Методы определения прочности бетона. Бетоны определение прочности методом отрыва со скалыванием Испытание бетона методом отрыва со скалыванием

Метод отрыва со скалыванием - один из самых распространённых и надёжных методов оценки прочности бетонных конструкций.

Метод относится к прямым, неразрушающим методам испытаний и позволяет сразу же, на месте, оценить прочность бетонной конструкции, как в промежуточном возрасте, так и при достижении проектного возраста бетона.

Суть метода состоит в просверливании отверстия в бетоне, закреплении в этом отверстии специального анкера (в случае если используется анкер второго и третьего типов) и последующего отрыва этого анкера из бетона специальным прибором с замером усилия вырыва. При правильном проведении испытания на месте отрыва остаётся правильной формы воронка, глубиной в середине равной рабочей высоте анкера.

При отрыве анкера на шкале прибора отображается соответствующее усилие. Проведя несколько замеров (минимум три испытания для плоских конструкций; для вытянутых горизонтальных конструкции одно испытание на четыре погонных метра длины, но не менее трёх испытаний), можно пересчитать результаты испытаний по специальной формуле и сделать вывод о классе бетона на сжатие (ГОСТ 18105 схемы В, Г).

Метод отрыва со скалывание пользуется заслуженной популярностью среди методов контроля прочности бетона, как самостоятельный метод, так и дублирующий другие методы испытаний. Он намного быстрее и дешевле выбуривания кернов, он незаменим в случаях когда не изготовлены образцы-кубы или требуется провести параллельные испытания.

Кроме того, согласно ГОСТ 18105 требуется сплошной контроль бетонных конструкций. И метод отрыва со скалыванием наиболее подходящий для этого метод контроля прочности.

При контроле прочности бетона методом отрыва со скалыванием следует руководствоваться указаниями ГОСТ 22690 .

16 и 24 что это за цифры.

Для метода отрыва со скалыванием используют анкеры трёх типов.

Отличие анкера первого типа от остальных заключается в том, что он замоноличивается в конструкцию при укладке бетонной смеси его отрыв производится в проектном (или промежуточном) возрасте таким же прибором, что и анкеры второго и третьего типов, в остальном же испытания не отличаются.

Анкеры второго типа бывает двух размеров: ø16х25мм и ø24х48мм.

Анкер размером ø24х48мм используется в случае, если ориентировочная прочность бетона в конструкции 5-100МПа.

Анкер размером ø16х25мм используется в случае, если ориентировочная прочность бетона в конструкции 40-100МПа. Использование анкера ø16мм для испытания низкомарочных бетонов недопустимо без построения градуировочной зависимости.

На фотографии представлен анкер второго типа со специальной гайкой, замеряющей проскальзывание анкера.

Чтобы провести испытания правильно и получить максимально точные данные нужно обратить внимание на следующие моменты:

  1. Перед просверливанием отверстия для анкера, следует прибором для поиска арматуры найти и обозначить сетку армирования (чтобы буром не попадать в арматуру), если на пути бура попадается армирующая сетка сверлить нужно в середину ячейки.
  2. Сверлить отверстие нужно, отступив от края плоской конструкции не менее 0,5м.
  3. Отверстие сверлиться строго перпендикулярно бетонной поверхности.
  4. Не следует сверлить конструкции в местах максимального напряжения.
  5. Количество точек испытания определяется следующим образом: три точки испытания на одну плоскую конструкцию (стена, плита перекрытия, ростверк), залитую в одну захватку. Одна точка на 4 погонных метра вытянутой конструкции (колонна, ригель), так же залитую в одну захватку, но не менее трёх точек. Под одной захваткой следует понимать заливку бетонной смеси с одного бетонного узла, одного класса бетона в одни рабочие сутки без перерыва в бетонировании до образования холодного шва. Т.е. если меняется класс бетона, дата бетонирования или завод поставщик смеси, это получается новая захватка, требующая испытания на прочность.
  6. Просверленное отверстие следует тщательно очистить от бетонной пыли. Только после этого нужно поместить собранный анкер в отверстие и максимально хорошо закрутить его гаечным ключом до максимального раскрытия.
  7. При вырыве из бетона анкер должен цепляться за бетон не менее чем 9/10 своей длины погруженной в толщу бетона. Длину сцепления хорошо видно в воронке вырыва после испытания и можно померить линейкой. Если таким замером выясняется, что анкер цепляется менее 9/10 своей длины, это значит, что слизана нарезка губок анкера и губки надо менять на новые.
  8. Если при проведении отрыва анкер начал проскальзывать и вылезать наружу, нужно замерять длину проскальзывания, эта длина вносится в корректировку результатов испытания. Для замера проскальзывания пользуются специальной гайкой (см. фото выше).

