Крылатая ракета с ядерным двигателем. Принцип работы, фото

Атомный двигатель для космических ракет - казалось бы, далекая мечта писателей-фантастов - был, оказывается, не только разработан в сверхсекретных конструкторских бюро, но и изготовлен, а затем испытан на полигонах. "Это была нетривиальная работа", - говорит генеральный конструктор Воронежского федерального государственного предприятия "КБ химавтоматики" Владимир Рачук. В его устах "нетривиальная работа" означает очень высокую оценку сделанного.

"КБ химавтоматики", хотя и имеет отношение к химии (изготавливает насосы для соответствующих отраслей промышленности), на самом деле является одним из уникальных, ведущих в России и за рубежом центров ракетного двигателестроения. Предприятие было создано в Воронежской области в октябре 1941 года, когда гитлеровские войска рвались к Москве. В то время КБ разрабатывало агрегаты для боевой авиационной техники. Однако в пятидесятые годы коллектив переключился на новую перспективную тематику - жидкостные ракетные двигатели (ЖРД). "Изделия" из Воронежа были установлены на "Востоках", "Восходах", "Союзах", "Молниях", "Протонах"...
Здесь, в "КБ химавтоматики", создан и самый мощный в стране однокамерный кислородно-водородный космический "мотор" тягой в двести тонн. Он использовался в качестве маршевого двигателя на второй ступени ракетно-космического комплекса "Энергия-Буран". Воронежские ЖРД установлены на многих военных ракетах (например, SS-19, известных как "Сатана", или SS-N-23, запускаемых с подводных лодок). Всего было разработано около 60 образцов, 30 из которых доведено до серийного производства. В этом ряду наособицу стоит ядерный ракетный двигатель РД-0410, который создавался совместно со многими оборонными предприятиями, КБ и НИИ.
Один из основоположников отечественной космонавтики Сергей Павлович Королев рассказывал, что о силовой атомной установке для ракет мечтал еще с 1945 года. Очень заманчиво было использовать могучую энергию атома для покорения космического океана. Но в то время у нас и ракет-то не было. А в середине 50-х советские разведчики сообщили, что в США полным ходом идут исследования по созданию ядерного ракетного двигателя (ЯРД). Эта информация была сразу же доведена до высшего руководства страны. Скорее всего, с ней был ознакомлен и Королев. В 1956-м в секретном докладе о перспективах развития ракетной техники он подчеркивал, что ядерные двигатели будут иметь очень большие перспективы. Впрочем, все понимали, что реализация идеи сопряжена с огромными трудностями. Атомная электростанция, к примеру, занимает многоэтажный корпус. Задача состояла в том, чтобы превратить это большое здание в компактную установку величиной с два письменных стола. В 1959 году в Институте атомной энергии состоялась весьма знаменательная встреча "отца" нашей атомной бомбы Игоря Курчатова, директора Института прикладной математики, "главного теоретика космонавтики" Мстислава Келдыша и Сергея Королева. Фотография "трех К", трех выдающихся людей, прославивших страну, стала хрестоматийной. Но мало кто знает, что именно обсуждали они в тот день.
- Курчатов, Королев и Келдыш вели разговор о конкретных аспектах создания ядерного двигателя, - комментирует фотографию ведущий конструктор атомного "мотора" Альберт Белогуров, более 40 лет работающий в воронежском КБ. - Сама идея к тому времени уже не казалась фантастической. С 57-го, когда у нас появились межконтинентальные ракеты, конструкторы Средмаша (министерства, занимавшегося атомной тематикой) стали заниматься предварительными проработками ядерных двигателей. После встречи "трех К" эти исследования получили новый мощный импульс.
Атомщики трудились бок о бок с ракетчиками. Для ракетного двигателя взяли один из самых компактных реакторов. Внешне это сравнительно небольшой металлический цилиндр диаметром около 50 сантиметров и длиной примерно метр. Внутри - 900 тонких трубок, в которых находится "горючее" - уран. Принцип работы реактора сегодня известен и школьникам. Во время цепной реакции деления атомных ядер образуется огромное количество тепла. Мощные насосы прокачивают через пекло уранового котла водород, который нагревается до 3000 градусов. Затем раскаленный газ, вырываясь с огромной скоростью из сопла, создает мощную тягу...
На схеме все выглядело хорошо, но что покажут испытания? Обычные стенды для запуска полномасштабного ядерного двигателя не используешь - с радиацией шутки плохи. Реактор - это, по сути, атомная бомба, только замедленного действия, когда энергия выделяется не мгновенно, а в течение определенного времени. В любом случае необходимы особые меры предосторожности. Испытания реактора решили проводить на атомном полигоне в Семипалатинске, а первую часть конструкции (как бы сам двигатель) - на стенде в Подмосковье.
- В Загорске имеется превосходная база для наземных запусков ракетных двигателей, - поясняет Альберт Белогуров. - Мы изготовили около 30 образцов для стендовых испытаний. Водород сжигали в кислороде и затем газ направляли в двигатель - на турбину. Турбонасос перекачивал поток, но не в атомный реактор, как положено по схеме (реактора в Загорске, понятно, не было), а в атмосферу. Всего было проведено 250 испытаний. Программа завершилась полным успехом. В итоге получили работоспособный двигатель, отвечавший всем предъявленным требованиям. Сложнее оказалось организовать испытания ядерного реактора. Для этого необходимо было построить специальные шахты и другие сооружения на Семипалатинском полигоне. Столь масштабные работы были сопряжены, естественно, с большими финансовыми затратами, а получить деньги и в то время было непросто.
