Нахождение фосфора в природе кратко. Фосфор и его соединения

В свободном состоянии в природе не встречается.

Из соединений фосфора самым важным является кальциевая соль фосфорной кислоты Са 3 (РО 4) 2 , которая в виде минерала фосфорита образует местами большие залежи. В СССР богатейшие месторождения фосфоритов находятся в Южном Казахстане в горах Кара-Тау. Часто встречается также минерал , содержащий, кроме Са 3 (РО 4) 2 , еще CaF 2 или СаСl 2 . Огромные залежи апатита были открыты в 20-х годах этого столетия на Кольском полуострове. Это месторождение по своим запасам самое большое в мире.

Фосфор, как и , является элементом, безусловно необходимым для всех живых существ, так как он входит в состав-различных белковых веществ как растительного, так и животного происхождения. В растениях фосфор содержится главным образом в белках семян, в животных организмах - в белках молока, крови, мозговой и нервной тканей. Кроме того, большое количество фосфора содержится в костях позвоночных животных в виде фосфата кальция Са 3 (РO 4) 2 . При сжигании костей все органические сгорают, и остающаяся зола состоитглавным образом из фосфата кальция.

Свободный фосфор был впервые выделен из мочи еще в XVII в. алхимиком Брандом. В настоящее время фосфор получают из фосфата кальция. Для этого фосфат кальция смешивают с песком и углем и накаливают без доступа воздуха в особых, печах с помощью электрического тока.

Чтобы понять происходящую реакцию, нужно представить фосфат кальция как соединение окиси кальции с фосфорным ангидридом (3СаО Р 2 О 5) ; песок же, как известно, представляет собой двуокись кремния, или кремневый ангидрид SiО 2 . При высокой температуре кремневый ангидрид вытесняет фосфорный ангидрид и, соединяясь с окисью кальция, образует кальциевую соль кремневой кислоты CaSiО 3 , а фосфорный ангидрид восстанавливается углем до свободного фосфора:

Р 2 О 5 3СаО + 3SiО 2 = 3CaSiО 3 + Р 2 О 5 Р 2 О 5 + 5С = 2Р + 5СО

Складывая оба уравнения, получаем:

Са 3 (РО 4) 2 + 3SiО 2 + 5С = 3CaSiО 3 + 2Р + 5СО

Выделяющийся фосфор превращается в пары, которые сгущаются в приемнике под водой.

Фосфор образует несколько аллотропических видоизменений.

Получается при|быстром охлаждении паров фосфора. Это - твердое кристаллическое вещество, уд. веса 1,82. В чистом виде совершенно бесцветен.

и прозрачен; продажный же продукт обычно окрашен в желто-ватый цвет и по внешнему виду очень похож навоск. На холоду хрупок/но при температуре выше 15° становится мягким и легко режется ножом. Белый фосфор плавится при 44,2°, а при 280,5° начинает кипеть. Молекула фосфора в парах при температурах ниже 800° состоит из четырех атомов (Р 4), На воздухе белый фосфор очень быстро окисляется и при этом светится в темноте. Отсюда произошло название фосфор, которое в переводе на русский язык значит «светоносный». Уже при слабом нагревании, для чего достаточно простого трения, фосфор загорается и сгорает, выделяя большое количество тепла. Фосфор может и сам собой воспламениться на воздухе вследствие выделения тепла при окислении. Чтобы защитить белый фосфор от окисления, его сохраняют под водой. В воде белый фосфор нерастворим; хорошо растворяется в сероуглероде.

Белый фосфор - сильный яд, даже в малых дозах действующий смертельно.

Еели белый фосфор долго нагревать без доступа воздуха при 250-300°, он превращается в другое видоизменение фосфора, имеющее красно-фиолетовый цвет и называемое красным фосфором. Такое же превращение происходит, но только очень медленно, под действием света.

по своим свойствам резко отличается от белого; он очень медленно окисляется на воздухе, не светятся в темноте, загорается только при 260°, не растворяется в сероуглероде и не ядовит. Удельный вес красного фосфора 2,20, При сильном нагревании , не плавясь, превращается в пары, при охлаждении которых получается белый фосфор.

Черный фосфор образуется из красного при нагревании его до 350° под давлением в несколько сот атмосфер. По виду он очень похож на , жирен на ощупь, хорошо проводит электрический ток и значительно тяжелее других видоизменений фосфора. Удельный вес черного фосфора 2,70, температура воспламенения 490°.

Главная область применения фосфора - спичечное производство. В настоящее время спички являются столь необходимым предметом в нашей повседневной жизни, что трудно себе представить, как могли люди обходиться без них. Между тем спички существуют только 150 лет.

