Водопоглощение силикатного кирпича по массе составляет. Основные характеристики кирпича

Водопоглощение кирпича является одним из важнейших показателей, определяющих пригодность использования материала в конкретной области строительства. Чтобы понимать, почему данная характеристика так важна при выборе, следует разобраться в основных свойствах строительного материала. Водопоглощение — это способность впитывать и сохранять влагу. Показатель водопоглощения определяется в процентах к объему материала.

Пористость кирпича напрямую влияет на его водопоглощение.

Чем выше пористость материала (чем больше количество пустот), тем больший объем влаги он впитает. Пористость напрямую связана с прочностью и способностью выдерживать нагрузки. Проникшая в полость вода при минусовых температурах замерзнет, увеличится в размерах и разрушит строительный материал. Чем выше показатель водопоглощения, тем ниже будет уровень прочности конструкции и устойчивости к низким температурам. Это негативно скажется и на долговечности строительного материала.

Нормы водопоглощения

Чтобы увеличить прочность и долговечность материала, следует максимально снизить показатель его водопоглощения, но практика свидетельствует о другом.

Показатель водопоглощения влаги нельзя ограничивать по нескольким причинам:

  1. Если показатель впитываемости воды будет низким, то кладка получится менее прочной, так как нарушится сцепка с раствором.
  2. Недостаточное количество пор и пустот существенно снизит показатели его теплосохранности, делая материал непригодным для использования в регионах с затяжными зимами. Чтобы избежать таких проблем, специалистами разработаны определенные нормы, по которым показатель водопоглощения должен быть не ниже 6%. Максимальный уровень определяется в зависимости от вида стройматериала.

Разделяют 3 основных типа строительного кирпича:

  • силикатный;
  • керамический.

Производство изделий из бетонной смеси происходит методом заливки раствора в специальные формы. На практике данный вид редко используется, потому что он тяжелый, дорогой, плохо сохраняет тепло. Несмотря на эти недостатки, данное изделие обладает самым низким показателем водопоглощения в 3-5%. Кладка, выполненная из такого строительного материала, прекрасно выдерживает резкие перепады температур и характеризуется длительным сроком эксплуатации.

Уровень водопоглощения строительного изделия — это одна из важнейших характеристик, которая позволяет определить сферу использования строительного материала. Например, у силикатного кирпича хорошая впитываемость влаги, поэтому его использование для возведения фундаментов, цокольных этажей поверхностей, расположенных в среде с повышенной влажностью, ограничено. Для постройки стен и несущих перегородок он вполне подходит.

//www.youtube.com/watch?v=PpA20brkNXw

Выбирая кирпич для строительства , всегда надо руководствоваться его характеристиками, чтобы постройка получилась крепкой и долговечной.

Водопоглощение кирпича – является одной из важнейших показателей на гигроскопичность в процентном соотношении.

Чем выше гидроскопичность кирпича, тем ниже его прочность.

Этот показатель демонстрирует пористость изделия, которая зависит от его состава.

Ведь гигроскопичность кирпича достаточно внушительно сказывается на морозостойкости материала. По этой причине при насыщении влагой материала прочность его значительно уменьшится в сравнении с сухим материалом. Для этого необходимо учитывать этот важный показатель при выборе кирпича для возведения загородной усадьбы.

Для того чтобы узнать гигроскопичность кирпича, материал кладут в печь на несколько часов при температуре 110-120 ºС. После нагревания кирпич охлаждают при естественной температуре, далее производят взвешивание. Потом его погружают в воду на 2 суток и снова взвешивают. По разнице в весе определяется какое количество впиталось в материал в процентном соотношении. Для строительного кирпича увеличение массы не должно быть превышено более 5%, а для отделочного блока не выше 14%.

Строительный кирпич подразделяют 3 основных вида

Строительный кирпич делится на три разновидности: бетонный блок, силикатный и керамический кирпич.

  • бетонный блок;
  • силикатный;
  • керамический кирпич.

Изготовление бетонного кирпича происходит путем залива в специально подготовленные формы цементным раствором. При этом в строительстве не пользуется большим спросом из-за большого веса, слабой звукоизоляции, высокой теплопроводностью и дороговизной. Из положительных черт бетонного кирпича можно отметить низкое водопоглощение около 5%, в некоторых видах 3%, отличную прочность для кладки несущих стен и устойчивость к быстро меняющимся атмосферным условиям.

Силикатный кирпич на 89,2% состоит из песка, остальной процент составляет известь и связующие добавки.

В состав силикатного блока входит 89,2% песка, остальной процент составляет известь и связующие добавки. В некоторых случаях в состав заготовки добавляют красящий пигмент для придания блоку необходимого оттенка. Водопоглощение у силикатов иногда достигает 15%. По этой причине не рекомендуется применение в местах с повышенной влажностью. Таких как цокольные помещения, кладка фундаментов, бань и т.д. Силикатный блок имеет хорошую звукоизоляцию, приемлемую цену и достаточно прочен для кладки несущих стен. Недостатком является высокая теплопроводность в сравнении с керамическим кирпичом.

Тускло-горчичный цвет керамического кирпича свидетельствует о недообжиге, а местами черный наоборот – о переобжиге.

Керамический блок изготавливается из смеси глин и путем обжига в туннельной печи при температуре 1000ºС. Обожженная по требуемым стандартам керамическая заготовка имеет красно-коричневый цвет и при незначительном ударе издает звонкий звук. Также брак можно отличить и по цвету керамической заготовки. Тускло-горчичный цвет показывает о недообжиге, а местами черный о переобжиге. По стандарту красного керамического блока минимальное водопоглощение должно составлять 6%, но может достигнуть и 14%. Оптимальное же водопоглощение составляет 8%. У керамического блока структура слоистая. Водопоглощение находится на среднем показателе. Из-за впитанной влаги керамического кирпича между слоями и не возможном быстром высвобождении воды в период значительных перепадов температуры и неблагоприятных погодных условий керамический кирпич начинает разрушаться. В начале появляются мелкие трещинки, которые в последствии перерастают в сквозные трещины. Вследствие чего керамический кирпич утрачивает свои свойства.

Самым распространенным кирпичом является общеизвестный красный или керамический кирпич, который получают путем обжига глин и их смесей. Еще порядка 10% рынка принадлежит силикатному кирпичу, полученному из застывшего в автоклаве известкового раствора.

Вне зависимости от материала, основные характеристики кирпичей едины. Это:

  • Прочность - основная характеристика кирпича - способность материала сопротивляться внутренним напряжениям и деформациям, не разрушаясь. Она обозначается М (марка) с соответствующим цифровым значением. Цифры показывают, какую нагрузку на 1 кв.см. может выдержать кирпич. В продаже чаще всего встречается кирпич марок М100, 125, 150, 175. Например, для строительства многоэтажных домов используют кирпич не ниже М150, а для дома в 2-3 этажа достаточно и кирпичей М100.
  • Морозостойкость - способность материала выдерживать попеременное замораживание и оттаивание в водонасыщенном состоянии, обозначается Мрз и измеряется в циклах. Во время стандартных испытаний кирпичи опускают в воду на 8 часов, потом помещают на 8 часов в морозильную камеру (это один цикл). И так до тех пор, пока кирпич не начнет менять свои характеристики (массу, прочность и т.п.). Тогда испытания останавливают и делают заключение о морозостойкости кирпича. Кирпич с более низким циклом обычно дешевле, но и эксплуатационные свойства его обычно ниже и годятся разве для южных широт. В нашем климате, рекомендуется использовать кирпич не менее Мрз 35.