Тем не менее стройка на полигоне началась, хотя и велась, по словам Белогурова, "в экономном режиме". Не один год ушел на сооружение двух шахт и служебных помещений под землей. В бетонном бункере, расположенном между шахтами, находились чуткие приборы. В другом бункере, на удалении 800 метров, - пульт управления. Во время испытаний ядерного реактора пребывание людей в первом из названных помещений было категорически запрещено. В случае аварии стенд превратился бы в мощный источник радиации.
Перед экспериментальным запуском реактор аккуратно опускали в шахту с помощью установленного снаружи (на поверхности земли) козлового крана. Шахта была соединена с выдолбленной на глубине 150 метров в граните и облицованной сталью сферической емкостью. В такой необычный "резервуар" закачивали под большим давлением газообразный водород (для использования его в жидком виде, что, конечно же, эффективней, не было денег). После запуска реактора водород поступал снизу в урановый котел. Газ раскалялся до 3000 градусов и с грохотом огненной струей вырывался из шахты наружу. Сильной радиоактивности в этом потоке не было, но в течение суток находиться снаружи в радиусе полутора километров от места испытаний не разрешалось. К самой же шахте нельзя было подходить в течение месяца. Полуторакилометровый подземный тоннель, защищенный от проникновения радиации, вел из безопасной зоны сначала к одному бункеру, а из него - к другому, находящемуся возле шахт. По этим своеобразным длиннющим "коридорам" и передвигались специалисты.
Испытания реактора проводились в 1978-1981 годах. Результаты экспериментов подтвердили правильность конструктивных решений. В принципе ядерный ракетный двигатель был создан. Оставалось соединить две части и провести комплексные испытания ЯРД в собранном виде. Но на это денег уже не дали. Ибо в восьмидесятые годы практического использования в космосе атомных силовых установок не предусматривалось. Для старта с Земли они не годились, ибо окружающая местность подверглась бы сильному радиационному загрязнению. Ядерные двигатели вообще предназначены только для работы в космосе. И то на очень высоких орбитах (600 километров и выше), чтобы космический аппарат вращался вокруг Земли многие столетия. Потому что "период высвечивания" ЯРД составляет как минимум 300 лет. Собственно говоря, аналогичный двигатель американцы разрабатывали прежде всего для полета к Марсу. Но в начале восьмидесятых руководителям нашей страны было предельно ясно: полет к Красной планете нам не под силу (как, впрочем, и американцам, они тоже свернули эти работы). Однако именно в 1981-м у наших конструкторов появились новые перспективные идеи. Почему бы не использовать ядерный двигатель еще и в качестве энергетической установки? Проще говоря, вырабатывать на нем в космосе электроэнергию. При пилотируемом полете можно с помощью раздвижной штанги "отодвинуть" от жилых помещений, в которых находятся космонавты, урановый котел на расстояние до 100 метров. Будет он лететь вдали от станции. При этом получили бы очень мощный источник столь нужной на космических кораблях и станциях энергии. В течение 15 лет воронежцы вместе с атомщиками занимались этими перспективными исследованиями, проводили испытания на Семипалатинском полигоне. Государственного финансирования не было вообще, и все работы велись за счет заводских ресурсов и: энтузиазма. Сегодня мы имеем здесь очень солидный задел. Вопрос лишь в том, будут ли эти разработки востребованы.
- Обязательно, - уверенно отвечает генеральный конструктор Владимир Рачук. - Сегодня на космических станциях, кораблях и спутниках энергию получают от солнечных батарей. Но на ядерном реакторе выработка электричества намного дешевле - вдвое, а то и втрое. Кроме того, в тени Земли солнечные батареи не работают. Значит, нужны аккумуляторы, а это заметно увеличивает вес космического аппарата. Конечно, если речь идет о небольшой мощности, скажем, о 10-15 киловаттах, то проще иметь солнечные батареи. Но когда в космосе требуется 50 киловатт и больше, то без ядерной установки (которая, кстати, служит 10-15 лет) на орбитальной станции или межпланетном корабле не обойтись. Сейчас на такие заказы мы, откровенно говоря, не очень рассчитываем. Но в 2010-2020 годах ядерные двигатели, являющиеся одновременно мини-электростанциями, будут очень нужны.
- Сколько весит такая ядерная установка?
- Если говорить о двигателе РД- 0410, то масса его вместе с радиационной защитой и рамой крепления - две тонны. А тяга - 3,6 тонны. Выигрыш очевиден. Для сравнения: "Протоны" поднимают на орбиту и 20 тонн. А более мощные ядерные установки, конечно, будут повесомее - может быть, 5-7 тонн. Но в любом случае ядерные ракетные двигатели позволят выводить на стационарную орбиту грузы, имеющие в 2-2,5 раза большую массу, и обеспечат космические аппараты долговременной стабильной энергетикой.