Первые спички, появившиеся в 1805 г., представляли собой деревянные палочки, один конец которых был покрыт смесью бертолетовой соли с сахаром н гумиарабиком. Зажигались такие спички путем смачивания их головок концентрированной серной кислотой. Для этого палочки погружали в маленький пузырек, содержавший асбест, пропитанный серной кислотой.

Изобретение фосфорных спичек, зажигающихся при трении,., относится к 30-м годам прошлого века. Головки спичек состояли из серы, которая покрывалась смесью белого фосфора с некоторыми богатыми кислородом веществами (суриком Рb 3 O 4 или двуокисью марганца МnO 2), связанными вместе клеем. Такие спички назывались серными ив России были в употреблении до конца XIX в. Они легко воспламенялись при трении о любую поверхность, что хотя и представляло известное удобство, но делало серные спички очень огнеопасными. Кроме того, вследствие ядовитости белого фосфора, производство их причиняло большой вред здоровью рабочих спичечных фабрик. Нередко также бывали случаи отравления спичками. В настоящее время почти во всех странах выработка серных спичек прекращена ввиду замены их так называемыми безопасными спичками. Эти спички впервые начали изготовлять в Швеции, почему их иногда называют шведскими.

При изготовлении безопасных спичек применяется исключительно , причем он содержится не в головке спички, а в той массе, которая наносится сбоку на спичечную коробку. Головка же спички состоит из смеси горючих веществ с бертолетовой солью и соединениями, катализирующими распад этой соли ( , Fe 2 О 3 и др). Смесь легко воспламеняется, если потереть ее о боковую поверхность спичечной: коробки, покрытой указанной массой.

Кроме спичечного производства, фосфор применяется в военном деле. Так как при горении фосфора образуется густой белый дым, белым фосфором снаряжают боеприпасы (артиллерийские снаряды, авиабомбы и др.), предназначенные для образования так называемых «дымовых завес». Значительное количество фосфора расходуется на производство разных фосфорорга-нических препаратов, к числу которых относятся весьма эффективные средства уничтожения насекомых-вредителей.

Свободный фосфор чрезвычайно активен. Он непосредственно соединяется со многими простыми веществами с выделением большого количества тепла. Легче всего соединяется фосфор с кислородом, затем с галогенами, серой и со многими металлами, причем в последнем случае образуются , аналогичные нитридам, например: Са 3 Р 2 , Mg 3 P 2 и др. Все эти свойства особенно резко проявляются у белого фосфора; красный фосфор реагирует менее энергично, черный вообще очень трудно вступает в химические взаимодействия.

И стория «путешествий» фосфора на Земле, или, как говорят ученые-геохимики, его миграция, очень интересна и поучительна. Атомы фосфора, как и всех других элементов, постоянно участвуют в великом природном круговороте веществ.

Фосфор – относительно редкий элемент. По данным академика А.Е.Ферсмана, его весовой кларк (процентное содержание элемента в земле) равен всего 0,12%. В таблице распространенности химических элементов в земной коре он стоит на 13-м месте вслед за углеродом и хлором, перед серой. К тому же фосфор – элемент, редко накапливающийся в больших количествах, и потому его относят к числу рассеянных.

В свободном виде в природе по причине своей очень сильной окисляемости он не встречается, но входит в состав многих минералов (их насчитывается до 120) и множества органических веществ. Большинство минералов, содержащих фосфор, являются редкими. Наиболее важные минералы (природные фосфаты) – апатит, вивианит, а также осадочная горная порода фосфорит, состоящая из мелкокристаллического или аморфного фосфата кальция с примесью некоторых других веществ.

Несмотря на свою малую распространенность и разбросанность, фосфор, однако, имеет исключительно важное значение в жизни растительных и животных организмов. Он входит в состав большинства растительных и животных белков и протоплазмы. Фосфор – биогенный элемент. Академик Ферсман называл фосфор элементом жизни и мысли.

Источником всех фосфорных соединений в природе следует признать апатит – фосфат кальция, содержащий переменное количество фтора и хлора. В зависимости от преобладания в апатите фтора или хлора образуются минералы фторапатит Са 5 F(РO 4) 3 или хлорапатит Са 5 Сl(PO 4) 3 . Они содержат от 5 до 36% P 2 O 5 .

Мировое месторождение апатитов
находится в Хибинах

В изверженных породах обычно всегда есть мелкие кристаллики апатита. Главнейшие его запасы находятся в зоне магмы, но он встречается и в тех местах, где изверженные породы образуют контакт с осадочными. Значительные запасы апатитов имеются в Норвегии и Бразилии. Подлинно мировое месторождение апатитов находится у нас, на Кольском полуострове, в Хибинах, где оно было открыто в 1925 г.