Примеры приборов, используемых для испытаний:

Кроме представленных двух, могут использоваться многие другие модели.

Рассмотрим некоторые основные методы и приборы определения прочности бетона в конструкциях, которыми пользуются на практике. Определение прочности механическими методами неразрушающего контроля осуществляется согласно , определения прочности ультразвуковым методом неразрушающего контроля осуществляется по , определение прочности по бетонным образцам, выбуренным или выпиленным из конструкций, осуществляется по .

Неразрушающие методы определения прочности на сжатие бетонных конструкций основаны на косвенных характеристиках показаний приборов, основанных на методах упругого отскока, ударного импульса, пластической деформации,отрыва, скалывания ребра и отрыва со скалыванием, скорости прохождения ультразвука. Определение прочности на сжатия по образцам, отобранным из конструкций, подразумевает испытание их на прессе.

Для определения класса и марки бетона в зависимости от прочности сжатия или растяжения, можно использовать табл.6, приложения 1,

СООТНОШЕНИЕ МЕЖДУ КЛАССАМИ БЕТОНА ПО ПРОЧНОСТИ НА СЖАТИЕ И РАСТЯЖЕНИЕ И МАРКАМИ

Таблица 6

Класс бетона по прочности

Средняя прочность бетона ()*, кгс/см2

Ближайшая марка бетона по прочности М

Отклонение ближайшей марки бетона от средней прочности класса, %,

Средняя прочность бетона R рассчитана при коэффициенте вариации V, равном 13,5 %, и обеспеченности- 95 % для всех видов бетона, а для массивных гидротехнических конструкций- при коэффициенте вариации V, равном 17 %, и обеспеченности- 90%.

Методы и приборы неразрушающего контроля

Для определения прочности бетона на сжатие данные показаний необходимо преобразовывать с помощью предварительно установленных градуировочных зависимостей между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы), по методикам, указанным в ГОСТ 22690-88 и по прилагаемым графикам градуировочных зависимостей к приборамб, установленным на заводе-изготовителей прибора.

Испытание прочности приборами неразрушающего контроля выполняют, непосредственно, в местах расположения конструкций, однако, также можно выполнять испытание бетона проб из конструкций. Испытание бетона в пробах рекомендуется для определения его прочности в труднодоступных зонах конструкций и в конструкциях, находящихся при отрицательной температуре. Пробу вмоноличивают в раствор, прочность которого на день испытания должна быть не менее половины прочности бетона пробы (для предотвращения разрушения пробы при испытании). Вмоноличивание проб в раствор удобно производить с использованием стандартных форм, для изготовления бетонных контрольных образцов по . Расположение проб после распалубки представлено на рис.1.

Рис.1. 1 - проба бетона; 2 - наиболее удобная для испытания сторона пробы 3 - раствор, в котором закреплена проба

Обычно приборы поставляются с графиками градуировочной зависимости или с базовыми настройками для тяжелого бетона средних марок. Для обследования конструкций допускается применять методы упругого отскока, ударного импульса или пластической деформации, используя градуировочную зависимость, установленную для бетона, отличающегося от испытываемого (по составу, возрасту, условиям твердения, влажности), с уточнением ее в соответствии с методикой, приведенной в (). Для ультразвуковых приборов требуется градуировка и корректировка согласно , и методических рекомендаций по контролю прочности бетона монолитных конструкций ультразвуковым методом поверхностного прозвучивания.

Градуировочную зависимость "скорость - прочность" устанавливают при испытании конструкций способом сквозного прозвучивания. Градуировочную зависимость "время - прочность" устанавливают при испытании конструкций способом поверхностного прозвучивания.

Допускается при испытании конструкций способом поверхностного прозвучивания использовать градуировочную зависимость "скорость - прочность" с учетом коэффициента перехода, определяемого в соответствии с приложением 3.