Я не стал говорить с генеральным конструктором на больную тему - о том, что на Семипалатинском полигоне (нынче это территория другого государства) осталось немало ценного заводского оборудования, которое вернуть в Россию пока не удалось. Там же, в шахте, находится и один из испытательных атомных реакторов. Да и козловой кран все еще стоит на своем месте. Только вот испытания ядерного двигателя больше не проводятся: В собранном виде он стоит сейчас в заводском музее. Ждет своего часа.

Россия была и сейчас остается лидером в области ядерной космической энергетики. Опыт проектирования, строительства, запуска и эксплуатации космических аппаратов, оснащенных ядерным источником электроэнергии, имеют такие организации, как РКК «Энергия» и «Роскосмос». Ядерный двигатель позволяет эксплуатировать летательные аппараты многие годы, многократно повышая их практическую пригодность.

Историческая летопись

В то же время доставка исследовательского аппарата на орбиты дальних планет Солнечной системы требует увеличения ресурса такой ядерной установки до 5-7 лет. Доказано, что комплекс с ЯЭРДУ мощностью порядка 1 МВт в составе исследовательского КА позволит обеспечить ускоренную доставку за 5-7 лет на орбиты искусственных спутников наиболее удаленных планет, планетоходов на поверхность естественных спутников этих планет и доставку на Землю грунта с комет, астероидов, Меркурия и спутников Юпитера и Сатурна.

