день и принимайте ее только в дни тренировок.
3. Если вы пользуетесь порошковым креатином, принимайте его вместе с пищей, а если растворимым - то через 1,5 часа после еды.
4. Снизьте до минимума потребление кофеина, так как он препятствует абсорбции креатина (4).
5. Когда вы входите в фазу суперинтенсивного тренинга (креатин в этом случае вам особенно необходим), возвращайтесь к загрузочной дозе.
6. Помните, что прием креатина необходимо циклировать.
7. Не загружайтесь два-три года подряд.
8. Если вы хотите максимизировать энергетику, принимайте 2,2 г рибозы до и после тренировки.

Возникает вопрос, почему бы, начав с загрузочной фазы, так и не остаться на этом уровне приема? Будет ли это причиной всех тех побочных эффектов, о которых ходят слухи? Есть старое правило: больше - не всегда лучше. Очевидно, что мышцы способны сохранить определенную дозу креатина. Затем они насыщаются и теряют способность принимать такое количество (2). Большинство исследований показывают, что после пяти дней загрузки мышцы полностью насыщаются креатином. Если после этого продолжать загрузку, организм будет вынужден куда-то девать излишки - следовательно, все они пойдут через печень и почки. Таким образом, если вы принимаете креатин в очень больших количествах и длительное время, вы перегружаете печень и почки, что может стать причиной их заболевания. Поэтому так важно циклировать прием креатиносодержащих добавок.

Принято считать, что древний человек питался исключительно углеводами и что всеядность, приведшая к употреблению мяса и животного жира, была решающим шагом к его современным болезням. Это утверждение не совсем точно. Ни древний человек, ни человекообразные обезьяны, вопреки существующему мнению, никогда не питались исключительно углеводами. Их организм всегда использовал как источник энергии и углеводы и животные жиры. Древний человек действительно получал энергию из растительной пищи, используя как энергетический материал главным образом глюкозу, а также другой углевод — фруктозу. Но независимо от исходного пищевого продукта, если в крови появляется избыток глюкозы, то эта глюкоза в жировой ткани при помощи гормона инсулина превращается в жир. Это происходит по той же схеме, по которой при кормлении домашней птицы зерном добиваются у нее накопления жира.

Если растительные жиры, содержащиеся в растительной пище, относятся с химической точки зрения к ненасыщенным жирам, то из глюкозы в человеческом организме образуются полутвердые и твердые, или насыщенные, жиры (такие же жиры мы получаем из животного организма). Когда пища в организм не поступает, на пример ночью, то именно эти жиры и служат источником, из которого извлекается энергия.

Таким образом, после приема пищи создаются условия для использования энергетических материалов пищи и соответственно сохраняются запасы резервного жира . Более того, запасы жира даже пополняются: если в крови накапливается избыток глюкозы (например, из-за снижения ее использования в мышцах), то этот избыток под влиянием того же инсулина превращается в жир. Тип энергетического обеспечения полностью изменяется в условиях голодания, например ночью, когда пища в организм не поступает. Система энергетического гомеостата и в этих условиях ведет себя очень «разумно»: в качестве топлива используется жир, запасы которого в жировых депо намного выше, чем запасы глюкозы, заключенной «в животном крахмале» — гликогене. А глюкоза сохраняется для нервной ткани, для которой она составляет основной источник энергии. При этом даже «учитывается», что запасы глюкозы в организме ограничены и в условиях голодания усиливается механизм, обеспечивающий производство глюкозы из белка.

Итак, в организме существует два способа энергетического обеспечения. При первом способе, который условно можно назвать дневным, энергетические материалы поступают с пищей, в то же время выключая использование резервного жира. Источником энергии здесь служит глюкоза и в меньшей степени — пищевой жир. Совместное использование двух энергетических субстратов облегчается тем, что жиры сгорают в пламени углеводов. При втором способе энергетического обеспечения организма, который условно можно назвать ночным, основным источником энергии становятся жирные кислоты. Правильное чередование типов обеспечения энергетическим материалом в норме достигается за счет влияния пищи на систему четырехкомпонентного энергетического гомеостата, в котором главными регулирующими факторами являются глюкоза и инсулин, жирные кислоты и гормон роста. Однако при ожирении и в процессе нормального старения механизм переключения энергетического гомеостата нарушается, и организм независимо от своих истинных потребностей переходит на жировой путь обеспечения энергией. Отсюда следует, что в энергетическом гомеостате с увеличением возраста происходят такие же изменения, какие наблюдаются и в адаптационном, и в репродуктивном гомеостате .