Измерение времени распространения ультразвука в бетоне конструкций следует проводить в направлении, перпендикулярном уплотнению бетона. Расстояние от края конструкции до места установки ультразвуковых преобразователей должно быть не менее 30 мм. Измерение времени распространения ультразвука в бетоне конструкций следует проводить в направлении, перпендикулярном направлению рабочей арматуры. Концентрация арматуры вдоль выбранной линии прозвучивания не должна превышать 5 %. Допускается прозвучивание вдоль линии, расположенной параллельно рабочей арматуре, если расстояние от этой линии до арматуры составляет не менее 0,6 длины базы.

Пульсар 1.2.


Рис. 2. Внешний вид прибора
Пульсар-1.2: 1 - вход приемника;
2 - выход излучателя

Прибор состоит из электронного блока (см. рис. 3.2) и ультразвуковых преобразователей - раздельных или объединенных в датчик поверхностного прозвучивания. На лицевой панели электронного блока расположены: 12-ти клавишная клавиатура и графический дисплей. В верхней торцевой части корпуса установлены разъёмы для подключения датчика поверхностного прозвучивания или отдельных УЗ преобразователей для сквозного прозвучивания. На правой торцевой части прибора расположен разъем USB интерфейса. Доступ к аккумуляторам осуществляется через крышку батарейного отсека на нижней стенке корпуса.

Работа прибора основана на измерении времени прохождения ультразвукового импульса в материале изделия от излучателя к приемнику. Скорость ультразвука вычисляется делением расстояния между излучателем и приемником на измеренное время. Для повышения достоверности в каждом измерительном цикле автоматически выполняется 6 измерений и результат формируется путем их статистической обработки с отбраковкой выбросов. Оператор выполняет серию измерений (от 1 до 10 измерений по его выбору), которая также подвергается математической обработке с определением среднего значения, коэффициента вариации, коэффициента неоднородности и с отбраковкой выбросов.

Скорость распространения ультразвуковой волны в материале зависит от его плотности и упругости, от наличия дефектов (трещин и пустот), определяющих прочность и качество. Следовательно, прозвучивая элементы изделий, конструкций и сооружений можно получать информацию о:

  • прочности и однородности;
  • модуле упругости и плотности;
  • наличии дефектов и их локализации.
  • форме А-сигнала

Возможны варианты прозвучивания со смазкой и сухим контактом (протекторы, конусные насадки), см. рис. 3.1.

Рис. 3. Варианты прозвучивания

Прибор осуществляет запись и визуализацию принимаемых УЗК, имеет встроенные цифровые и аналоговые фильтры, улучшающие соотношение «сигнал-помеха». Режим осциллографа позволяет просматривать сигналы на дисплее (в задаваемом масштабах времени и усиления), вручную устанавливать курсор в положение контрольной метки первого вступления. Пользователь имеет возможность вручную изменять усиление измерительного тракта и смещать ось времени для просмотра и анализа сигналов первого вступления и огибающей.

Оформление результатов для методов определения прочности неразрушающего контроля

Результаты испытаний прочности бетона заносят в журнал, в котором должно быть указано:

  • наименование конструкции, номер партии;
  • вид контролируемой прочности и ее требуемое значение;
  • вид бетона;
  • наименование неразрушающего метода, тип прибора и его заводской номер;
  • среднее значение косвенной характеристики прочности и соответствующее значение прочности бетона;
  • сведения об использовании поправочных коэффициентов;
  • результаты оценки прочности бетона;
  • фамилия и подпись лица, проводившего испытание, дата испытания.

Для ультразвукового метода определения прочности нужно воспользоваться формой журнала, установленной в приложениях №8-9,

В этой статье мы рассмотрим несколько приборов, которые используются в строительстве, для того чтобы определять прочность бетона методом «Отрыва со скалыванием».

Данный метод позволяет определять прочность любого бетона из неизвестного состава в диапазоне прочностей от 5 до 100 МПа .

Метод «Отрыва со скалыванием » основан на локальном разрушении бетонной конструкции , при котором используется зависимость между приложенной силой и прочности конструкции. Для этого в бетон устанавливается анкерное устройство при заливке, либо после отвердения в высверленное отверстие. После чего, данное анкерное устройство вырывается из конструкции с небольшим куском бетона и в момент отрыва, измеряется приложенная сила, после чего, по полученным данным определяется прочность бетонной конструкции .

Не смотря на то, что при таком методе измерения прочности, из конструкции вырывается небольшая часть материала, данный метод «Отрыва со скалыванием » относится к типу неразрушающих методов оценки прочности бетонных конструкций, хотя и по факту локальное разрушение конструкции всё-таки происходит. А к разрушающим методам относится, например измерение прочности бетонных кубиков под специальным прессом, в процессе которого испытуемый кубик полностью разрушается.