Многоразовый буксир (МБ)

Одним из важнейших способов повышения эффективности транспортных операций в космосе является многоразовое использование элементов транспортной системы. Ядерный двигатель для космических кораблей мощностью не менее 500 кВт позволяет создать многоразовый буксир и тем самым значительно повысить эффективность многозвенной космической транспортной системы. Особенно полезна такая система в программе обеспечения больших годовых грузопотоков. Примером может стать программа освоения Луны с созданием и обслуживанием постоянно наращиваемой обитаемой базы и экспериментальных технологических и производственных комплексов.

Расчет грузооборота

Согласно проектным проработкам РКК «Энергия», при строительстве базы на поверхность Луны должны доставляться модули массой порядка 10 т, на орбиту Луны - до 30 т. Суммарный грузопоток с Земли при строительстве обитаемой лунной базы и посещаемой лунной орбитальной станции оценивается в 700-800 т, а годовой грузопоток для обеспечения функционирования и развития базы - 400-500 т.

Однако принцип работы ядерного двигателя не позволяет разогнать транспортник достаточно быстро. Из-за длительного времени транспортировки и, соответственно, значительного времени нахождения полезного груза в радиационных поясах Земли не все грузы могут быть доставлены с использованием буксиров с ядерным двигателем. Поэтому грузопоток, который может быть обеспечен на основе ЯЭРДУ, оценивается лишь в 100-300 т/год.

Экономическая эффективность

В качестве критерия экономической эффективности межорбитальной транспортной системы целесообразно использовать значение удельной стоимости транспортировки единицы массы полезного груза (ПГ) с поверхности Земли на целевую орбиту. РКК «Энергия» была разработана экономико-математическая модель, учитывающая основные составляющие затрат в транспортной системе:

  • на создание и выведение на орбиту модулей буксира;
  • на закупку рабочей ядерной установки;
  • эксплуатационные затраты, а также расходы на проведение НИОКР и возможные капитальные затраты.

Стоимостные показатели зависят от оптимальных параметров МБ. С использованием этой модели была исследована сравнительная экономическая эффективность применения многоразового буксира на основе ЯЭРДУ мощностью порядка 1 МВт и одноразового буксира на основе перспективных жидкостных в программе обеспечения доставки с Земли на орбиту Луны высотой 100 км полезного груза суммарной массой 100 т/год. При использовании одной и той же ракеты-носителя грузоподъемностью, равной грузоподъемности РН «Протон-М», и двухпусковой схемы построения транспортной системы удельная стоимость доставки единицы массы полезного груза с помощью буксира на основе ядерного двигателя будет в три раза ниже, чем при использовании одноразовых буксиров на основе ракет с жидкостными двигателями типа ДМ-3.

Вывод

Эффективный ядерный двигатель для космоса способствует решению экологических проблем Земли, полету человека к Марсу, созданию системы беспроводной передачи энергии в космосе, реализации с повышенной безопасностью захоронения в космосе особо опасных радиоактивных отходов наземной атомной энергетики, созданию обитаемой лунной базы и началу промышленного освоения Луны, обеспечению защиты Земли от астероидно-кометной опасности.

Ядерный ракетный двигатель - ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Давайте разберем варианты и принципы из действия…

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела - порядка 8-50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

Их разделяют на два типа - твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым - режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.

Первая стадия - отрицание

Немецкий эксперт в области ракетной техники Роберт Шмукер посчитал заявления В. Путина совершенно неправдоподобными. «Не могу представить, что россияне могут создать маленький летающий реактор», - рассказал эксперт в интервью «Дойче Велле».

Могут, герр Шмукер. Только представьте.

Первый отечественный спутник с ядерной энергоустановкой (“Космос-367”) был запущен с Байконура в далеком 1970 году. 37 тепловыделяющих сборок малогабаритного реактора БЭС-5 “Бук”, содержащих 30 кг урана, при температуре в первом контуре 700°С и тепловыделении 100 кВт обеспечивали электрическую мощность установки 3 кВт. Масса реактора - менее одной тонны, расчетное время работы 120-130 суток.

Эксперты выразят сомнение: слишком мала мощность у этой ядерной “батарейки”... Но! Вы посмотрите на дату: это было полвека назад.