Под влиянием жизнедеятельности микроорганизмов, почвенных кислот, а также кислот, выделяемых корнями растений, апатиты постепенно подвергаются выветриванию и вовлекаются в биохимический круговорот, который в отличие от круговорота азота, углерода, кислорода и серы ограничивается лишь био-, гидро- и литосферой и не захватывает атмосферы.

Растениями фосфор поглощается только из растворенных фосфатов в виде анионов фосфорной кислоты. Поэтому питание фосфором растений возможно лишь при наличии в почвенном растворе солей фосфорной кислоты, например Са(Н 2 РО 4) 2 , СаНРО 4 , К 2 НРО 4 и др. Скапливается он главным образом в продуктовых частях – семенах, плодах. Наиболее богаты фосфором бобовые растения, а бедны им овощи. Из растений фосфор вместе с пищей попадает в организм животных и человека.

В теле человека имеется свыше 1,5 кг фосфора (1,4 кг в костях, 130 г в мышечных и 12 г в нервных тканях). Ежесуточная потребность взрослого человека в фосфоре от 1 до 1,2 г. Дети больше нуждаются в фосфоре, чем взрослые. По подсчетам ученых, с каждым куском хлеба весом 100 г человек поглощает до 10 22 атомов фосфора, т.е. такое астрономическое число, которое не только невозможно представить, но даже и выразить обычными словами. Больше всего его содержится в костях (свыше 5%). Твердость скелету придает кальциевая соль фосфорной кислоты. Очень много фосфора в зубах (в дентине – 13%, а в зубной эмали – 17%). При недостатке фосфора у животных появляется заболевание костей.

Физиологические процессы, протекающие в животном организме, постоянно связаны с химическими превращениями фосфорсодержащих веществ (расщепление их в пищеварительных органах, синтез новых фосфорсодержащих органических соединений). Сложным изменениям подвергаются и минеральные фосфорные соединения в крови и печени.

При разложении богатых фосфором органических соединений могут образоваться газообразные и жидкие вещества. В частности, аналогично аммиаку может образоваться очень ядовитый бесцветный с чесночным запахом газ – фосфористый водород, или фосфин, РН 3 . Этот газ можно получить в лаборатории при кипячении белого фосфора с едким кали или при действии соляной кислотой на фосфид кальция:

Са 3 Р 2 + 6НСl = 3СаСl 2 + 2РН 3 .

Одновременно с фосфином при этой реакции часто образуется в небольшом количестве жидкий продукт соединения фосфора с водородом – дифосфин Р 2 Н 4 , пары которого сами собой воспламеняются при обычной температуре и поджигают газообразный фосфин.

Подобного рода процессы происходят и в природе, являясь причиной появления так называемых «блуждающих огней» на кладбищах. Вспышки фосфина днем, конечно, не бывают видны, но ночью они вызывают суеверный страх у многих людей, которые незнакомы с научным объяснением этого явления. Описание «блуждающих огней» дано в «Вечерах на хуторе близ Диканьки» Н.В.Гоголем в рассказе «Заколдованное место».

Жидкий дифосфин, выделяясь на болотах вместе с метаном, поджигает последний, и тогда возникает новое «чудо» – блуждающие болотные огни.

Роль подобных процессов в природе относительно незначительна. Наоборот, образование различного рода фосфатов происходит в очень больших масштабах.

С уществует несколько объяснений, как могли образоваться громадные накопления фосфатов органического происхождения, поскольку причины, вызывающие этот процесс, различны.

Богатый фосфором птичий помет, известный под названием гуано, в условиях сухого климата скапливается иногда в огромных количествах. Так, например, на островах Тихого океана, в Чили и Перу имеются огромные толщи гуано (до 100 м). Гуано – одно из самых эффективных удобрений. Оно содержит до 9% азота и 3% фосфорной кислоты.

Большие скопления помета имеются и в пещерах, где обитают летучие мыши. В процессе различных химических превращений эти вещества постепенно образуют различные минералы (алюмофосфаты, монофосфаты и др.). Образование залежей подобных соединений может произойти и в результате различных геологических катастроф, приводящих к массовой гибели животного мира.

Значительным признанием пользуется так называемая биолитная гипотеза происхождения фосфоритов. Согласно ей их залежи могли образоваться в результате массовой гибели морской фауны при встрече теплого морского течения с холодным: быстрая смена температуры оказывает одинаково гибельное влияние на животных, населяющих воды того и другого течения и не приспособившихся к быстрой смене условий. Гибель животного мира может происходить и при встрече течений с различной степенью содержания солей в их водах, например в дельтах больших рек, впадающих в моря и океаны.