И как раз на основе того, что измерение прочности происходит при непосредственном разрушении, данный метод позволяет получить самые точные результаты, на основе которых позже составляются таблицы для последующего построения зависимостей с результатами других испытаний.

Для проведения испытаний на прочность бетонной конструкции по методу «Отрыва со скалыванием », используется один из следующих приборов:

Каждый из этих приборов отличается друг от друга не только конструкцией, но и областью применения. Рассмотрим каждый из них.

Данный прибор предназначен для определения прочности, как лёгких бетонов , так и тяжёлых. Лёгкие бетоны определяются в диапазоне прочностей от 5 до 40 МПа , а тяжёлые в диапазоне от 10 до 100 МПа .

Для того чтобы использовать данный прибор, нужно соединить его рабочую часть с установленным в конструкцию анкером на глубину около 5,5 сантиметрови поворачивать ручку, которая задействует поршневой насос. Насос в свою очередь вырывает анкер из конструкции и в момент разрушения, считываются показания с установленного на прибор манометра, который в свою очередь может быть как аналоговым, так и электронным. При этом стандартная цена деления манометра равна 0.5 МПа .

Этот прибор чаще всего используется для проверки прочности ячеистого бетона любых строительных конструкций, а так же для проверки прочности пеноситалла и полистиролбетона .

Диапазон измерения прочности данной устройства от 0.5 до 8 МПа , что значительно меньше предыдущего прибора и именно поэтому используют лишь в редких случаях.

Это микропроцессорный прибор для измерения прочности бетона со скалыванием .

Применяют прибор как непосредственно при строительстве, так и при измерении прочности уже построенных зданий.

Данный прибор отличается от первых двух тем, что в него встроен электронный измеритель прилагаемой силы с последующей фиксацией максимального значения, цифровая индикация силы и давления в кН и МПа , а так же измеритель скорости нарастания нагрузки в процессе эксплуатации.

Ещё одна важная отличительная особенность данного прибора, это то, что в нём предусмотрены установки параметров бетона , такие как тяжёлый или лёгкий и предполагаемая прочность, больше или меньше 50 МПа . Такие настройки позволяют увеличить точность измерений и удобство эксплуатации.

Данный прибор по своим характеристикам и областью применения практически полностью совпадет с , но с некоторыми отличиями.

Во-первых, он имеет совершенно иную конструкцию, в которой рабочий цилиндр и насос имеют осевое расположение. А во-вторых, в нём встроено устройство для измерения проскальзывания анкера, а так же имеется возможность передачи полученных измерений на стационарный ПК.

И так же как и в предыдущем приборе, в есть возможность ввода параметров испытуемого бетона , таких как: вид и условия твердения бетона , крупность заполнителя, размер анкера и тип контролирующего изделия.

ПОС 50МГ4 «Скол» (ПОС 30МГ4 «Скол»)

Ещё одна разновидность двух предыдущих приборов, это разновидность «Скол ».

Данный прибор имеет сменные насадки, которые позволяют производить измерения прочности, как методом отрыва анкера, так и методом скалывания ребра конструкции.

По всем остальным параметрам данного прибора, он совпадает с прибором .

Данный прибор имеет практически те же характеристики, что и у, но при этом у него совершенно иная техническая конструкция.

Это прибор, выполненный из лёгких материалов, имеющий две рабочие опоры и двухцилиндровую конструкцию с автоматической установкой оси вырыва. А так же устройство исключающее проскальзывание анкера.

Прочность несущих и ограждающих конструкций в значительной мере зависит от характеристик используемых строительных материалов. Комплексное испытание бетона на отрыв со скалыванием относится к категории неразрушающих и позволяет с высокой точностью определить параметры и качество используемых смесей. Исследования проводятся согласно требованиям ГОСТ 22690-2015 с применение специальных приборов.

В нашей стране данная методика испытаний бетона получила широкое распространение в силу своей универсальности и удобству. Прочностные характеристики материала проверяются путем воздействия непосредственно на бетон конструкции и вызывающее его частичное скалывание. В ходе исследований определяется усилие, позволяющее оторвать фрагмент строительной конструкции с помощью заложенного в шпур лепесткового анкера.

