История эвм и икт презентация. Презентация к уроку информатики на тему: "История развития ЭВМ"













1 из 12

Презентация на тему: Эволюция ЭВМ

№ слайда 1

Описание слайда:

Эволюция ЭВМ Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет. Введение

№ слайда 2

Описание слайда:

Эволюция ЭВМ Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки (ЭЛТ). В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы. Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и "умирали" вместе с этими моделями. В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа. В 1956 году был создан первый язык программирования высокого уровня для математических задач - язык Фортран, а в 1958 году - универсальный язык программирования Алгол. ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ "Минск" и "Урал", относятся к первому поколению вычислительных машин. Первое поколение ЭВМ 1950-1960-е годы

№ слайда 3

Описание слайда:

Эволюция ЭВМ Логические схемы строились на дискретных полупроводниковых и магнитных элементах (диоды, биполярные транзисторы, тороидальные ферритовые микротрансформаторы). В качестве конструктивно-технологической основы использовались схемы с печатным монтажом (платы из фольгированного гетинакса). Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц. Стали применяться внешние накопители на жестких магнитных дисках1 и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью. Второе поколение ЭВМ: 1960-1970-е годы

№ слайда 4

Описание слайда:

Эволюция ЭВМ В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц. Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля. В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации. Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году. В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

№ слайда 5

Описание слайда:

Эволюция ЭВМ В 1958 году Роберт Нойс изобрел малую кремниевую интегральную схему, в которой на небольшой площади можно было размещать десятки транзисторов. Эти схемы позже стали называться схемами с малой степенью интеграции (Small Scale Integrated circuits - SSI). А уже в конце 60-х годов интегральные схемы стали применяться в компьютерах. Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ. В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители. Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память. Третье поколение ЭВМ: 1970-1980-е годы

№ слайда 6

Описание слайда:

Эволюция ЭВМ Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года. Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами. Так, первыми ЭВМ этого поколения стали модели систем IBM (ряд моделей IBM 360) и PDP (PDP 1). В Советском Союзе в содружестве со странами Совета Экономической Взаимопомощи (Польша, Венгрия, Болгария, ГДР и др1.) стали выпускаться модели единой системы (ЕС) и системы малых (СМ) ЭВМ.

№ слайда 7

Описание слайда:

Эволюция ЭВМ В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей. Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды). Модульная организация вычислительных машин и модульное построение их операционных систем создали широкие возможности для изменения конфигурации вычислительных систем. В связи с этим возникло новое понятие "архитектура" вычислительной системы, определяющее логическую организацию этой системы с точки зрения пользователя и программиста.

№ слайда 8

№ слайда 9

Описание слайда:

Эволюция ЭВМ Первый персональный компьютер создали в апреле 1976 года два друга, Стив Джобс (1955 г. р.) - сотрудник фирмы Atari, и Стефан Возняк (1950 г. р.), работавший на фирме Hewlett-Packard. На базе интегрального 8-битного контроллера жестко запаянной схемы популярной электронной игры, работая вечерами в автомобильном гараже, они сделали простенький программируемый на языке Бейсик игровой компьютер "Apple", имевший бешеный успех. В начале 1977 года была зарегистрирована Apple Сотр., и началось производство первого в мире персонального компьютера Apple.

№ слайда 10

Описание слайда:

Эволюция ЭВМ Особенности архитектуры современного поколения компьютеров подробно рассматриваются в данном курсе. Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом: 1. Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы. 2. Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы. Пятое поколение ЭВМ: 1990-настоящее время

№ слайда 11

Описание слайда:

Эволюция ЭВМ Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем. Заключение Все этапы развития ЭВМ принято условно делить на поколения. Первое поколение создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы. Втрое поколение появилось в 60-е годы 20 века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов. Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент. Третье поколение выполнялось на микросхемах, содержавших на одной пластинке сотни или тысячи транзисторов. Пример машины третьего поколения - ЕС ЭВМ. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент. Шестое и последующие поколения ЭВМ

№ слайда 12

Описание слайда:

Эволюция ЭВМ Четвертое поколение было создано на основе больших интегральных схем (БИС). Наиболее яркие представители четвертого поколения ЭВМ - персональные компьютеры (ПК). Персональной называется универсальная однопользовательская микроЭВМ. Связь с пользователем осуществлялась посредством цветного графического дисплея с использованием языков высокого уровня. Пятое поколение создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле. Предполагается, что в будущем широко распространится ввод информации в ЭВМ с голоса, общения с машиной на естественном языке, машинное зрение, машинное осязание, создание интеллектуальных роботов и робототехнических устройств.


