По плотности тела кирпич делят на пустотелый и полнотелый . Чем больше пустот в кирпиче, тем он теплее и легче. Тепловые свойства кирпичу может также придать пористость самого материала, а внутренние поры способствуют лучшей изоляции звука. Развитие современной технологии направлено на создание поризированного (насыщенного порами) кирпича.

Классический размер кирпича 250х120х65 мм, его называют одинарным . Этот размер удобен для каменщика и кратен метру. Есть кирпич и большего размера - полуторный (его высота 88 мм), керамические камни двойного и многократно большего размера.

Цвет кирпича в основном зависит от состава глины. Большинство глин после обжига становятся «кирпичного» цвета, но есть глины, после обжига приобретают желтый, абрикосовый или белый цвет. Если в такую глину добавить пигментные добавки, то получится коричневый кирпич. Силикатный кирпич , исходно белый, окрасить путем внесения пигментов еще проще.

Рассмотрим виды, характеристики и назначение кирпичей подробнее.

Силикатный кирпич

По сути, силикатный кирпич представляет собой бруски из силикатного автоклавного бетона , имеющие форму и размеры кирпича. Он состоит примерно из 90% извести, 10% песка и небольшой доли добавок. Его достоинство в сравнении с керамическим - дешевизна, возможность обеспечить разнообразные оттенки. Недостатки: силикатный кирпич тяжел, не очень прочен, не водостоек, легко проводит тепло. Поэтому он уступает керамическому кирпичу в универсальности применения и используется только в кладке стен и перегородок, но не может применяться в фундаментах, цоколях, печах, каминах, трубах и других ответственных конструкциях.

Свойства силикатного кирпича регламентируются ГОСТ 379-79 «Кирпич и камни силикатные. Технические условия». Его основные характеристики:

  1. марка по прочности - М125, М150;
  2. марка по морозостойкости - F15, F25, F35;
  3. теплопроводность - 0,38-0,70 Вт/м°С.

Требования по размерам, качеству, геометрии и внешнему виду силикатного кирпича аналогичны требованиям, предъявляемым к керамическому кирпичу.

Соотношение силикатного и керамического кирпича составляет, соответственно, 15 и 85%. Единственным в нашем регионе производителем силикатного кирпича является ЗАО «Павловский завод Строительных Материалов» . Современный ассортимент предприятия состоит как из традиционного белого полнотелого силикатного кирпича, так и из новых видов продукции (силикатный пустотелый кирпич, силикатные стеновые пустотелые блоки). С 1998 года предприятие выпускает фактурный кирпич «Антик » ® (с эффектом каменной стены старого замка). С 1999 года - объемно окрашенный кирпич и кирпич с наполнителями, улучшающими его теплоизолирующие свойства. В июле 2003 года ЗАО «Павловский завод СМ» выпустил первую партию силикатного пустотелого кирпича. Среди главных достоинств нового продукта - вес изделия (благодаря 11 несквозным отверстиям кирпич весит всего 2,5 кг) и низкая теплопроводность.

Примеры современного силикатного кирпича производства «Павловского завода СМ»:

Полнотелый кирпич

Он же строительный , обычный , рядовой - материал с малым объемом пустот (меньше 13%). Применяется полнотелый кирпич для кладки внутренних и внешних стен, возведения колонн, столбов и других конструкций, несущих помимо собственного веса дополнительную нагрузку. Поэтому он должен обладать высокой прочностью (при необходимости используют кирпич марки М250 и даже М300), быть морозостойким. По ГОСТУ максимальная марка по морозостойкости такого кирпича - F50, но можно встретить и кирпич марки F75. Прочность достигается не даром - полнотелый кирпич имеет среднюю плотность 1600-1900 кг/м³, пористость 8%, марку морозостойкости 15-50 циклов, коэффициент теплопроводности 0,6-0,7 Вт/м°С, марку прочности 75-300. Поэтому наружные стены, полностью выложенные полнотелого кирпича, требуют дополнительного утепления. Полнотелый красный кирпич классического размера весит от 3,5 до 3,8 кг. В одном кубометре содержится 480 кирпичей.

Больше всех строительного и полнотелого кирпича производит ОАО «Ленстройкерамика» . Это предприятие является единственным в регионе производителем высокопрочного кирпича марок М250, М300, предназначенного для строительства высотных зданий.

Примеры полнотелого кирпича производства завода «Ленстройкерамика»:

Пустотелый кирпич

В соответствии со своим названием главным отличием этого кирпича является наличие внутренних пустот - отверстий или щелей, которые могут иметь разную форму (круглые, квадратные, прямоугольные и овальные), объем (13-50% внутреннего объема) и ориентацию (вертикальные и горизонтальные). Наличие пустот делает этот кирпич менее прочным, более легким и теплым, на его изготовление идет меньше сырья. Пустотелый кирпич применяют для кладки облегченных наружных стен, перегородок, заполнения каркасов высотных и многоэтажных зданий и иных ненагруженных конструкций.

Второй, новейший, способ обеспечения легкости и теплоты кирпича - поризация . Наличия большего числа мелких пор в кирпиче достигают, добавляя в глиняную массу при его формовке сгораемые включения - торф, мелко нарезанную солому, опилки или уголь, от которых после обжига остаются лишь маленькие пустоты в массиве. Зачастую полученный таким образом кирпич называют легким или сверхэффективным. Поризованный кирпич обеспечивает лучшую тепло- и звукоизоляцию, по сравнению с щелевым.

Технические характеристики обычного пустотелого кирпича: плотность 1000-1450 кг/м³, пористость 6-8%, морозостойкость 6-8%, морозостойкость 15-50 циклов, коэффициент теплопроводности 0,3-0,5 Вт/м°С, марка прочности 75-250, цвет от светло-коричневого до тёмно-красного.

Технические характеристики пустотелого сверхэффективного кирпича (НПО «Керамика » ): плотность 1100-1150 кг/м³, пористость 6-10%, морозостойкость 15-50 циклов, коэффициент теплопроводности 0,25-0,26 Вт/м°С, марка прочности 50-150, цвет оттенков красного.

Примеры пустотелого и поризованного кирпича производства заводов «Ленстройкерамика» и завода «Керамика »:

Кирпич пустотелый строительный, пустотность 42-45%.

Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1100-1150
Марка
Морозостойкость : F35
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:

Применяется для возведения наружных и внутренних стен зданий и сооружений. Отличается пятью рядами пустот, что позволяет снизить расход кладочного раствора на 20%.
Камень строительный поризованный 2НФ

Размер (мм) : 250х120х138
Масса (кг) : 3,7-3,9
Плотность (кг/м³) : 890-940
Марка : М 125, М 150 (М 175 на заказ)
Морозостойкость : F35
Водопоглощение (%) : 6,5-9
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,16(на легком растворе)/0,18

Достоинства: великолепные теплоизоляционные свойства, звуконепроницаемость, меньший вес. Используется в строительстве наружных и внутренних стен, значительно повышая теплозащитные свойства дома. Наружные стены из поризованного камня возводятся быстрее, чем стены из обычного пустотелого кирпича, сокращается количество растворных швов. Плотность его на 30% меньше, он легче, что ведёт к снижению нагрузок на конструкцию фундамента. При меньшей толщине стены в 640 мм из поризованной керамики даёт такой же эффект теплоизоляции, что и обычная кирпичная стена в 770 мм.

Облицовочный кирпич

Он же лицевой и фасадный . Главное назначение облицовочного кирпича - кладка внешних и внутренних стен с высокими требованиями к поверхности стены. Соответственно облицовочный кирпич имеет строго правильную форму и ровную, глянцевую поверхность внешних стенок. Не допускается наличие трещин и расслоения поверхности. Как правило, фасадный кирпич - пустотелый, а, следовательно, его теплотехнические характеристики достаточно высоки. Подбирая составы глиняных масс и регулируя сроки и температуру обжига, производители получают самые разнообразные цвета. Эти колебания цвета могут быть и не предумышленными, так что все необходимое количество лицевого кирпича целесообразнее покупать сразу же, одной партией, так чтобы вся облицовка была однородной по цвету.

Затраты на кирпичную облицовку больше, чем на оштукатуривание, но такой фасад существенно долговечнее, чем штукатурка. При использовании декоративного кирпича для внутренних стен особое внимание уделяется разделке швов. Стандартные размеры лицевого кирпича такие же, как у рядового, - 250х120х65 мм.

Технические характеристики облицовочного кирпича: плотность 1300-1450 кг/м³, пористость 6-14%, морозостойкость 25-75 циклов, коэффициент теплопроводности 0,3-0,5 Вт/м°С, марку прочности 75-250, цвет от белого до коричневого.

Примеры лицевого кирпича:

Кирпич лицевой красный (завод «Победа»)

Размер (мм) : 250х120х65
Масса (кг) : 2,4-2,5
Плотность (кг/м³) : 1200-1300
Марка : М150
Морозостойкость : F35, F50
Водопоглощение (%) : 6-7
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,37

Предназначен для кладки и одновременной облицовки наружных и внутренних стен зданий и сооружений любой этажности. Прочностные свойства лицевого кирпича позволяют применять его не только в качестве декоративного материала, но и как несущий материал наряду с рядовым кирпичом.

Кирпич керамический лицевой пустотелый Евроформат

Размер (мм) : 250х85х65
Масса (кг) : 1,8-2,0
Плотность (кг/м³) : 1260-1400
Марка : М175
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20 (на легком растворе)/ 0,26

Евроформат - это современный стандарт размера кирпича, который позволяет воплотить в российской реальности европейский эталон экономичности, эстетики и современности. Используется для наружных и интерьерных работ. Евроформат легче, чем обычный кирпич, что позволяет экономить на возведении фундаментов, облегчает и ускоряет работу каменщиков

Цветной и фигурный кирпич

Это особый вид лицевого кирпича , которому для повышения декоративного эффекта придана особая форма, рельеф поверхности или особый цвет. Рельеф может быть просто повторяющимся, а может быть и обработка под «мрамор», «дерево», «антик» (фактурный с потертыми или нарочито неровными гранями). Фасонный кирпич по-другому называютфигурным , что говорит само за себя. Отличительные признаки фигурного кирпича - скругленные углы и ребра, скошенные или криволинейные грани. Именно из таких элементов без особых сложностей возводят арки, круглые колонны, выполняют декор фасадов.

Среди предприятий нашего региона в области цветного и фигурного кирпича пальму первенства вновь делят НПО «Керамика » и «Победа Кнауф» . Последнее в прошлом году начало выпуск ангобированного кирпича (кирпич объемного окрашивания, устойчивый к различного рода воздействиям) расширенной цветовой гаммы.

Кирпич керамический лицевой пустотелый цветной и коричневый

Кирпич лицевой кремовый, окрашенный в массе (завод «Победа»)

Размер (мм) : 250х120х65
Масса (кг) : 2,4-2,5
Плотность (кг/м³) : 1200-1300
Марка : М150
Морозостойкость : F50
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,37
Водопоглощение (%) : 6-7

Кремовый - это оригинальный цвет и теплота мягких кремовых красок. Кремовый кирпич предназначен для облицовки наружных и внутренних стен.
Кирпич лицевой соломенный, с офактуренной поверхностью (завод «Керамика »)

Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1130-1280
Марка : М125, М150 (М175 на заказ)
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Предназначен для облицовки наружных стен зданий и сооружений любой этажности. Технология производства позволяет достигнуть равномерности цвета.
Кирпич лицевой цветной с офактуренной поверхностью (завод «Керамика »)

Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1130-1280
Марка : М125, М150 (М175 на заказ)
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,26(на легком растворе)/0,20

Предназначен для облицовки наружных стен зданий и сооружений любой этажности. Технология производства позволяет достигнуть равномерности цвета. Цвет розовый, серый, светло-зеленый, зеленый, желтый, голубой, синий

Кирпич лицевой с рельефной поверхностью «Тростник», красный (завод «Керамика »)

Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1130-1280
Марка : М125, М150 (М175 на заказ)
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Используется для фасадных и интерьерных работ. Лицевая поверхность кирпича напоминает по фактуре стебли тростника и позволяет обогатить керамическую кладку декоративными штрихами, придать ей живописную выразительность.

Кирпич лицевой с рельефной поверхностью «Кора дуба», красный (завод «Керамика »)


Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1130-1280
Марка : М125, М150 (М175 на заказ)
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Используется для наружных и интерьерных работ. Поверхность кирпича по фактуре напоминает кору дерева, что определяет выразительность и привлекательность этого материала.
Кирпич лицевой пустотелый фигурный красный, коричневый

Размер (мм) : 250х120х65
Масса (кг) : 2-2,2
Плотность (кг/м³) : 1130-1280
Марка : М125, М150
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Фигурный кирпич - это оригинальный материал для украшения дома, позволяющий сделать индивидуальным любое строение. Применение фигурного кирпича позволяет избежать трудоемких операций по резке обычного лицевого кирпича и предоставляет архитекторам широчайшие возможности для создания отдельных архитектурных элементов фасадов: закругления и обрамления оконных и дверных проемов, возведения арок и колонн

Кирпич больших размеров

ГОСТ определяет его как камень керамический . Стандартный камень керамический, или двойной кирпич (как часто называют его продавцы) - имеет размеры 250х120х138 мм. Достоинство керамических камней в их технологичности и экономичности. Кирпич больших размеров позволяет существенно ускорить и упростить процесс кладки. Высшим достижением в производстве подобного кирпича в нашей стране стала продукция завода «Победа ЛСР» , освоившего выпуск легких и очень крупных блоков под торговой маркой RAUF.