Порядок проведения испытаний бетонных конструкций на отрыв со скалыванием

Описываемая методика контроля позволяет установить прочностные показатели материала в диапазоне измерений от 5 до 100 МПа. Данный способ испытаний применим для четырех разновидностей бетона:

  • легкие;
  • тяжелые;
  • мелкозернистые;
  • напрягающие в монолитных и сборных железобетонных изделиях.

Исследование данного строительного материала путем отрыва анкера со скалыванием осуществляется в порядке, предписанном действующим ГОСТ:

  1. Подготовка оборудования и объекта.
  2. Проведение исследований и фиксация получаемых результатов.
  3. Обработка данных с использованием стандартных методик.
  4. Создание градуировочной зависимости.

Для выполнения программы изготавливают два вида образцов контрольные и основные из материалов того исследуемого вида. Отверждение их должно осуществляться в одинаковых условиях с испытуемыми изделиями. При этом основные образцы необходимы для определения косвенных характеристик бетонных смесей.

Подготовительные работы

Испытание строительных конструкций и ЖБИ с использованием данной методики потребует значительного времени. Перед проведением исследований бетона путем отрыва со скалыванием выполняется ряд подготовительных мероприятий:

  1. Прибор и анкерное устройство осматриваются, проверяется их техническое состояние.
  2. Выбирается место установки прибора не обязательно ровное, кривизна поверхности при этом не должна препятствовать его применению.
  3. В исследуемой конструкции высверливают шпур, из которого удаляется пыль и мусор. При температуре окружающей среды ниже -10 °С отверстие и прилегающий массив по всей длине прогреваются.

Исследуемый участок, где планируется отрывать бетон со скалыванием, должен находиться на достаточном удалении от предварительно напряженной арматуры. Кроме того исследуемая зона не должна испытывать больших эксплуатационных нагрузок.

Процедура проведения исследований прочности бетона

Испытание бетона методом отрыва может проводиться, в том числе и с использованием анкеров, заложенных до момента заливки конструкции из цементно-песчаных смесей.
Описываемая методика проверки прочностных характеристик бетона, при которой проходит отрыв и скалывание, предполагает выполнение ряда операций:

  1. В заранее высверленный шпур вводится анкер лепестковый на полную глубину и фиксируется в нем.
  2. Производится монтаж прибора и соединение закладного устройства с ним.
  3. Постепенно повышают нагрузку (скорость возрастания –1,5 -3 кН/с).
  4. Фиксация показаний: силы и значения проскальзывания анкера (разница между глубиной шпура и отверстия, на которой происходит отрыв фрагмент материала от массива).

Полученный результат – сила вырыва вноситься в протокол испытаний и используется для построения градуировочной зависимости. При этом точность измерения показателя проскальзывания закладного анкера должны быть не менее 0,1 мм.

Обработка результатов

Зафиксированные в ходе исследований данные позволяют оценивать прочность упомянутого материала по величине приложенной нагрузки, при которой происходит скалывание. Значение силы, при которой отрывается фрагмент бетона в результате скалывания, умножается на поправочный коэффициент. Последний вычисляется по следующей формуле:

γ=h 2 /(h- Δh) 2 ,
где h – величина заглубления анкера,
а Δh – значение проскальзывания.

Если максимальная длина части материала, которая была оторвана в ходе испытания, более чем вдвое превышает минимальную, то результат считается ориентировочным. Аналогичным образом поступают, если глубина шпура превышает величину проскальзывания анкера на 5% и больше. Использование ориентировочных значений для определения класса прочности материала недопустимо.

Испытания признаются недействительными, если глубина вырыва отличается от длины анкера на 10% или на расстоянии, не превышающем глубину отверстия, обнаруживается арматура.

Преимущества и особенности метода исследований

Одним из главных достоинств описываемого метода является высокая точность в широком диапазоне измерений. Москва – лидер по количеству возводимых объектов и подобные испытания бетона на отрыв с последующим скалыванием востребованы. Данный способ оценки прочности материала единственный из методов, позволяющий построить градуировочную зависимость без разрушения конструкции.

При контроле характеристик с использованием данного метода необходимо учитывать климатические условия, а также ряд иных факторов. В частности, толщина изделия должна быть вдвое больше заглубления анкера, а расстояние межу точками измерений превышать данное значение пятикратно. Заказать испытания бетона путем отрыва со скалыванием в Москве по доступной цене можно непосредственно на нашем сайте или позвонив по контактному телефону.