В 1934 г. русский ученый А.В.Казаков опубликовал химическую гипотезу происхождения фосфоритов в морских водах. По этой гипотезе фосфаты, растворенные в морской воде, начинают осаждаться, когда из глубин моря они выносятся на его поверхность. Происходит это вследствие уменьшения кислотности воды (в связи с удалением части углекислоты); растворимость фосфатов в этой среде уменьшается, и тогда избыток их выпадает на дно. Так и образовались мощные залежи фосфоритов, оказывающиеся затем на суше вследствие геологических катастроф или постепенного поднятия морского дна.

Фосфоритовые залежи есть во многих странах. Наиболее известны месторождения в Северной Африке (Египет, Тунис, Алжир, Марокко), в США (Флорида). В России месторождения фосфоритов распространены на Урале, в Поволжье, Московской, Кировской, Смоленской, Брянской, Ленинградской и других областях.

В процесс круговорота фосфора, как и в природный круговорот других элементов (кислорода, азота, серы, калия, кальция, алюминия, железа и др.), энергично вмешивается человек. Фосфор нужен человеку для многих целей: большое количество его поглощает спичечная отрасль промышленности. Лучшие сорта нержавеющей стали получаются благодаря процессу фосфатирования – покрытия тонким слоем фосфатов, стойких против атмосферной коррозии. Аналогичной обработке часто подвергаются изделия из цинка, алюминия и их сплавов. Соединения фосфора идут на изготовление многих лекарственных веществ.

Главный же потребитель фосфатов – сельское хозяйство. Со времени химика Ю.Либиха земледельцы, поняв значение фосфора для повышения урожая культурных растений, начали отыскивать природные фосфаты (апатиты, фосфориты), превращать их механическим или чаще всего химическим путем в удобрения и вносить в почву.

Надо заметить, что в 100 кг пшеницы находится около 1 кг фосфора (в виде Р 2 О 5). Столько же фосфора содержится в 200 кг сена, 300 кг соломы, 1500 кг зеленых кормов. Можно себе представить, какие громадные количества фосфора уносятся с наших полей вместе с урожаем. Часть его, конечно, возвращается в почву, но фосфор, например, содержащийся в продуктовых частях растений, идущих на промышленную переработку, пропадает. Не обладая бесконечными запасами фосфора, почва вследствие этого процесса постепенно истощается, что приводит к сильному снижению урожая и необходимости восполнения потери фосфора. Культурные растения в большинстве случаев очень благоприятно отзываются на внесение в почву фосфорных удобрений в легкоусвояемой форме.

Фосфорное удобрение получается также в качестве побочного продукта при переработке богатого фосфором чугуна в сталь при томасовском процессе. Если «грушу», в которой получается сталь по методу Г.Бессемера, выстлать внутри известковой футеровкой, то известь поглотит фосфор из расплавленного чугуна. В этом и состоит сущность предложенного англичанином С.Дж.Томасом процесса, при котором сразу достигаются две цели: получение доброкачественной стали и ценного удобрения. Последнее достигается путем размалывания поглотившей фосфор известковой футеровки. Получаемый таким путем сухой темно-серый порошок, называемый томасшлаком, содержит от 11 до 24% Р 2 О 5 и является высокоэффективным удобрением, особенно на кислых почвах.

Главнейшие процессы, характеризующие круговорот фосфора в природе, изображены на рисунке. Лучшим объяснением этого рисунка могут служить следующие слова знаменитого русского геолога и минералога, профессора Я.В.Самойлова, которому принадлежит большая заслуга в деле изучения фосфоритов: «Фосфор наших фосфоритовых месторождений – биохимического происхождения. Из апатита – минерала, в котором первоначально заключен почти целиком весь фосфор литосферы, элемент этот переходит в тело растений, из растений – в тело животных, которые являются истинными концентраторами фосфора. Пройдя через ряд животных тел, фосфор, наконец, выпадает из биохимического цикла и вновь возвращается в мир минеральный. При определенных физико-географических условиях в море происходят массовая гибель животных организмов и скопление их тел на дне морском, а скопления эти приводят к образованию фосфоритовых месторождений в осадочных отложениях. Наши фосфориты – биолиты, и если бы можно было шаг за шагом повернуть весь ход испытанных нашими фосфоритами перемещений в обратную сторону, то образцы, заполняющие наши музеи, зашевелились бы...»