Подобные изделия очень далеко ушли от простейшего кирпича, который когда-то лепили руками. Блоки завода «Победа ЛСР» даже на глаз имеют вид весьма высокотехнологичных изделий.

Примеры керамических блоков производства объединения «Победа ЛСР»

Камень строительный поризованный 2,1НФ RAUF

Размер (мм) : 250х120х138
Масса (кг) : 3,8; 4,3*
Плотность (кг/м³) : 900; 1000*
Марка : М150, М175
Морозостойкость : F50
Водопоглощение (%) : 11; 9*
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,17; 0,26*

* в зависимости от марки камня

Используется в строительстве наружных и внутренних стен, значительно повышая теплозащитные свойства дома. Достоинства: великолепные теплоизоляционные свойства, звуконепроницаемость. Наружные стены из поризованного камня возводятся быстрее, чем стены из обычного пустотелого кирпича, сокращается количество растворных швов. Плотность его на 30% меньше, он легче, что ведёт к снижению нагрузок на конструкцию фундамента. При толщине стены в 640 мм из поризованной керамики даёт такой же эффект теплоизоляции, что и обычная кирпичная стена в 770 мм.
Камень строительный поризованный 4,5НФ RAUF

Размер (мм) : 250х250х138
Масса (кг) : 6,9
Плотность (кг/м³) : 780
Марка : М150
Морозостойкость : F50
Водопоглощение (%) : 10
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,22

Используется при возведении наружных стен. Применение этого камня позволяет снизить нагрузку на фундамент, увеличить скорость ведения кладки, сократить расход раствора. Поризованный кирпич легче обычного, обладает низкой плотностью, низкой теплопроводностью. Обладает великолепными теплоизоляционными свойствами. Смягчая перепады температур, создает в доме комфортный микроклимат. Использование его в кладке повышает производительность труда и способствует уменьшению теплопотерь.
Камень крупноформатный сверхпоризованный 10,8НФ RAUF

Размер (мм) : 380х253х219
Масса (кг) : 14
Плотность (кг/м³) : 650-670
Марка : М35, М50
Морозостойкость : F50
Водопоглощение (%) : 17
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,154

Используется при возведении наружных стен в малоэтажном домостроении. Сверхпоризованный блок является суперсовременным строительным материалом и обладает всеми преимуществами Теплой (поризованной) керамики.
Камень крупноформатный поризованный 10,8НФ, доборный RAUF

Размер (мм) : 380х253х219

Масса (кг) : 17

Плотность (кг/м³) : 800

Марка : М75, М100

Морозостойкость : F50

Водопоглощение (%) : 11

Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Выступает доборным элементом при возведении наружных и внутренних стен из Теплой керамики. Поризованный блок легче обычного, он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчаются перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2-2,5 раза.
Камень крупноформатный поризованный 11,3НФ, доборный RAUF

Размер (мм) : 398х253х219

Масса (кг) : 17,7

Плотность (кг/м³) : 800

Марка : М75, М100

Морозостойкость : F50

Водопоглощение (%) : 11

Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Выступает доборным элементом при возведении стен из Теплой керамики. Поризованный блок легче обычного, что позволяет снизить нагрузки на фундамент. Он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчает перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2-2,5 раза.
Камень крупноформатный поризованный 14,5НФ RAUF

Размер (мм) : 510х253х219
Масса (кг) : 23
Плотность (кг/м³) : 800
Марка : М75, М100
Морозостойкость : F50
Водопоглощение (%) : 11
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Является основным материалом при возведении стен домов из Теплой керамики в малоэтажном домостроении. Поризованный блок легче обычного, что позволяет снизить нагрузки на фундамент, он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчает перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2-2,5 раза.

Клинкерный кирпич

Клинкерный кирпич применяют для облицовки цоколей, мощения дорог, улиц, дворов, облицовки фасадов. Последнее можно отметить особо - такая отделка долгое время не нуждается в ремонте, грязь и пыль практически не проникают в структуру поверхности, да и вариаций цветов и форм более чем достаточно. Среди недостатков клинкера - повышенная теплопроводность и высокая стоимость. Плотность клинкера 1900-2100 кг/м³, пористость до 5%, марка морозостойкости 50-100, коэффициент теплопроводности 1,16, марка прочности 400-1000, цвет - от желтого до тёмно-красного.

Клинкерный кирпич прессуется из сухой красной глины и обжигается до спекания при значительно более высоких температурах, чем принято для изготовления обычного строительного кирпича. Это обеспечивает высокую плотность и износостойкость клинкера.

Шамотный кирпич

Чтобы избежать быстрого разрушения кладки, контактирующей с открытым огнем, необходим кирпич, способный выдерживать высокие температуры. Его называют печным , огнеупорным и шамотным . Шамотный кирпич выдерживает температуры свыше 1600°C. Его плотность 1700-1900 кг/м³, пористость 8%, марка морозостойкости 15-50, коэффициент теплопроводности 0,6 Вт/м°С, марка прочности 75-250, цвет от светло-жёлтого до тёмно-красного. Изготавливают шамотный кирпич классической, а также трапециидальной, клиновидной и арочной формы. Делают такой кирпич из шамота - огнеупорной глины.

Начиная строительство, при выборе материала первостепенными критериями служат прочность и долговечность. Кирпич доказал свои высокие технические характеристики на примере сохранивших свою презентабельность многовековых зданий. Водопоглощение - это способность кирпича впитывать влагу, освобождаться от нее не теряя своих прочностных характеристик. По ГОСТу для лицевых материалов она не должна превышать 12-15 %. Убедиться в соответствии кирпичей Кермакс требованиям стандартов можно путем проведения нехитрого эксперимента. Для этого необходимо взвесить образец, затем поместить брусок в воду на 48 часов и повторить взвешивание. Процентная разница в весе и есть величина влагопоглощения. Пустоты в теле лицевых кирпичей Кермакс значительно влияют на технические характеристики. В кладке пустоты закрываются, образуя замкнутые воздушные подушки, что способствует ускорению диффузионных процессов. Это можно сравнить с сушкой белья, то есть плотная ткань, как и полнотелые кирпичи быстро впитывают, но медленно отдают влагу, тонкая же ткань, как и облицовочные щелевые кирпичи, даже если она будет сложена в несколько слоев, просохнет намного быстрее. От этих процессов напрямую зависит теплопроводность стен. Чем быстрее просыхает кладка, тем быстрее она восстанавливает свои первоначальные свойства.

Из истории кирпича:

Производство кирпича - настолько древнее искусство, что никто не осмелится сказать, когда и кто сформовал первый образец. Если изначально гладкие брусочки одинаковых размеров формовали и высушивали на солнце, и эта архитектурная роскошь была привилегией стран с жарким климатом, так как материал разрушался при попадании влаги, то уже в III тысячелетии до нашей эры люди научились обжигать кирпич, значительно уменьшив его влагопоглощение и увеличив прочность.