1 из 25

Презентация на тему:

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Счётно-решающие средства до появления ЭВМ История вычислений уходит глубокими корнями в даль веков так же, как и развитие человечества. Накопление запасов, делёж добычи, обмен - все подобные действия связаны со счётом. Для подсчёта люди использовали собственные пальцы, камешки, палочки и узелки. Потребность в поиске решений всё более и более сложных и сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые могли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объёмов и расстояний. Для перевода из одной системы измерения в другую требовались вычисления, которые чаще всего могли производить специально обученные люди, которых иногда приглашали из других стран. Это естественно привело к созданию изобретений, помогающих счёту.

№ слайда 3

Описание слайда:

Одним из первых устройств (V-VI вв. до н. э.), облегчающих вычисления, можно считать специальную доску для вычислений, названную «абак». Вычисления на ней производились перемещением камешков или костей в углубления досок из бронзы, камня или слоновой кости. Со временем эти доски стали расчерчивать на несколько полос и колонок. В Греции абак существовал уже в V веке до н. э., у японцев он назывался «серобян», у китайцев - «суанпан».В Древней Руси при счёте применялось устройство, похожее на абак, называемое «русский шот». В XVII веке этот прибор уже обрёл вид привычных русских счёт.

№ слайда 4

Описание слайда:

№ слайда 5

Описание слайда:

В начале XVII столетия, когда математика стала играть ключевую роль в науке, всё острее ощущалась необходимость в изобретении счётной машины. И в середине века молодой французский математик и физик Блез Паскаль создал «суммирующую» машину, названной Паскалиной, которая кроме сложения выполняла и вычитание.

№ слайда 6

Описание слайда:

В 1812 году английский математик и экономист Чарльз Бэббидж начал работу над созданием, так называемой «разностной» машины, которая, по его замыслам, должна была не просто выполнять арифметический действия, а проводить вычисления по программе, задающей определённую функцию. В качестве основного элемента своей машины Бэббидж взял зубчатое колесо для запоминания одного разряда числа (всего таких колёс было 18). К 1822 году учёный построил небольшую действующую модель и рассчитал на ней таблицу квадратов.

№ слайда 7

Описание слайда:

Электромеханический этап развития вычислительной техники Электро-механический этап развития ВТ явился наименее продолжительным и охватывает всего около 60 лет - от первого табулятора Г. Холлерита (1887 г.) до первой ЭВМ ENIAC (1945 г.). Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика,статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислите-льные устройства.

№ слайда 8

Описание слайда:

Первый статистический табулятор был построен американцем Германом Холлеритом, с целью ускорить обработку результатов переписи населения, которая проводилась в США в 1890 г. Затем в в бюро переписи были проведены испытания, и табулятор Холлерита в соревновании с несколькими другими системами был признан лучшим. После проведения переписи Холлерит был удостоен нескольких премий, и получил звание профессора в Колумбийском университете.Холлерит организовал фирму по производству табуляционных машин TMC (Tabulating Machine Company), продавая их железнодорожным управлениям и правительственным учреждениям С годами оно претерпело ряд изменений - слияний и переименований. С 1924 г. фирма Холлерита стала называться IBM.

№ слайда 9

Описание слайда:

Z1 - вычислительное устройство, созданное в 1938 году, стало первой программируемой вычислительную машиной немецкого инженера Конрада Цузе. Это двоичная вычислительная машина с вводом данных с помощью клавиатуры, в десятичной системе исчисления в виде чисел с плавающей запятой. Главным отличием от более известной вычислительной машины Z3 (1941 год) было отсутствие вычисления квадратного корня.

№ слайда 10

Описание слайда:

В 1939 Джордж Штибитц и Сэмюель Вильямс создали Complex Number Calculator - калькулятор, складывающий комплексные числа, а также проводящий вычитание, умножение и деление. Калькулятор был первой машиной, к которой имелся удаленный доступ через телефонные линии с трех клавиатур, однако ими можно было пользоваться лишь в режиме разделенного времени. В своем роде это была попытка организации локальной сети. Позднее создатели переименовали свое детище в Model I Relay Calculator.