Низкий КПД - следствие термоэмиссионного преобразования. При других формах передачи энергии показатели значительно выше, например у АЭС значение КПД находится в пределах 32-38%. В этом смысле особый интерес представляет тепловая мощность “космического” реактора. 100 кВт - серьезная заявка на победу.

Стоит отметить, БЭС-5 “Бук” не относится к семейству РИТЭГов. Радиоизотопные термоэлектрогенераторы преобразуют энергию естественного распада атомов радиоактивных элементов и обладают ничтожной мощностью. В то же время “Бук” - настоящий реактор с управляемой цепной реакцией.

Следующее поколение советских малогабаритных реакторов, появившихся в конце 1980-х гг., отличалось еще меньшими габаритами и большим энерговыделением. Таким был уникальный “Топаз”: по сравнению с “Буком” количество урана в реакторе сократилось втрое (до 11,5 кг). Тепловая мощность возросла на 50% и составила 150 кВт, время непрерывной работы достигло 11 месяцев (реактор данного типа был установлен на борту разведывательного спутника “Космос-1867”).


Ядерные космические реакторы - внеземная форма смерти. При потере управления “падающая звезда” не исполняла желаний, но могла отпустить “счастливчикам” их грехи.

В 1992 году два оставшихся экземпляра малогабритных реакторов серии “Топаз” были проданы в США за 13 млн. долл.

Главный вопрос: достаточно ли мощности у подобных установок для их использования в качестве ракетных двигателей? Путем пропуска рабочего тела (воздух) через горячую активную зону реактора и получения на выходе тяги по закону сохранения импульса.

Ответ: нет. “Бук” и “Топаз” - ядерные электростанции компактных размеров. Для создания ЯРД необходимы другие средства. Но общий тренд виден невооруженным глазом. Компактные ЯЭУ давно созданы и существуют на практике.

Какую мощность должна иметь ЯЭУ для применения в качестве маршевого двигателя крылатой ракеты, аналогичной по размерам Х-101?

Не можешь найти работу? Умножь время на мощность!
(Сборник универсальных советов.)

Найти мощность также не составит большого труда. N=F×V.

По официальным данным, крылатые ракеты Ха-101, как и КР семейства “Калибр”, оснащаются короткоресурсным ТРДД-50, развивающим тягу 450 кгс (≈ 4400 Н). Маршевая скорость крылатой ракеты - 0,8М, или 270 м/с. Идеальный расчетный КПД турбореактивного двухконтурного двигателя - 30%.

В этом случае потребная мощность двигателя крылатой ракеты всего в 25 раз превышает тепловую мощность реактора серии “Топаз”.

Несмотря на сомнения немецкого эксперта, создание ядерного турбореактивного (либо прямоточного) ракетного двигателя - реалистичная задача, отвечающая требованиям современности.

Ракета из ада

«Все это сюрприз - крылатая ракета с ядерными двигателями, - отметил Дуглас Барри, старший научный сотрудник Международного Института стратегических исследований в Лондоне. - Эта идея не нова, об этом говорили в 60-х, но она столкнулась с большим количеством препятствий».

Об этом не только говорили. На испытаниях в 1964 году ядерный прямоточный двигатель “Тори-IIС” развил тягу 16 тонн при тепловой мощности реактора 513 МВт. Имитируя сверхзвуковой полет, установка израсходовала за пять минут 450 тонн сжатого воздуха. Реактор проектировался очень “горячим” - рабочая температура в активной зоне достигала 1600°С. Конструкция имела очень узкие допуски: на ряде участков допустимая температура была всего на 150-200°С ниже температуры, при которых плавились и разрушались элементы ракеты.

Хватало ли этих показателей для применения ЯПВРД в качестве двигателя на практике? Ответ очевиден.

Ядерный ПВРД развил большую (!) тягу, чем турбопрямоточный двигатель “трехмахового” разведчика SR-71 “Блэк бёрд”.


"Полигон-401", испытания ядерного ПВРД

Экспериментальные установки “Тори-IIA” и “-IIC” - прототипы ядерного двигателя крылатой ракеты SLAM.