Способность кирпича поглощать влагу из окружающей среды напрямую связана с морозостойкостью, и чем последняя больше, тем более устойчив кирпич к перепадам температур. В нашей климатической зоне, характеризующейся сезонными изменениями климата, низкое влагопоглощение отделочных материалов имеет первостепенное значение. При намокании кирпич теряет прочностные свойства, и при плохом стечении обстоятельств, например в сильный мороз после продолжительной оттепели, вследствие повышенной влажности, кирпичную кладку может попросту разорвать.

Чтобы не попасть в неприятную ситуацию и не сожалеть о потраченном времени и средствах, выбирать стоит только проверенные материалы у крупного производителя. Облицовочные кирпичи Kermax -это гарантия качества. Каждая партия проходит обязательные испытания и подлежит сертификации. Мы твердо уверены в качестве предлагаемого материла и его характеристиках, поскольку работаем без посредников и проводим дополнительные независимые выборочные исследования отдельных партий.

ГОСТ 7025-91

Группа Ж19

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КИРПИЧ И КАМНИ КЕРАМИЧЕСКИЕ И СИЛИКАТНЫЕ

Методы определения водопоглощения,

плотности и контроля морозостойкости

Ceramic and calcium silicate bricks and stones.

Methods for water absorption and density

determination and frost resistance control

ОКСТУ 5709

Дата введения 1991-07-01

Информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Научно-исследовательским институтом строительной физики Госстроя СССР

РАЗРАБОТЧИКИ

Ю.Д.Ясин, канд. техн. наук (руководитель темы); Р.В.Мачюлайтис, канд. техн. наук; А.Н.Гончаров, канд. техн. наук; А.С.Бычков, канд. техн. наук; Н.А.Лисовский; М.И.Шиманская; А.Б.Морозов

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 12.02.91 N 5

3. Авторское свидетельство N 622007 с приоритетом от 28.04.77, авторское свидетельство N 1013827 с приоритетом от 11.12.81, решение о выдаче авторского свидетельства на промышленный образец по заявке N 50185/49/06127 от 19.09.89

4. ВЗАМЕН ГОСТ 7025-78, ГОСТ 6427-75

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта

ГОСТ 427-75

5.1

ГОСТ 450-77

6.1

ГОСТ 2405-88

3.1

ГОСТ 4204-77

6.1

ГОСТ 6613-86

6.1

ГОСТ 6709-72

6.1

ГОСТ 7338-77

8.1

ГОСТ 8462-85

7.1, 7.3.8, 8.1

ГОСТ 8682-70

6.1

ГОСТ 9147-80

6.1

ГОСТ 14919-83

4.1

ГОСТ 22524-77

6.1

ГОСТ 23676-79

5.1, 6.1

ГОСТ 24104-88

2.1, 3.1, 5.1, 6.1, 7.1, 8.1

ГОСТ 25336-82

3.1, 6.1

ГОСТ 25662-83

6.1

ГОСТ 26099-84

3.1

ТУ 16-681.032-84

2.1, 3.1, 5.1, 6.1, 8.1

ТУ 64-1-3229-80

7.1, 8.1

Настоящий стандарт распространяется на керамические (в том числе для дымовых труб) и силикатные рядовые и лицевые кирпич и камни (далее - изделия) и устанавливает методы определения водопоглощения, плотности и контроля морозостойкости.

Применение методов устанавливают в нормативно-технической документации (НТД) на изделия конкретных видов.

1. Общие требования

1.1. Испытания следует проводить в помещениях с температурой воздуха (20±5) °С на образцах целых изделий или их половинках.

1.2. Высушивание образцов и проб до постоянной массы считают оконченным, если разность между двумя последовательными взвешиваниями в процессе высушивания не будет превышать установленной погрешности взвешивания. Перерыв между двумя взвешиваниями должен быть не менее 4 ч для образца и 2 ч - для пробы.

Высушивание проводят в электрошкафу при температуре (1055) °С.

1.3. Взвешивание образцов и проб в зависимости от их массы выполняют с погрешностью, г, не более:

до 20 г включ. .................................0,002

св. 20 " 1000 г " ....................1

" 1000 " 10000 г " ..................5

" 10000 г. ....................................50

1.4. Силикатные изделия испытывают не ранее чем через сутки после их автоклавной обработки.

2. Определение водопоглощения при атмосферном

давлении в воде температурой (20±5) °С

2.1. Средства испытания

Сосуд с решеткой.

Весы по ГОСТ 24104.

2.2. Подготовка к испытанию

Водопоглощение определяют не менее чем на трех образцах.

Образцы керамических изделий предварительно высушивают до постоянной массы. Водопоглощение силикатных изделий определяют без предварительного высушивания образцов.

2.3. Проведение испытания

2.3.1. Образцы укладывают в один ряд по высоте с зазорами между ними не менее 2 см на решетку в сосуд с водой температурой (20±5) °С так, чтобы уровень воды был выше верха образцов на 2-10 см.

2.3.2. Образцы выдерживают в воде ч

2.3.3. Насыщенные водой образцы вынимают из воды, обтирают влажной тканью и взвешивают. Массу воды, вытекшей из образца на чашку весов, включают в массу образца, насыщенного водой. Взвешивание каждого образца должно быть закончено не позднее 2 мин после его удаления из воды.

2.3.4. После взвешивания образцы силикатных изделий высушивают до постоянной массы

2.4. Обработка результатов

2.4.1. Водопоглощение () образцов по массе в процентах вычисляют по формуле

(1)

где

масса образца, насыщенного водой, г;

масса образца, высушенного до постоянной массы, г.

За значение водопоглощения изделий принимают среднее арифметическое результатов определения водопоглощения всех образцов, рассчитанное с точностью до 1%.

2.4.2. Исходные данные и результаты определений водопоглощения заносят в журнал испытаний.

3. Определение водопоглощения под вакуумом

в воде температурой (20±5) °С

Методы определения водопоглощения в воде температурой (20±5) °С при атмосферном давлении и под вакуумом взаимозаменяемы.

3.1. Средства испытания

Установка для определения водопоглощения под вакуумом, схема которой приведена на черт.1.

Схема установки для определения водопоглощения

под вакуумом

1 - вакуумный насос по ГОСТ 26099; 2 - образцы изделий;

3 - вакуумный эксикатор исполнения 1 по ГОСТ 25336 или любая другая разъемная

емкость с вакуумным уплотнением; 4 - вакуумный шланг; 5 - вакуумный кран;

6 - образцовый манометр по ГОСТ 2405; 7 - ловушка

Черт.1

Электрошкаф сушильный по ТУ 16-681.032 или любой другой конструкции с автоматической регулировкой температуры в пределах 100-110 °С.

Весы по ГОСТ 24104.

3.2. Подготовка к испытанию - по п.2.2.

3.3. Проведение испытания

3.3.1. Образцы укладывают в вакуумный эксикатор на подставку и заливают водой так, чтобы ее уровень был выше верха образца не менее чем на 2 см. При применении разъемной емкости образцы укладывают в один ряд по высоте с зазором между ними не менее 2 см.