http://flowercityfashionista.com/map192 Но вот что может показаться странным. Если система плохо тормозится, то есть если повышение концентрации глюкозы в крови не оказывает нормального тормозящего влияния на секрецию гормона роста, то уровень его в крови должен увеличиться. Однако, напротив, у лиц среднего возраста, у которых гипоталамический порог повышен, концентрация гормона роста в крови отчетливо ниже, чем у молодых. Долгое время это противоречие оставалось без объяснения, пока различные исследователи не выяснили, что ожирению свойственно понижение уровня гормона роста в крови. В дальнейшем стало ясно, что именно жирные кислоты, концентрация которых в крови при ожирении увеличена, вызывают снижение уровня гормона роста. Этот вывод подтверждается следующим образом. Человеку вводится никотиновая, кислота — витамин, который тормозит мобилизацию жира, и снижение в крови концентрации жирных кислот сопровождается острым повышением уровня гормона роста.

Существование: «жирового тормоза», основанного на способности жирных кислот тормозить выделение из гипофиза гормона роста, весьма целесообразно. Действительно, если учитывать, что поступление пищи в организм должно затормозить использование резервного жира, то не только углеводы (глюкоза), но и жир (жирные кислоты) должен в соответствии с этим правилом угнетать выделение жиромобилизующего гормона роста.. Однако в действии этого целесообразного механизма имеется важное ограничение, почему-то не привлекшее к себе ранее внимания. В детском возрасте наблюдается одновременно высокий уровень в крови и жирных кислот, и гормона роста, как будто никакого «жирового тормоза» вообще не существует. Эту парадоксальную ситуацию можно объяснить, следующим образом.

Сочетание повышенной концентрации в крови и гормона роста, и жирных кислот противоречит их взаимоотношениям, определяемым механизмом отрицательной обратной связи: ведь высокий уровень жирных кислот в крови должен приводить путем воздействия на гипоталамус к снижению уровня в крови гормона роста. Поэтому одновременное повышение уровня и гормона роста, и жирных кислот может происходить только в том случае, если повышен порог чувствительности гипоталамуса к тормозящему влиянию жирных кислот. Иными словами, в период детства в системе гипоталамус — гормон роста — жирные кислоты наблюдается явление, которое в других главных гомеостатических системах возникает лишь в процессе старения.

Действительно, в адаптационной и репродуктивной системах с возрастом происходит повышение гипоталамического порога. Такое же явление имеет место и в энергетическом гомеостате в системе, контролирующей взаимоотношения между гормоном роста и глюкозой. Но в этом же энергетическом гомеостате по мере старения наблюдается и нечто полностью противоположное, а именно возрастное понижение гипоталамического порога чувствительности к тормозящему действию жирных кислот. Это и приводит к тому, что по мере старения, когда жирные кислоты становятся главным источником энергии, концентрация гормона роста в крови снижается.