№ слайда 11

Описание слайда:

В 1939 Джон Атанасофф и Клиффорд Берри построили первую машину, производящую вычисления с помощью электронных ламп. Аналог 25-битового сумматора обладал регенерируемой памятью в виде аккумуляторов с цепями обновления на вакуумных трубках, но не имел устройства для ввода информации. Чтобы провести вычисления, пользователю приходилось подключать провода непосредственно к аккумулятору - данные сразу же вводились в память.

№ слайда 12

Описание слайда:

Mark-1 разрабатывается компанией IBM по заказу ВМС США для расчета баллистических таблиц. В основу Mark-1 положено оставленное Чарльзом Бэббиджем описание его Аналитической Машины. Размеры Марк-1 составляют 17 м в длину и 2,5 м в высоту. Провода, которыми соединяются его 750 тыс. деталей имеют суммарную длину более 800 км. Программа вводится с перфоленты, а данные с перфокарт. Компьютер имеет электромеханическое реле и работает по тем временам очень быстро - 0,3 сек у него уходит на сложение и вычитание двух чисел и 3 сек на умножение.

№ слайда 13

Описание слайда:

ЭНИАК (Электронный числовой интегратор и вычислитель) - первый широкомасштабный электронный цифровой компьютер, который можно было перепрограммировать для решения полного диапазона задач. Построен в 1946 году по заказу Армии США в Лаборатории баллистических исследований для расчётов таблиц стрельбы. Запущен 14 февраля 1946 года.Архитектуру компьютера разработали в 1943 году Джон Преспер Экерт и Джон Уильям Мокли, учёные из Университета Пенсильвании. В ЭНИАКе в качестве основы компонентной базы применялись вакуумные лампы. Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность - 150 кВт. Вычислительная мощность - 300 операций умножения или 5000 операций сложения в секунду. Вес - 27 тонн. Вычисления производились в десятичной системе.

№ слайда 14

Описание слайда:

Ламповые ЭВМ Первое поколение (1945-1954) - компьютеры на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой. Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика, наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

№ слайда 15

Описание слайда:

Транзисторные ЭВМ Во втором поколении компьютеров (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.Расширялась и сфера применения компьютеров. Компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

№ слайда 16

Описание слайда:

№ слайда 17

Описание слайда:

Эпоха интегральных схем В третьем поколении ЭВМ (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (то, что сейчас называют микросхемами). В это же время появляется полупроводниковая память, которая и по всей день используется в персональных компьютерах в качестве оперативной. В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ.

№ слайда 18

Описание слайда:

Эпоха интегральных схем Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов.

Описание слайда:

Развитие микропроцессорной техники С середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.С начала 80-х, благодаря появлению персональных компьютеров, вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств последнего десятилетия - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" технике. Большие компьютеры и суперкомпьютеры, конечно же, отнюдь не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

№ слайда 21

Описание слайда:

Развитие микропроцессорной техники В 1989 году появляется новая разработка компании Intel - микропроцессор Intel-80486 (Intel-80486DX). Этот процессор ознаменовал начала пятого поколения. Этот процессор был полностью совместим с PC семейства Intel-80x86, кроме того, содержал в себе математический сопроцессор и 8 Кбайт кэш-памяти. Этот процессор был более совершенен по сравнению с микропроцессором Intel-80386, его тактовая частота состояла 33 МГц.В 1991 году Intel представила процессор Intel-80486SX, у которого отсутствовал математический сопроцессор.В 1992 году - процессор Intel-80486DX2, работавший с удвоенной тактовой частотой - 66 МГц. Впоследствии вышли процессоры с тактовой частотой в 100 МГц.

№ слайда 22

№ слайда 23

Описание слайда:

Развитие микропроцессорной техники В 1993 году компания Intel начала промышленный выпуск нового процессора - Intel Pentium (Intel не стал присваивать ему номер 80586). Первые модели работали на тактовой частоте 60 и 66 МГц и объединяли в себе до 3,3 млн. транзисторов. Pentium - это первый 64-разрядный суперскалярный процессор с RISC-ядром, изготовленный по 0,8-микронной технологии BiCMOS. Его основу составляет два пятиступенчатых конвейера, позволяющих выполнять две команды за один такт. Один конвейер выполнял любые операции, как с целочисленными, так и с числами с плавающей точкой, второй выполняет часть целочисленных команд.

№ слайда 24

Описание слайда:

Развитие микропроцессорной техники Все арифметические действия - сложение, вычитание, умножение и деление - реализованы аппаратно. Сочетание этих решений резко повысило производительность процессора, ускорить вычисления за счёт уменьшения обращений к ОЗУ. Обеспечивают два внутренних буфера кэш-памяти - по 8 Кбайт для команд и данных, что позволило работать контейнерам команд не только по чтение, но и по запись. Следующая новинка - система предсказываний ветвлений, благодаря которой при переходе в области памяти запоминается адрес перехода и при повторном обращении переход по этому адресу происходит быстрее.