Дьявольское изобретение, способное, по расчетам, пронзить 160 000 км пространства на минимальной высоте со скоростью 3М. Буквально “выкашивая” всех, кто встречался на её скорбном пути, ударной волной и громовым раскатом в 162 дБ (смертельное значение для человека).

Реактор боевого ЛА не имел никакой биологической защиты. Разорванные после пролета SLAM барабанные перепонки показались бы незначительным обстоятельством на фоне радиоактивных выбросов из сопла ракеты. Летающее чудовище оставляло за собой шлейф шириной более километра с дозой излучения 200-300 рад. По расчетам, за один час полета SLAM заражала смертельной радиацией 1800 квадратных миль.

Согласно расчетам, длина летательного аппарата могла достигать 26 метров. Стартовая масса - 27 тонн. Боевая нагрузка - термоядерные заряды, которые требовалось последовательно сбросить на несколько советских городов, вдоль маршрута полета ракеты. После завершения основной задачи SLAM должна была еще несколько суток кружить над территорией СССР, заражая все вокруг радиоактивными выбросами.

Пожалуй, самое смертоносное из всех, которые пытался создать человек. К счастью, до реальных запусков дело не дошло.

Проект с кодовым названием “Плутон” был свернут 1 июля 1964 года. При этом, по словам одного из разработчиков SLAM, Дж. Крейвена, никто из военного и политического руководства США не сожалел о принятом решении.

Причиной отказа от “низколетящей ядерной ракеты” стало развитие межконтинентальных баллистических ракет. Способных нанести необходимый ущерб за меньшее время при несопоставимых рисках для самих военных. Как справедливо заметили авторы публикации в журнале Air&Space: МБР, по крайней мере, не убивали всех, кто находился рядом с пусковой установкой.

До сих пор неизвестно, кто, где и как планировал проводить испытания исчадия ада. И кто бы отвечал, если бы SLAM сбилась с курса и пролетела над Лос-Анджелесом. Одно из безумных предложений предлагало привязать ракету за трос и гонять по кругу над безлюдными районами шт. Невада. Однако сразу возникал другой вопрос: что делать с ракетой, когда в реакторе выгорят последние остатки топлива? К месту, где “приземлится” SLAM, будет нельзя приближаться в течение столетий.

Жизнь или смерть. Окончательный выбор

В отличие от мистического “Плутона” родом из 1950-х гг., проект современной ядерной ракеты, озвученный В. Путиным, предлагает создание эффективного средства для прорыва американской ПРО. Средство гарантированного взаимного уничтожения - важнейший критерий ядерного сдерживания.

Превращение классической “ядерной триады” в дьявольскую “пентаграмму” - с включением в неё средств доставки нового поколения (ядерные крылатые ракеты неограниченной дальности и стратегические ядерные торпеды “статус-6”) вкупе с модернизацией боевых блоков МБР (маневрирующий “Авангард”) есть разумный ответ на появление новых угроз. Политика Вашингтона в отношении ПРО не оставляет Москве другого выбора.

“Вы развиваете свои антиракетные системы. Дальность антиракет возрастает, точность увеличивается, это оружие совершенствуется. Поэтому нам нужно адекватно отвечать на это, чтобы мы могли преодолевать систему не только сегодня, но и завтра, когда у вас появится новое оружие.”


В. Путин в интервью NBC.

Рассекреченные подробности экспериментов по программе SLAM/Плутон, убедительно доказывают, что создание ядерной крылатой ракеты было возможно (технически осуществимо) еще шесть десятилетий назад. Современные технологии позволяет вывести идею на новый технический уровень.

Меч ржавеет от обещаний

Несмотря на массу очевидных фактов, объясняющих причины появления “супероружия президента” и развеивающих любые сомнения насчет “невозможности” создания подобных систем, в России, как и за рубежом, остается множество скептиков. “Все перечисленное оружие - лишь средство информационной войны”. И следом - самые разные предложения.