Таков круговорот и значение фосфора в природе. Крайне ядовитое и реакционноспособное вещество (в одной из его аллотропных форм – белом или желтом фосфоре) в своих соединениях является существенно необходимым элементом растительной и животной жизни.

Нахождение в природе. Фосфор в чистом виде в природе не встречается, так как он является химически активным элементом. В виде соединений широко распространен, составляет около 0,1% земной коры по массе. Из природных соединений фосфора наибольшее значение имеет фосфат кальция Ca3(POj, - главная составная часть апатитов и фосфоритов.

Аллотропные модификации. Фосфор образует несколько аллотропных модификаций. Из них наиболее важными являются белый, красный и черный фосфор. Различие свойств аллотропных модификаций фосфора объясняется их строением.

Химические свойства. Из всех аллотропных модификаций фосфора наибольшей активностью обладает белый фосфор. Он быстро окисляется на воздухе. Уже при слабом нагревании фосфор воспламеняется и сгорает, выделяя большое количество теплоты: 4Р + 502 = 2P2Os.

Фосфор соединяется со многими простыми веществами: кислородом, галогенами, серой и некоторыми металлами.

Например: 2Р + 3S = P,S,; 2Р + 5С12 = 2РС1,.

Применение. В спичечном производстве, в металлургии, производстве боеприпасов, для получения некоторых полупроводников - фосфида галлия и фосфида индия, для создания препаратов для уничтожения насекомых-вредителей.

Соединения фосфора

Фосфиды. Соединения фосфора с металлами. При взаимодействии фосфидов с водой выделяется фосфин РН,: Са,Р, + 6Н20 = ЗСа(ОН). + 2РН,.

Фосфии. Очень ядовитый газ с запахом чеснока. По химическим свойствам он напоминает аммиак, но является более сильным восстановителем.

Оксид фосфора (У). Оксид фосфора (V) имеет вид белой снегообразной массы. Плотность его пара соответствует формуле Р4О10, эта формула отражает действительный состав молекулы. Оксид фосфора (V) легко соединяется с водой, поэтому применяется как водоотнимающее средство. На воздухе оксид фосфора (V), притягивая влагу, быстро превращается в метафосфорную кислоту: Р40,„ + 2Н,0 = 4НРО,.

Ортофосфорная кислота. Представляет собой бесцветные, хорошо растворимые в воде кристаллы. Не ядовита. Это кислота средней силы.

Поскольку она является трехосновной, то ее диссоциация в водных растворах протекает в три ступени. Фосфорная кислота не летуча и очень устойчива: для нее не характерны окислительные свойства. Поэтому она взаимодействует с металлами, стоящими в ряду стандартных электродных потенциалов левее водорода.

Соли фосфорной кислоты:

а) фосфаты; в них замещены все атомы водорода в фосфорной кислоте. Например. CajCPOJj, К3Р04;

б) гпдрофосфаты; в этих солях замещено два атома водорода кислоты. Например. К,НР04. СаНР04;

в) дигидрофосфаты - замещен один атом водорода в фосфорной кислоте. Например. КН,Р04. Са(Н,Р04),.

Все дигидрофосфаты хорошо растворимы в воде. Большинство средних фосфатов, как правило, плохо растворимы. Из солей этого ряда растворимы только фосфаты натрия, калия и аммония. Гпдрофосфаты по растворимости занимают промежуточное положение: они растворимы лучше, чем фосфаты, и хуже, чем дигидрофосфаты.

Фосфорные удобрения

Простой суперфосфат. Смесь сульфата кальция и дигидрофосфата кальция. Для получения этого удобрения измельченный фосфорит смешивают с серной кислотой. В результате реакции образуется смесь, хорошо растворимая в воде. Такое удобрение получают в больших количествах в виде порошка или гранул.

Двойной суперфосфат. Концентрированное фосфорное удобрение состава Са(Н,ГО4),. Его получают путем разложения природного фосфата фосфорной кислотой. В двойном суперфосфате отсутствует сульфат кальция, что снижает затраты на его перевозку и внесение в почву.

Фосфоритная мука. Природный измельченный минерал состава СаДРО^,. Это порошок желтоватого или бурого цвета. Плохо растворим в воде. Используется на кислых подзолистых почвах.

Преципитат. Концентрированное фосфорное удобрение состава СаНР04 - 2Н,0. Плохо растворимо в воде, но хорошо растворяется в органических кислотах. Уменьшает кислотность почв. Получается при нейтрализации фосфорной кислоты раствором гидроксида кальция.