3.3.2. Эксикатор (емкость) закрывают крышкой и вакуумным насосом создают над поверхностью воды разрежение (0,05±0,01) МПа [(0,5±0,1) кгс/кв.см], фиксируемое образцовым манометром.

3.3.3. Пониженное давление поддерживают, засекая время, до прекращения выделения пузырьков воздуха из образцов, но не более 30 мин. После восстановления атмосферного давления образцы выдерживают в воде столько же времени, сколько под вакуумом, чтобы вода заполнила объем, который занимал удаленный воздух. Далее поступают по пп.2.3.3 и 2.3.4.

3.4. Обработка результатов - по п.2.4.

4. Определение водопоглощения керамических изделий

при атмосферном давлении в кипящей воде

Методы определения водопоглощения при атмосферном давлении в воде температурой (20±5) °С и в кипящей воде не взаимозаменяемы.

4.1. Средства испытания - по п.2.1.

Электроплитка по ГОСТ 14919 или любой другой нагревательный прибор, обеспечивающий кипячение воды в сосуде.

4.2. Подготовка к испытанию - по п.2.2.

4.3. Проведение испытания

Образцы укладывают в сосуд с водой по п.2.3.1, нагревают и доводят до кипения (приблизительно 1 ч), кипятят ч и оставляют на 16-19 ч остывать до температуры помещения. Далее поступают по п.2.3.3.

4.4. Обработка результатов - по п.2.4.

5. Определение средней плотности

5.1. Средства испытания

Электрошкаф сушильный по ТУ 16-681.032 или любой другой конструкции с автоматической регулировкой температуры в пределах 100-110 °С.

Весы по ГОСТ 24104.

Линейка измерительная металлическая по ГОСТ 427.

5.2. Подготовка к испытанию

Среднюю плотность определяют не менее чем на трех образцах.

5.3. Проведение испытания

5.3.1. Объем образцов определяют по их геометрическим размерам, измеренным с погрешностью не более 1 мм. Для определения каждого линейного размера образец измеряют в трех местах - по ребрам и середине грани. За окончательный результат принимают среднее арифметическое трех измерений.

5.3.2. Образцы очищают от пыли и высушивают до постоянной массы.

5.4. Обработка результатов

5.4.1. Среднюю плотность () образца в кг/куб.м вычисляют по формуле

(2)

где объем образца, куб.см.

За значение средней плотности изделий принимают среднее арифметическое результатов определений средней плотности всех образцов, рассчитанное с точностью до 10 кг/куб.м.

5.4.2. Исходные данные и результаты определений средней плотности заносят в журнал испытаний.

6. Определение истинной плотности

6.1. Средства испытания

Электрошкаф сушильный по ТУ 16-681.032 или любой другой конструкции с автоматической регулировкой температуры в пределах 100-110 °С.

Весы по ГОСТ 24104.

Термостат любой конструкции, обеспечивающий поддержание температуры (20,0±0,5) °С.

Вакуумэксикатор исполнения 1 по ГОСТ 25336 в комплекте с водоструйным или масляным вакуумным насосом по ГОСТ 25662, обеспечивающий разрежение не более 532 Па (4 мм рт.ст.).

Эксикатор исполнения 2 по ГОСТ 25336 с концентрированной серной кислотой по ГОСТ 4204 или безводным хлористым кальцием по ГОСТ 450.

Пикнометры вместимостью 50-100 мл типов ПЖ2, ПЖ3 и ПТ по ГОСТ 22524 с конусами по ГОСТ 8682.

Ступка фарфоровая или агатовая с пестиком.

Бюкс стеклянный по ГОСТ 25336 или чашка фарфоровая по ГОСТ 9147.

Сита с сеткой N 1 и N 0,063 по ГОСТ 6613.

Баня водяная или песчаная.

Вода дистиллированная по ГОСТ 6709 или другая жидкость, инертная по отношению к испытываемому материалу.

6.2. Подготовка к испытанию

6.2.1. Истинную плотность определяют на пробе материала изделий, полученной не менее чем от трех образцов.

6.2.2. Для подготовки пробы от каждого образца снаружи и из середины откалывают по два куска массой не менее 100 г каждый, которые измельчают до зерен размером около 5 мм. Квартованием отбирают навеску массой не менее 100 г и измельчают ее в фарфоровой или агатовой ступке до полного прохождения через сито с сеткой N 1. Затем квартованием отбирают навеску массой не менее 30 г и измельчают ее до полного прохождения через сито с сеткой N 0,063.

Приготовленную порошкообразную пробу материала образцов высушивают до постоянной массы и охлаждают до температуры помещения в эксикаторе над концентрированной серной кислотой или безводным хлористым кальцием.

6.3. Проведение испытания

6.3.1. Определение проводят параллельно на двух навесках массой около 10 г каждая, отобранных от пробы.

6.3.2. Отобранную навеску высыпают в чистый, высушенный и предварительно взвешенный пикнометр. Пикнометр взвешивают вместе с испытываемым порошком, затем наливают в него воду (или другую инертную жидкость) в таком количестве, чтобы он был заполнен приблизительно до половины объема.

Для удаления воздуха из материала навески и жидкости пикнометр с содержимым выдерживают под вакуумом в эксикаторе до прекращения выделения пузырьков. Допускается (при использовании в качестве жидкости воды) удалять воздух кипячением пикнометра с содержимым в течение 15-20 мин в слегка наклонном состоянии на песчаной или водяной бане.

Следует также удалить воздух из жидкости, которой будет дополнен пикнометр.

6.3.3. После удаления воздуха пикнометр типа ПЖ3 заполняют жидкостью полностью, а типов ПЖ2 и ПТ - до метки. Пикнометр помещают в термостат с температурой (20,0±0,5) °С, в котором выдерживают не менее 15 мин.

6.3.4. После выдержки в термостате пикнометр типа ПЖ3 закрывают пробкой с отверстием таким образом, чтобы жидкость заполнила капилляр и избыток ее удалился. Затем его тщательно вытирают, каплю жидкости с капилляра удаляют фильтровальной бумагой.

В пикнометре типов ПЖ2 и ПТ уровень жидкости доводят до метки по нижнему мениску.

После достижения постоянного уровня жидкости пикнометр взвешивают.

6.3.5. После взвешивания пикнометр освобождают от содержимого, промывают, заполняют той же жидкостью, удаляют из нее воздух, выдерживают в термостате, доводят жидкость до постоянного уровня и снова взвешивают.

6.4. Обработка результатов

6.4.1. Истинную плотность () материала навески в г/куб.см вычисляют по формуле

(3)

где

масса пикнометра с навеской, г;

масса пикнометра, г;

плотность жидкости, г/куб.см;

масса пикнометра с жидкостью, г;

масса пикнометра с навеской и жидкостью, г.

За значение истинной плотности изделий принимают среднее арифметическое результатов определений истинной плотности материала двух навесок, рассчитанное с точностью до 0,01 г/куб.см.

6.4.2. Расхождение между результатами параллельных определений не должно быть более 0,02 г/куб.см. При больших расхождениях истинную плотность изделий определяют снова.