Наверное, не стоит принимать всерьез карикатурных “экспертов”, таких, как И. Моисеев. Руководитель института космической политики (?), заявивший интернет-изданию The Insider: “Нельзя на крылатую ракету ставить ядерный двигатель. Да и нет таких двигателей”.

Попытки “разоблачения” заявлений президента делаются и на более серьезном аналитическом уровне. Подобные “расследования” немедленно обретают популярность среди либерально настроенной общественности. Скептики приводят следующие аргументы.

Все озвученные комплексы относятся к стратегическим сверхсекретным вооружениям, проверить или опровергнуть существование которых не представляется возможным. (В самом послании Федеральному собранию демонстрировалась компьютерная графика и кадры пусков, неотличимые от испытаний других типов крылатых ракет.) В то же время никто не говорит, к примеру, о создании тяжелого ударного беспилотника или боевого корабля класса “эсминец”. Оружие, которое в скором времени пришлось бы наглядно продемонстрировать всему миру.

По мнению некоторых “разоблачителей”, сугубо стратегический, “секретный” контекст сообщений может указывать на их неправдоподобный характер. Что ж, если это главный аргумент, то о чем тогда спор с этими людьми?

Встречается и другая точка зрения. Шокирующие о ядерных ракетах и беспилотных 100-узловых подлодках делаются на фоне очевидных проблем ВПК, встречающихся при реализации более простых проектов “традиционных” вооружений. Заявления о ракетах, разом превзошедших все существующие образцы вооружений, имеют резкий контраст на фоне общеизвестной ситуации с ракетостроением. Скептики приводят в пример массовые отказы при пусках “Булавы” или затянувшееся на два десятилетия создание РН “Ангара”. Сама началась в 1995 году; выступая в ноябре 2017 г., вице-премьер Д. Рогозин пообещал возобновить запуски “Ангары” с космодрома “Восточный” только в... 2021 г.

И, кстати, почему без внимания был оставлен “Циркон” - главная военно-морская сенсация предыдущего года? Гиперзвуковая ракета, способная перечеркнуть все существующие концепции морского боя.

Новость о поступлении в войска лазерных комплексов привлекло внимание производителей лазерных установок. Существующие образцы оружия направленной энергии создавались на обширной базе исследований и разработок высокотехнологичного оборудования для гражданского рынка. К примеру, американская корабельная установка AN/SEQ-3 LaWS представляет “пачку” из шести сварочных лазеров суммарной мощностью 33 кВт.

Заявление о создании сверхмощного боевого лазера контрастируют на фоне весьма слабой лазерной промышленности: Россия не входит в число крупнейших мировых производителей лазерного оборудования (Coherent, IPG Photonics или китайская Han" Laser Technology). Поэтому внезапное появление образцов лазерного оружия высокой мощности вызывает у специалистов неподдельный интерес.

Вопросов всегда больше, чем ответов. Дьявол кроется в мелочах, однако официальные источники дают крайне скудное представление о новейших вооружениях. Зачастую даже неясно, система уже готова к приятию на вооружение, или её разработка находится на определенном этапе. Известные прецеденты, связанные с созданием подобного оружия в прошлом, свидетельствуют, что возникающие при этом проблемы не решаются по щелчку пальцев. Любителей технических новинок волнует выбор места для проведения испытаний КР с ядерным двигателем. Или способы связи с подводным беспилотником “Статус-6” (фундаментальная проблема: под водой не работает радиосвязь, во время проведения сеансов связи субмарины вынуждены подниматься к поверхности). Было бы интересно услышать пояснение и о способах применения: по сравнению с традиционными МБР и БРПЛ, способными начать и окончить войну в течение часа, “Статусу-6” потребуется несколько суток, чтобы добраться до побережья США. Когда там уже никого не будет!