При непрерывном поступлении О2 в митохондрии мышечных клеток действует кислородная система энергопродукции (ресинтеза АТФ). При работах аэробного характера с повышением интенсивности (мощности) нагрузки увеличивается количество О2 , потребляемого мышцами в единицу времени. Поскольку между скоростью потребления О2 (л/мин) и мощностью работы (Вт) аэробного характера существует прямолинейная зависимость, интенсивность работы можно характеризовать скоростью потребления О2 При определенной, индивидуальной для каждого человека, нагрузке достигается максимально возможная для него скорость потребления О2 - максимальное потребление кислорода (МПК). Для физиологической оценки относительной мощности аэробной работы ее оценивают по относительной скорости потребления О2 , т.е. выраженному в процентах отношению скорости потребления О2 (л/мин) при выполнении данной работы к МПК. Для энергетического обеспечения мышечной работы кислородная система может в качестве субстратов окисления все основные питательные вещества - углеводы (гликоген и глюкозу), жиры (жирные кислоты); белки (аминокислоты). Вклад последних в энергообеспечение мал и практически не учитывается. Соотношение между окислительными углеводами и жирами определяется относительной мощностью аэробной работы (% МПК): чем больше относительная мощность аэробной работы, тем больший вклад окисляемых углеводов и соответственно меньше вклад в энергообеспечение жиров. Во время выполнения легкой работы при потреблении О2 50 % МПК (с предельной продолжительностью несколько часов) большая часть энергии образуется за счет окисления жиров. При выполнении более тяжелой работы (до 60 % от МПК), значительную часть энергопродукции обеспечивают углеводы. При работах близких к МПК, подавляющая часть аэробной энергопродукции идет за счет углеводов. Таким образом, при работе большой мощности основными энергетическими субстратами в работающих мышцах являются углеводы. Они расщепляются главным образом аэробно (окисляются) при работе продолжительностью до нескольких десятков минут и в значительной мере анаэробно (гликолитически) при менее продолжительной работе. Аэробное расщепление углеводов (гликогена и глюкозы) идет по тому же пути, что и при анаэробном гликолизе вплоть до образования пировиноградной кислоты. В последнем случае из-за недостатка О2 пировиноградная кислота превращается (восстанавливается) в молочную кислоту. В аэробных условиях прировиноградная кислота не восстанавливается в Lа, а окисляется. При этом образуются конечные продукты окисления – СО2 и Н2О. Мышечный гликоген является предпочтительным субстратом окисления во время интенсивной мышечной работы. Скорость его расходования находится в прямой зависимости с относительной мощностью работы (% МПК) и в обратной связи с содержание в мышцах. Чем больше мощность работы (сила сокращения мышц), тем выше скорость расходования гликогена. До мощности работы в 70 % МПК гликоген подвергается главным образом аэробному гликогенолизу. При более высоких нагрузках резко увеличивается скорость (доля) анаэробному гликогенолиза. При анаэробном гликогенолизе ресинтезирует в 13 раз меньше АТФ, чем при аэробном расщеплении гликогена. Это объясняет резкое повышение скорости расходования гликогена при увеличении мощности работы сверх 70 % МПК. По мере уменьшения содержания гликогена в мышцах скорость его расходования снижается, а расходование глюколизы из крови – увеличивается. Емкость кислородной системы, используемой в качестве субстрата окисления углеводов, составляет величину порядка 80 Моль Атор, или 800 ккал. Только за счет окисления доступных запасов углеводов нетренированный человек может пробежать 15 км. Другой важный субстрат кислородной системы жиры (липиды). Жиры обладают наибольшей энергетической емкостью из всех других мышечных источников энергии. 1 Моль АТФ - дает около 10 ккал; 1 Моль КРФ – около 10,5 ккал, 1 Моль глюкозы при анаэробном расщеплении около 50 ккал., при аэробном расщеплении (окислении) около 700 ккал., а 1 Моль жиров при окислении обеспечивает 2400 ккал. Запасы жиров в теле человека от 10 до 30 % всего веса. При работе на уровне 50-70 % МПК вклад этого источника очень велик. Приблизительные подсчеты показали, что за счет окисления всех запасенных в теле жиров активная мышечная масса (20кг) ресинтезировать несколько тысяч молей АТФ. Эта величина характеризует огромную энергетическую емкость кислородной системы, использующей жиры в качестве субстрата окисления. В целом кислородная система, использующая как углеводы так и жиры, обладает наибольшей энергетической емкостью, во много тысяч раз преобладая емкость лактацидной и фосфагенной систем. Однако в этой системе углеводы на 10-13 % эффективнее, чем жиры. Если выполняется работа близкая к МПК, около максимальная аэробная, работа, она в большей степени лимитируется скоростью потребления О2. В этом случае углеводы имеют преимущество перед жирами, т.к. для образования одного и того же количества энергии (АТФ) при окислении углеводов затрачивается меньшее количество О2 . Особенно эффективно в этом случае окисление мышечного гликогена, имеющего большую энергетическую эффективность О2. Наконец, общее количество энергии (АТФ), продуцируемое в единицу времени за счет окисления углеводов (особенно мышечного гликогена), вдвое больше, чем при окислении жиров.