6.4.3. Исходные данные и результаты определений истинной плотности заносят в журнал испытаний.

7. Контроль морозостойкости при объемном замораживании

7.1. Средства испытания

Камера морозильная с принудительной вентиляцией и автоматически регулируемой температурой от минус 15 до минус 20 °С. Рекомендуемые типы камер и их основные характеристики приведены в приложении 1.

Контейнеры сварные из стальных стержней или полос.

Сосуд с решеткой.

Термостат по ТУ 64-1-3229 или любой другой конструкции, обеспечивающий поддержание температуры воды в сосуде (20±5) °С.

Электрошкаф сушильный по ТУ 16-681.032 или любой другой конструкции с автоматической регулировкой температуры в пределах 100-110 °С.

Ванна с гидравлическим затвором, схема которой приведена на черт.2.

Ванна с гидравлическим затвором

1 - сосуд-основание с водой; 2 - подставка для укладки образцов;

3 - колпак; 4 - контейнер с образцами изделий

Черт.2

Весы по ГОСТ 24104.

7.2. Подготовка к испытанию

7.2.1. Для контроля морозостойкости по степени повреждений или потере массы отбирают не менее пяти образцов.

Для контроля морозостойкости по потере прочности отбирают не менее двадцати образцов, половину из которых используют в качестве контрольных для сравнения. Контрольные образцы хранят в ванне с гидравлическим затвором.

На образцах фиксируют имеющиеся трещины, околы ребер, углов и другие дефекты, допускаемые НТД на изделия конкретных видов.

7.2.2. Образцы насыщают водой в соответствии с разд.2 или 3. Образцы керамических изделий перед водонасыщением высушивают до постоянной массы. Образцы силикатных изделий после водонасыщения взвешивают.

Допускается использовать образцы непосредственно после определения их водопоглощения.

7.2.3. Замораживание образцов в морозильной камере и оттаивание их в воде осуществляют в контейнерах.

Горизонтальные зазоры между образцами в контейнерах должны быть не менее 20 мм. При укладке образцов в контейнеры до трех рядов по высоте вертикальные зазоры между рядами, образуемые прокладками, должны быть не менее 20 мм. При большем числе рядов по высоте зазоры между рядами должны быть не менее 50 мм.

7.3. Проведение испытания

7.3.1. Температура воздуха морозильной камеры до загрузки образцами должна быть не выше минус 15 °С, а после загрузки не должна превышать минус 5 °С. Началом замораживания образцов считают момент установления в камере температуры минус 15 °С. Температура воздуха в камере от начала до конца замораживания должна быть от минус 15 до минус 20 °С.

7.3.2. Продолжительность одного замораживания образцов должна быть не менее 4 ч. Перерыв в процессе одного замораживания не допускается.

7.3.3. После окончания замораживания образцы в контейнерах полностью погружают в сосуд с водой температурой (20±5) °С, поддерживаемой термостатом до конца оттаивания образцов.

Продолжительность оттаивания должна быть не менее половины продолжительности замораживания.

7.3.4. Одно замораживание и последующее оттаивание составляют один цикл, продолжительность которого не должна превышать 24 ч.

7.3.5. При окончании испытания на морозостойкость или его временном прекращении образцы после оттаивания хранят в ванне с гидравлическим затвором. При возобновлении испытания образцы дополнительно водонасыщают в соответствии с разд.2 или 3 (без высушивания образцов керамических изделий и взвешивания силикатных после водонасыщения).

7.3.6. При оценке морозостойкости по степени повреждений после проведения требуемого числа циклов замораживания - оттаивания производят визуальный осмотр образцов и фиксируют появившиеся дефекты.

7.3.7. При оценке морозостойкости по потере массы после проведения требуемого числа циклов замораживания - оттаивания образцы керамических изделий высушивают до постоянной массы, а образцы силикатных изделий насыщают водой в соответствии с разд.2 или 3.

7.3.8. При оценке морозостойкости по потере прочности при сжатии после проведения требуемого числа циклов замораживания - оттаивания опорные поверхности каждого образца в отдельности (в том числе контрольных) выравнивают цементным раствором по приложению 2 ГОСТ 8462. Допускается не выравнивать опорные поверхности образцов силикатных изделий и керамических, изготовленных методом прессования, при отсутствии на них неровностей, вздутий, шелушений и т.п.

Образцы насыщают водой в соответствии с разд.2 или 3 и проводят испытание на сжатие каждого образца в отдельности по разд.3 ГОСТ 8462.

7.4. Обработка результатов

7.4.1. После визуального осмотра образцов делают заключение о соответствии их степени повреждений требованиям НТД на изделия конкретных видов.

7.4.2. Потерю массы () образцов керамических изделий в процентах вычисляют по формуле

(4)

где масса образца, высушенного до постоянной массы после требуемого числа циклов замораживания-оттаивания, г.

Потерю массы образцов силикатных изделий в процентах вычисляют по формуле

(5)

где масса образца, насыщенного водой после требуемого числа циклов замораживания-оттаивания, г.

За значение потери массы изделий принимают среднее арифметическое результатов определений потери массы всех образцов, рассчитанное с точностью до 1%.

7.4.3. Потерю прочности () изделий при сжатии в процентах вычисляют с точностью до 1% по формуле

(6)

7.4.4. Исходные данные и результаты контроля морозостойкости заносят в журнал испытаний. В журнале должно быть указано:

наименование изделия, марка по прочности, дата испытания;

метод контроля морозостойкости (объемный, односторонний);

размеры каждого образца;

описание дефектов, обнаруженных на каждом образце перед испытанием;

температура замораживания и длительность снижения температуры в морозильной камере до минус 15 °С после загружения ее образцами;

описание появившихся дефектов, обнаруженных на каждом образце при осмотрах в процессе испытания;

масса каждого образца до и после испытания и потеря массы;

пределы прочности при сжатии каждого из испытанных образцов и потеря прочности;

число циклов замораживания - оттаивания образцов.

8. Контроль морозостойкости при одностороннем замораживании

Методы контроля морозостойкости при объемном и одностороннем замораживании не взаимозаменяемы.

8.1. Средства испытания

Холодильно-дождевальная установка (ХДУ), основные технические характеристики которой приведены в приложении 2.

Допускается применение морозильной камеры по п.7.1 со следующими приспособлениями и оборудованием:

аппарат для одностороннего замораживания образцов (АДОЗО), основные технические характеристики которого приведены в приложении 2, или рама запорная теплоизолирующая съемная сквозная;

установка дождевальная.

Пластины резиновые ОМБ5 или ОМБ10 по ГОСТ 7338.

Сосуд с решеткой.

Электрошкаф сушильный по ТУ 16-681.032 или любой другой конструкции с автоматической регулировкой температуры в пределах 100-110 °С.

Ванна с гидравлическим затвором по п.7.1.

Весы по ГОСТ 24104.

Остальные средства - по разд.1 ГОСТ 8462, необходимые для проведения испытания по определению предела прочности образцов при сжатии.