Прочность бетона — важнейшая характеристика, которая применяется при проектировании и расчете конструкций для строительства различных сооружений. Она задается маркой М (в кг/см²) или классом В (в МПа) и выражает максимальное давление сжатия, которое выдерживает материал без разрушения.

При определении марочной прочности бетона строительные организации и изготовители конструкций должны руководствоваться требованиями нормативных документов — ГОСТ 22690-88, 28570, 18105-2010, 10180-2012. Они регламентируют методику проведения испытаний, обработку результатов.

Затвердевшая в условиях строительной площадки бетонная смесь может давать отличные от лабораторных результаты. Помимо качества цемента и заполнителей на характеристику влияют:

  • условия транспортировки;
  • способ укладки в опалубку;
  • размеры и форма конструкции;
  • вид напряженного состояния;
  • влажность, температура воздуха на всем протяжении твердения смеси;
  • уход за монолитом после заливки.

Качество смеси и ее прочностные характеристики ухудшаются, если при производстве работ совершались грубые нарушения технологии:

  • доставка производилась не в миксере;
  • время в пути превысило допустимое;
  • при заливке смесь не уплотнялась вибраторами или трамбовками;
  • при монтаже была слишком низкая или высокая температура, ветер;
  • после укладки в опалубку не поддерживались оптимальные условия твердения.

Неправильная транспортировка приводит к схватыванию, расслоению и потере подвижности смеси. Без уплотнения в толще конструкции остаются пузырьки воздуха, которые ухудшают качество монолита.

При температуре 15°-25°С и высокой влажности в первые 7-15 суток бетон достигает прочности 70%. Если условия не выдерживаются, то сроки затягиваются. Опасно как охлаждение смеси, так и ее пересушивание. Зимой опалубку утепляют или прогревают, летом поверхность монолита увлажняют, накрывают пленкой.

На заводах ЖБИ осуществляют пропаривание или автоклавную обработку конструкций, чтобы уменьшить время набора прочности. Процесс занимает от 8 до 12 часов.

Чтобы определить, насколько характеристики конструкции соответствуют проектным, а также при обследованиях и мониторинге технического состояния зданий проводят проверку прочности бетона. Она включает лабораторные испытания образцов, неразрушающие прямые и косвенные методы исследования объектов.

Факторы, влияющие на погрешность измерений при контроле и оценке прочности бетона:

  • неравномерность состава;
  • дефекты поверхности;
  • влажность материала;
  • армирование;
  • коррозия, промасливание, карбонизация внешнего слоя;
  • неисправности прибора — износ пружины, слабую зарядка аккумуляторной батареи.

Самый информативный способ проверки бетонных конструкций — изъятие образцов из тела монолита с последующим их испытанием. Такой метод сводит к минимуму ошибки, но достаточно дорог и трудоемок. Поэтому чаще пользуются более доступными исследованиями с помощью приборов, измеряющих зависимые от прочности характеристики — твердость, усилие на отрыв или скол, длину волны. Зная их, можно с помощью переходных формул вычислить искомую величину.

Требования к проверке

С точки зрения заказчика наиболее предпочтительно проводить испытания неразрушающими методами контроля фактической прочности бетона. Сегодня созданы приборы, которые позволяют быстро получить результаты без бурения, высверливания или вырубки образца, портящих целостность конструкции.

Для осуществления контроля и оценки прочности бетона рассматривают три показателя:

  • точность измерений;
  • стоимость оборудования;
  • трудоемкость.

Наиболее дорогими являются испытания кернов на лабораторном прессе и отрыв со скалыванием. Исследования по величине ударного импульса, упругого отскока, пластических деформаций или с помощью ультразвука имеют меньшую затратную часть. Но применять их рекомендуется после установления градуировочной зависимости между косвенной характеристикой и фактической прочностью.

Параметры смеси могут существенно отличаться от тех, при которых была построена градуировочная зависимость. Чтобы определить достоверную прочность бетона на сжатие, проводят обязательные испытания кубиков на прессе или определяют усилие на отрыв со скалыванием.

Если пренебречь этой операцией, неизбежны большие погрешности при контроле и оценке прочности бетона. Ошибки могут достигать 15-75 %.

Целесообразно пользоваться косвенными методами при оценке технического состояния конструкции, когда необходимо выявить зоны неоднородности материала. Тогда правила контроля допускают применение неточного относительного показателя.