Еще по теме Фосфор:

  1. 1.1. Свойства элементного фосфора. 1.1.1. Аллотропия фосфора.
  2. 3.3.1. Кинетика превращения белого фосфора в присутствии А1Вп

Фосфор и его соединения


Введение

Глава I. Фосфор как элемент и как простое вещество

1.1. Фосфор в природе

1.2. Физические свойства

1.3. Химические свойства

1.4. Получение

1.5. Применение

Глава II. Соединения фосфора

2.1. Оксиды

2.2. Кислоты и их соли

2.3. Фосфин

Глава III. Фосфорные удобрения

Заключение

Библиографический список


Введение

Фосфор (лат. Phosphorus) P – химический элемент V группы периодической системы Менделеева атомный номер 15, атомная масса 30,973762(4). Рассмотрим строение атома фосфора. На наружном энергетическом уровне атома фосфора находятся пять электронов. Графически это выглядит так:

1s 2 2s 2 2p 6 3s 2 3p 3 3d 0

В 1699 г. гамбургский алхимик X. Бранд в поисках «философского камня», якобы способного превратить неблагородные металлы в золото, при выпаривании мочи с углём и песком выделил белое воскообразное вещество, способное светиться.

Название «фосфор» происходит от греч. «phos» – свет и «phoros» – несущий. В России термин «фосфор» введён в 1746 г. М.В. Ломоносовым.

К основным соединениям фосфора относят оксиды, кислоты и их соли (фосфаты, дигидрофосфаты, гидрофосфаты, фосфиды, фосфиты).

Очень много веществ, содержащих фосфор, содержатся в удобрениях. Такие удобрения называют фосфорными.

Глава I Фосфор как элемент и как простое вещество

1.1 Фосфор в природе

Фосфор относится к числу распространенных элементов. Общее содержание в земной коре составляет около 0,08%. Вследствие лёгкой окисляемости фосфор в природе встречается только в виде соединений. Главными минералами фосфора являются фосфориты и апатиты, из последних наиболее распространён фторапатит 3Ca 3 (PO 4) 2 CaF 2 . Фосфориты широко распространены на Урале, в Поволжье, Сибири, Казахстане, Эстонии, Беларуси. Самые большие залежи апатитов находятся на Кольском полуострове.

Фосфор – необходимый элемент живых организмов. Он присутствует в костях, мышцах, в мозговой ткани и нервах. Из фосфора построены молекулы АТФ – аденозинтрифосфорной кислоты (АТФ – собиратель и носитель энергии). В организме взрослого человека содержится в среднем около 4,5 кг фосфора, в основном в соединении с кальцием.

Фосфор содержится также в растениях.

Природный фосфор состоит лишь из одного стабильного изотопа 31 Р. В наши дни известно шесть радиоактивных изотопов фосфора.

1.2 Физические свойства

Фосфор имеет несколько аллотропных модификаций – белый, красный, чёрный, коричневый, фиолетовый фосфор и др. Первые три из названных наиболее изучены.

Белый фосфор – бесцветное, с желтоватым оттенком кристаллическое вещество, светящееся в темноте. Его плотность 1,83 г/см 3 . Не растворяется в воде, хорошо растворяется в сероуглероде. Имеет характерный чесночный запах. Температура плавления 44°С, температура самовоспламенения 40°С. Чтобы защитить белый фосфор от окисления, его хранят под водой в темноте (на свету идёт превращение в красный фосфор). На холоде белый фосфор хрупок, при температурах выше 15°С становится мягким и режется ножом.

Молекулы белого фосфора имеют кристаллическую решётку, в узлах которой находятся молекулы Р 4 , имеющие форму тетраэдра.

Каждый атом фосфора связан тремя σ-связями с другими тремя атомами.

Белый фосфор ядовит и даёт труднозаживающие ожоги.

Красный фосфор – порошкообразное вещество тёмно-красного цвета без запаха, в воде и сероуглероде не растворяется, не светится. Температура воспламенения 260°С, плотность 2,3 г/см 3 . Красный фосфор представляет собой смесь нескольких аллотропных модификаций, отличающихся цветом (от алого до фиолетового). Свойства красного фосфора зависят от условий его получения. Не ядовит.

Чёрный фосфор по внешнему виду похож на графит, жирный на ощупь, обладает полупроводниковыми свойствами. Плотность 2,7 г/см 3 .

Красный и чёрный фосфоры имеют атомную кристаллическую решётку.

1.3 Химические свойства

Фосфор – неметалл. В соединениях он обычно проявляет степень окисления +5, реже – +3 и –3 (только в фосфидах).

Реакции с белым фосфором идут легче, чем с красным.