8.2. Подготовка к испытанию

8.2.1. Для контроля морозостойкости по степени повреждений или потере массы отбирают не менее восьми целых образцов, а по потере прочности - не менее шестнадцати целых образцов.

Отобранные образцы по внешнему виду и размерам должны удовлетворять требованиям НТД на изделия конкретных видов.

На образцах фиксируют имеющиеся трещины, околы ребер, углов и другие дефекты, допускаемые НТД на изделия конкретных видов, а также маркируют поверхность образцов, предназначенную для замораживания.

8.2.2. Образцы насыщают водой в соответствии с разд.2 в течение ч. Образцы керамических изделий перед водонасыщением высушивают до постоянной массы. Образцы силикатных изделий после водонасыщения взвешивают.

Допускается использовать образцы непосредственно после определения их водопоглощения при условии дополнительного водонасыщения их в течение ч.

8.2.3. Образцы собирают в виде фрагмента ограждающей конструкции толщиной в один кирпич в теплоизолирующей запорной раме или кассетах контейнера АДОЗО.

В фрагменте из каждых восьми образцов два (предварительно распиленные поперек пополам) устанавливают парными половинками одна за другой тычком, а шесть образцов - один за другим ложком. Горизонтальные и вертикальные поперечные швы между образцами имитируют прокладками из резиновых пластин. Вертикальные продольные швы оставляют в виде воздушной прослойки.

В случае неполного заполнения рамы или кассеты образцами оставшийся по высоте объем заполняют теплоизолятором (резиновыми пластинами, пенопластом и т.п.).

8.2.4. При оценке морозостойкости по степени повреждений и потере массы используют не менее пяти (двух тычковых и трех ложковых) образцов, а при оценке морозостойкости по потере прочности - не менее десяти (четырех тычковых и шести ложковых) образцов со стороны фрагмента, предназначенной для замораживания. При этом в качестве контрольных при оценке по потере прочности используют смежные с ними образцы с неохлаждаемой стороны (противоположной замораживаемой) фрагмента.

8.2.5. Продолжительность сборки фрагмента не должна превышать 1 ч.

После сборки поверхность фрагмента, предназначенную для замораживания, подвергают предварительному дождеванию не менее 8 ч таким образом, чтобы она покрывалась сплошной водяной пленкой.

При отсутствии ХДУ дождевание осуществляют на установке, схема которой приведена на черт.3.

Температура воды, омывающей поверхность фрагмента, должна быть (15±5) °С.

8.2.6. При использовании ХДУ или сквозной съемной теплоизолирующей запорной рамы фрагмент поверхностью, предназначенной для замораживания, присоединяют к проему морозильной камеры. Схема испытания приведена на черт.4.

Схема дождевальной установки

Схема испытания при использовании ХДУ или сквозной съемной теплоизолирующей запорной рамы

1 - фрагмент ограждающей

конструкции в сквозной съемной

теплоизолирующей запорной раме

или в кассете контейнера АДОЗО;

2 - подставка; 3 - сосуд для сбора воды;

4 - трубчатый перфорированный

водораспылитель; 5 - термометр

для контроля температуры воды

1 - морозильная камера с проемом;

2 - испаритель; 3 - вентилятор;

4 - фрагмент ограждающей конструкции

в теплоизолирующей запорной

раме ХДУ или сквозной съемной

При использовании АДОЗО теплоизолирующий контейнер аппарата с кассетами помещают внутрь морозильной камеры. Схема испытания приведена на черт.5.

8.3. Проведение испытания

8.3.1. Температурный режим внутри ХДУ (морозильной камеры) - по п.7.3.1. При этом температура с неохлаждаемой стороны (противоположной замораживаемой) фрагмента должна быть (20±5) °С.

8.3.2. Продолжительность одного замораживания образцов должна быть не менее 8 ч. Перерыв в процессе одного замораживания образцов не допускается.

8.3.3. После окончания замораживания образцов охлажденную поверхность фрагмента оттаивают дождеванием.

Дождевание осуществляют, отсоединив теплоизолирующую запорную раму от морозильной камеры, или выгрузив из камеры теплоизолирующий контейнер АДОЗО и вынув из него кассеты.

Время оттаивания должно быть равно времени замораживания.

Схема испытания при использовании АДОЗО

1 - морозильная камера; 2 - испарители; 3 - вентиляторы; 4 - дверь морозильной камеры;

5 - теплоизолирующий контейнер АДОЗО; 6 - фрагмент ограждающей конструкции в кассете АДОЗО;

7 - щит управления и контроля температуры электронагревателя в

теплоизолирующем контейнере АДОЗО; 8 - проводка АДОЗО

Черт.5

8.3.4. Продолжительность цикла замораживания - оттаивания - по п.7.3.4.

8.3.5. При окончании испытания на морозостойкость или его временном прекращении образцы после оттаивания хранят в ванне с гидравлическим затвором. При возобновлении испытания образцы, собранные в виде фрагмента, дополнительно водонасыщают дождеванием не менее 8 ч.

8.3.6. Оценку морозостойкости образцов выполняют:

по степени повреждений - по п.7.3.6;

по потере массы - по п.7.3.7. При этом образцы силикатных изделий насыщают водой в соответствии с разд.2 в течение ч;

по потере прочности - по п.7.3.8.

8.4. Обработка результатов - по п.7.4.

Приложение 1

Справочное

Технические характеристики морозильных камер

Таблица 1

Наимено- вание показа- теля

Характеристики морозильных камер типов

КТК-3000

КТК-800

TV1000

TBV2000

КТХБ-0,5-155

Диапазон темпе- ратур, °С

30 - +100

70 - +90

70 - +120

70 - +120

65 - +155

Полезный объем, куб.м

0,86

0,5

Мощность, кВт

Напряже- ние, В

380

380 и 220

380 и 220

380

380

Хладагент, номер фреона

22 и 13

22 и 13

22 и 13

22 и 13

Расход воды, куб.м/ч

0,6

0,3

0,8

0,8

0,5

400

400

400

400

Масса, кг

1650

1380

1250

2400

2500

Габарит- ные размеры, мм

2100х2300х2150

1880х1970х1670

1670х1860х1970

2040х2130х2150

1930х1850х2250

Предприя- тие- изготови- тель

Германия, Объединение "ILKA"

Волгоградский механический завод

Приложение 2

Справочное

Технические характеристики ХДУ и АДОЗО

Таблица 2

Наименование показателя

Технические характеристики

ХДУ*

АДОЗО**

________________

* Установка является автономным оборудованием.

**Аппарат предназначен для работы в морозильной камере.

Общая рабочая поверхность фрагмента, кв.м

0,5

0,5

Используемое напряжение, В

380

220

Мощность, кВт

0,5

0,4

Габаритные размеры, мм:

установки

2030х1260х1700

контейнера

875х595х1125

кассеты

530х260х550

Масса, кг

720

200

Хладагент, номер фреона

12; 22; 502

Предприятие-изготовитель - НПО "Термоизоляция"

Текст документа сверен по:

официальное издание

М.: Издательство стандартов, 1991