Как определить прочность бетона?

В производстве материалов и строительстве применяются методы для испытания бетона на прочность:

  • разрушающие;
  • неразрушающие прямые;
  • неразрушающие косвенные.

Они позволяют с той или иной точностью проводить контроль и оценку фактической прочности бетона в лабораториях, на площадках или в уже построенных сооружениях.

Разрушающие методы

Из готовой смонтированной конструкции выпиливают или выбуривают образцы, которые затем разрушают на прессе. После каждого испытания фиксируют значения максимальных сжимающих усилий, выполняют статистическую обработку.

Этот метод, хотя и дает объективные сведения, часто не приемлем из-за дороговизны, трудоемкости и причинения локальных дефектов.

На производстве исследования проводят на сериях образцов, заготовленных с соблюдением требований ГОСТ 10180-2012 из рабочей бетонной смеси. Кубики или цилиндры выдерживают в условиях, максимально приближенным к заводским, затем испытывают на прессе.

Неразрушающие прямые

Неразрушающие методы контроля прочности бетона предполагают испытания материала без повреждений конструкции. Механическое взаимодействие прибора с поверхностью производится:

  • при отрыве;
  • отрыве со скалыванием;
  • скалывании ребра.

При испытаниях методом отрыва на поверхность монолита приклеивают эпоксидным составом стальной диск. Затем специальным устройством (ПОС-50МГ4, ГПНВ-5, ПИВ и другими) отрывают его вместе с фрагментом конструкции. Полученная величина усилия переводится с помощью формул в искомый показатель.

При отрыве со скалыванием прибор крепится не к диску, а в полость бетона. В пробуренные шпуры вкладывают лепестковые анкеры, затем извлекают часть материала, фиксируют разрушающее усилие. Для определения марочной характеристики применяют переводные коэффициенты.

Метод скалывания ребра применим к конструкциям, имеющим внешние углы — балки, перекрытия, колонны. Прибор (ГПНС-4) закрепляют к выступающему сегменту при помощи анкера с дюбелем, плавно нагружают. В момент разрушения фиксируют усилие и глубину скола. Прочность находят по формуле, где учитывается крупность заполнителя.

Внимание! Способ не применяют при толщине защитного слоя менее 20 мм.

Неразрушающие косвенные методы

Уточнение марки материала неразрушающими косвенными методами проводится без внедрения приборов в тело конструкции, установки анкеров или других трудоемких операций. Применяют:

  • исследование ультразвуком;
  • метод ударного импульса;
  • метод упругого отскока;
  • пластической деформации.

При ультразвуковом методе определения прочности бетона сравнивают скорость распространения продольных волн в готовой конструкции и эталонном образце. Прибор УГВ-1 устанавливают на ровную поверхность без повреждений. Прозванивают участки согласно программе испытаний.

Данные обрабатывают, исключая выпадающие значения. Современные приборы оснащены электронными базами, проводящими первичные расчеты. Погрешность при акустических исследованиях при соблюдении требований ГОСТ 17624-2012 не превышает 5%.

При определении прочности методом ударного импульса используют энергию удара металлического бойка сферической формы о поверхность бетона. Пьезоэлектрическое или магнитострикционное устройство преобразует ее в электрический импульс, амплитуда и время которого функционально связаны с прочностью бетона.

Прибор компактен, прост в применении, выдает результаты в удобном виде — единицах измерения нужной характеристики.

При определении марки бетона методом обратного отскока прибор — склерометр — фиксирует величину обратного движения бойка после удара о поверхность конструкции или прижатой к ней металлической пластины. Таким образом устанавливается твердость материала, связанная с прочностью функциональной зависимостью.

Метод пластических деформаций предполагает измерение на бетоне размеров следа после удара металлическим шариком и сравнение его с эталонным отпечатком. Способ разработан давно. Наиболее часто на практике используется молоток Кашкарова, в корпус которого вставляют сменный стальной стержень с известными характеристиками.

По поверхности конструкции наносят серию ударов. Прочность материала определяется из соотношения полученных диаметров отпечатков на стержне и бетоне.

Заключение

Для контроля и оценки прочности бетона целесообразно пользоваться неразрушающими методами испытаний. Они более доступны и недороги по сравнению с лабораторными исследованиями образцов. Главное условие получения точных значений — построение градуировочной зависимости приборов. Необходимо также устранить факторы, искажающие результаты измерений.