I. Взаимодействие с простыми веществами.

1. Взаимодействие с галогенами:

2P + 3Cl 2 = 2PCl 3 (хлорид фосфора (III)),

PCl 3 + Cl 2 = PCl 5 (хлорид фосфора (V)).

2. Взаимодействие с нематаллами:

2P + 3S = P 2 S 3 (сульфид фосфора (III).

3. Взаимодействие с металлами:

2P + 3Ca = Ca 3 P 2 (фосфид кальция).

4. Взаимодействие с кислородом:

4P + 5O 2 = 2P 2 O 5 (оксид фосфора (V), фосфорный ангидрид).

II. Взаимодействие со сложными веществами.

3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO.

1.4 Получение

Фосфор получают из измельченных фосфоритов и апатитов, последние смешиваются с углем и песком и прокаливаются в печах при 1500°С:

2Ca 3 (PO 4) 2 + 10C + 6SiO 2

6CaSiO 3 + P 4 + 10CO.

Фосфор выделяется в виде паров, которые конденсируются в приёмнике под водой, при этом образуется белый фосфор.

При нагревании до 250-300°С без доступа воздуха белый фосфор превращается в красный.

Чёрный фосфор получается при длительном нагревании белого фосфора при очень большом давлении (200°С и 1200 МПа).

1.5 Применение

Красный фосфор применяется при изготовлении спичек (см. рисунок). Он входит в состав смеси, наносимой на боковую поверхность спичечного коробка. Основным компонентом состава головки спички является бертолетова соль KClO 3 . От трения головки спички о намазку коробка частицы фосфора на воздухе воспламеняются. В результате реакции окисления фосфора выделяется тепло, приводящее к разложению бертолетовой соли.

KCl + .

Образующийся кислород способствует воспламенению головки спички.

Фосфор используют в металлургии. Он применяется для получения проводников и входит в состав некоторых металлических материалов, например оловянных бронз.

Также фосфор используют при производстве фосфорной кислоты и ядохимикатов (дихлофос, хлорофос и др.).

Белый фосфор используют для создания дымовых завес, так как при его горении образуется белый дым.

Глава II . Соединения фосфора

2.1 Оксиды

Фосфор образует несколько оксидов. Важнейшими из них являются оксид фосфора (V) P 4 O 10 и оксид фосфора (III) P 4 O 6 . Часто их формулы пишут в упрощённом виде – P 2 O 5 и P 2 O 3 . В структуре этих оксидов сохраняется тетраэдрическое расположение атомов фосфора.

Оксид фосфора (III) P 4 O 6 – воскообразная кристаллическая масса, плавящаяся при 22,5°С и превращающаяся при этом в бесцветную жидкость. Ядовит.

При растворении в холодной воде образует фосфористую кислоту:

P 4 O 6 + 6H 2 O = 4H 3 PO 3 ,

а при реакции со щелочами – соответствующие соли (фосфиты).

Сильный восстановитель. При взаимодействии с кислородом окисляется до Р 4 О 10 .

Оксид фосфора (III) получается окислением белого фосфора при недостатке кислорода.

Оксид фосфора (V) P 4 O 10 – белый кристаллический порошок. Температура возгонки 36°С. Имеет несколько модификаций, одна из которых (так называемая летучая) имеет состав Р 4 О 10 . Кристаллическая решётка этой модификации слагается из молекул Р 4 О 10 , связанных между собой слабыми межмолекулярными силами, легко разрывающимися при нагревании. Отсюда и летучесть этой разновидности. Другие модификации полимерны. Они образованы бесконечными слоями тетраэдров РО 4 .

При взаимодействии Р 4 О 10 с водой образуется фосфорная кислота:

P 4 O 10 + 6H 2 O = 4H 3 PO 4 .

Будучи кислотным оксидом, Р 4 О 10 вступает в реакции с основными оксидами и гидроксидами.

Образуется при высокотемпературном окислении фосфора в избытке кислорода (сухого воздуха).

Благодаря исключительной гигроскопичности оксид фосфора (V) используется в лабораторной и промышленной технике в качестве осушающего и дегидратируюшего средства. По своему осушающему действию он превосходит все остальные вещества. От безводной хлорной кислоты отнимает химически связанную воду с образованием её ангидрида:

4HClO 4 + P 4 O 10 = (HPO 3) 4 + 2Cl 2 O 7 .

2.2 Кислоты и их соли

а) Фосфористая кислота H 3 PO 3 . Безводная фосфористая кислота Н 3 РО 3 образует кристаллы плотностью 1,65 г/см 3 , плавящиеся при 74°С.

Структурная формула:

.

При нагревании безводной Н 3 РО 3 происходит реакция диспропорционирования (самоокисления-самовосстановления):

4H 3 PO 3 = PH 3 + 3H 3 PO 4 .