Окончен последний бой.
Остался кто-нибудь живой?
В ответ - только ветра вой…

С использованием материалов:
Air&Space Magazine (апрель-май 1990)
The Silent War, автор John Craven

© Оксана Викторова/Коллаж/Ridus

Заявление, сделанное Владимиром Путиным в ходе своего послания Федеральному собранию, о наличии в России крылатой ракеты, приводимой в движение двигателем на ядерной тяге, вызвало бурный ажиотаж в обществе и СМИ. В то же время о том, что представляет собой такой двигатель, и о возможностях его использования до последнего времени было известно достаточно мало, как широкой общественности, так и специалистам.

«Ридус» попытался разобраться, о каком техническом устройстве мог вести речь президент и в чем состоит его уникальность.

Учитывая, что презентация в Манеже делалась не на аудиторию технических специалистов, а для «общей» публики, ее авторы могли допустить определенную подмену понятий, не исключает заместитель директора Института ядерной физики и технологий НИЯУ МИФИ Георгий Тихомиров.

«То, что говорил и показывал президент, специалисты называют компактными силовыми установками, эксперименты с которыми проводились изначально в авиации, а затем при освоении дальнего космоса. Это были попытки решить неразрешимую проблему достаточного запаса топлива при перелетах на неограниченные дальности. В этом смысле презентация совершенно корректна: наличие такого двигателя обеспечивает энергоснабжение систем ракеты или любого иного аппарата сколь угодно долгое время», - сказал он «Ридусу».

Работы с таким двигателем в СССР начались ровно 60 лет назад под руководством академиков М. Келдыша, И. Курчатова и С. Королева. В те же самые годы аналогичные работы велись в США, но были свернуты в 1965 году. В СССР работы продолжались еще около десятилетия, прежде чем тоже были признаны неактуальными. Возможно, поэтому в Вашингтоне не сильно передернули, заявив, что не удивлены презентацией российской ракеты.

В России идея ядерного двигателя никогда не умирала - в частности, с 2009 года ведется практическая разработка такой установки. Судя по срокам, заявленные президентом испытания вполне укладываются именно в этот совместный проект Роскосмоса и Росатома - поскольку разработчики и планировали провести полевые испытания двигателя в 2018 году. Возможно, в связи с политическими причинами они чуть поднатужились и сдвинули сроки «влево».

«Технологически это устроено так, что ядерный энергоблок нагревает газовый теплоноситель. И этот разогретый газ либо вращает турбину, либо создает реактивную тягу напрямую. Определенное лукавство в презентации ракеты, которую мы услышали, состоит в том, что дальность ее полета все-таки не бесконечна: она ограничена объемом рабочего тела - жидкого газа, который физически можно закачать в баки ракеты», - говорит специалист.

При этом у космической ракеты и крылатой ракеты принципиально разные схемы управления полетом, поскольку у них разные задачи. Первая летит в безвоздушном пространстве, ей не надо маневрировать, - достаточно придать ей первоначальный импульс, и далее она движется по расчетной баллистической траектории.

Крылатая же ракета, наоборот, должна непрерывно менять траекторию, для чего у нее должен быть достаточный запас топлива, чтобы создавать импульсы. Будет ли это топливо воспламеняться ядерной энергоустановкой или традиционной - в данном случае не принципиально. Принципиален только запас этого топлива, подчеркивает Тихомиров.

«Смысл ядерной установки при полетах в дальний космос - это наличие на борту источника энергии для питания систем аппарата неограниченно долгое время. При этом может быть не только ядерный реактор, но и радиоизотопные термоэлектрические генераторы. А смысл такой установки на ракете, полет которой не будет продолжаться долее нескольких десятков минут, мне пока не вполне ясен», - признаётся физик.

Доклад в Манеже лишь на пару недель запоздал по сравнению с заявлением NASA , сделанным 15 февраля, о том, что американцы возобновляют научно-исследовательские работы по ядерному ракетному двигателю, заброшенные ими полвека назад.

Кстати, в ноябре 2017 года уже и Китайская корпорация аэрокосмической науки и техники (CASC) сообщила, что до 2045 года в КНР будет создан космический корабль на ядерном двигателе. Поэтому сегодня можно смело говорить о том, что мировая ядерно-двигательная гонка началась.