Соли фосфористой кислоты – фосфиты . Например, K 3 PO 3 (фосфит калия) или Mg 3 (PO 3) 2 (фосфит магния).

Фосфористую кислоту Н 3 РО 3 получают растворением в воде оксида фосфора (III) или гидролизом хлорида фосфора (III) РCl 3:

РCl 3 + 3H 2 O = H 3 PO 3 + 3HCl.

б) Фосфорная кислота (ортофосфорная кислота ) H 3 PO 4 .

Безводная фосфорная кислота представляет собой светлые прозрачные кристаллы, при комнатной температуре расплывающиеся на воздухе. Температура плавления 42,35°С. С водой фосфорная кислота образует растворы любых концентраций.

Фосфор (P) - вследствие высокой активности в свободном состоянии в природе не встречается.

Электронная конфигурация 1S 2 2S 2 2P 6 3S 2 3P 3

Фосфор - неметалл (то, что раньше называли металлоид) средней активности. На наружной орбите атома фосфора находятся пять электронов, причем три из них не спарены. Поэтому он может проявлять валентности 3-, 3+ и 5+.

Для того чтобы фосфор проявлял валентность 5+, необходимо какое-либо воздействие на атом, которое бы превратило в не спаренные два спаренных электрона последней орбиты.

Фосфор часто называют многоликим элементом. Действительно, в разных условиях он ведет себя по-разному, проявляя то окислительные, то восстановительные свойства. Многоликость фосфора - это и его способность находиться в нескольких аллотропных модификациях.

Распространение в природе

Фосфор широко распространен в природе и составляет 0,12% земной коры. Он входит в состав белков растительного и животного происхождения. Человеческий скелет содержит примерно 1400 г фосфора, мышцы - 130 г, мозг и нервы - 12 г. Фосфор составляет существенную долю в химическом составе растений и поэтому является важным удобрением. Основным сырьем для производства удобрений служат апатит CaF 2 Ч3Ca 3 (PO 4) 2 и фосфориты, основой которых являются фосфат кальция Ca 3 (PO 4) 2 . Элементный фосфор получают электротермическим восстановлением при 1400-1600°С из фосфоритов и апатитов в присутствии SiO 2 . Апатит добывают в России, Бразилии, Финляндии и Швеции. Крупным источником фосфора является фосфоритовая руда, в больших количествах добываемая в США, Марокко, Тунисе, Алжире, Египте, Израиле. Гуано, другой источник фосфора, добывают на Филиппинах, Сейшельских островах, в Кении и Намибии.

Важнейшие аллотропные модификации

Белый фосфор. Пожалуй, самая известная модификация элемента №15 - мягкий, как воск, белый или желтый фосфор. Это ее открыл Бранд, и благодаря ее свойствам элемент получил свое имя: по-гречески «фосфор» значит светящийся, светоносный. Молекула белого фосфора состоит из четырех атомов, построенных в форме тетраэдра. Плотность 1,83, температура плавления 44,1°C, кипения 280°С, Белый фосфор ядовит, чрезвычайно реакционноспособен, легко окисляется. Растворим в сероуглероде, жидких аммиаке и SO 2 , бензоле, эфире, летуч. Имеет резкий чесночный запах. В воде почти не растворяется. Светится в темноте.

Красный фосфор. При нагревании без доступа воздуха выше 250°C белый фосфор превращается в красный. Это уже полимер, но не очень упорядоченной структуры. Реакционная способность у красного фосфора значительно меньше, чем у белого. Он не светится в темноте, не растворяется в сероуглероде. (Всегда содержит небольшие количества белого фосфора, вслед-ствие чего может оказаться ядовитым.). Плотность его намного больше, структура мелкокристаллическая. Без запаха, цвет красно-бурый. Атомная кристаллическая решётка очень сложная, обычно аморфен. Нерастворим в воде и в органических растворителях. Устойчив. Физические свойства зависят от способа получения.

Чёрный фосфор - полимерное вещество с металлическим блеском, похож на графит, без запаха, жирный на ощупь. Нерастворим в воде и в органических растворителях. Атомная кристаллическая решётка, полупроводник. t°кип.= 453°С (возгонка), t°пл.= 1000°C (при p=1,8 * 10 9 Па), устойчив.

Менее известны другие, еще более высокомолекулярные модификации фосфора - фиолетовый и коричневый, отличающиеся одна от другой молекулярным весом и степенью упорядоченности макромолекул. Эти модификации - лабораторная экзотика и в отличие от белого и красного фосфора практического применения пока не нашли.