№ слайда 25

Описание слайда:

Развитие микропроцессорной техники Впоследствии появились модели с частотой 90 и 100 МГц. Однако вскоре обнаружилась ошибки в устройстве деления, и компании Intel пришлось опубликовать подробное описание этого дефекта. После этого скандала практически все процессоры Pentium стали тестировать, и в прайс-листах появилась надпись BUG FREE!, что буквально можно перевести как «свободно от ошибок».

История ЭВМПодготовила: Коротич Екатерина

Ученица 11класса

Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту.Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту.

Когда людям надоело вести счёт при помощи загибания пальцев и перекладывания палочек, они изобрели абак (счёты).Когда людям надоело вести счёт при помощи загибания пальцев и перекладывания палочек, они изобрели абак (счёты).

Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

В 1623 году Вильгельм Шикард придумал «Считающие часы» - первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестерёнок. Практическое использование это изобретение нашло в руках друга Шикарда, философа и астронома Иоганна Кеплера.В 1623 году Вильгельм Шикард придумал «Считающие часы» - первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестерёнок. Практическое использование это изобретение нашло в руках друга Шикарда, философа и астронома Иоганна Кеплера.

За этим последовали машины Блеза Паскаля («Паскалина», 1642 г.) и Готфрида Вильгельма Лейбница. Примерно в 1820 году создал первый удачный, серийно выпускаемый механический калькулятор - Арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница. Механические калькуляторы, считающие десятичные числа, использовались до 1970-х.За этим последовали машины Блеза Паскаля («Паскалина», 1642 г.) и Готфрида Вильгельма Лейбница. Примерно в 1820 году создал первый удачный, серийно выпускаемый механический калькулятор - Арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница. Механические калькуляторы, считающие десятичные числа, использовались до 1970-х.

Паскалина

В 1801 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.В 1801 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.

В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.

В 1890 году Бюро Переписи США использовало перфокарты и механизмы сортировки, разработанные Германом Холлеритом, чтобы обработать поток данных десятилетней переписи.В 1890 году Бюро Переписи США использовало перфокарты и механизмы сортировки, разработанные Германом Холлеритом, чтобы обработать поток данных десятилетней переписи.
Компания Холлерита в конечном счёте стала ядром IBM. Эта корпорация развила технологию перфокарт в мощный инструмент для деловой обработки данных и выпустила обширную линию специализированного оборудования для их записи. К 1950 году технология IBM стала вездесущей в промышленности и правительстве. Предупреждение, напечатанное на большинстве карт, «не сворачивать, не скручивать и не рвать», стало девизом послевоенной эры.

Слайд №10

Слайд №11

К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни. С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить. Словом «computer» (буквально - «вычислитель») называлась должность - это были люди, которые использовали калькуляторы для выполнения математических вычислений.К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни. С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить. Словом «computer» (буквально - «вычислитель») называлась должность - это были люди, которые использовали калькуляторы для выполнения математических вычислений.

Слайд №12

В 1948 году появился Curta - небольшой механический калькулятор, который можно было держать в одной руке.

Слайд №13

В 1950-х - 1960-х годах на западном рынке появилось несколько марок подобных устройств. Первым полностью электронным настольным калькулятором был британский ANITA Мк. VII.

Слайд №14

В 1936 году, работая в изоляции в нацистской Германии, Конрад Цузе начал работу над своим первым вычислителем сериии Z, имеющим память и (пока ограниченную) возможность программирования. Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершённая в 1938 году, так и не заработала достаточно надёжно, из-за недостаточной точности выполнения составных частей.В 1936 году, работая в изоляции в нацистской Германии, Конрад Цузе начал работу над своим первым вычислителем сериии Z, имеющим память и (пока ограниченную) возможность программирования. Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершённая в 1938 году, так и не заработала достаточно надёжно, из-за недостаточной точности выполнения составных частей.

Слайд №15

Следующая машина Цузе - Z3, была завершена в 1941 году. Она была построена на телефонных реле и работала вполне удовлетворительно. Тем самым, Z3 стала первым работающим компьютером, управляемым программой. Во многих отношениях Z3 была подобна современным машинамСледующая машина Цузе - Z3, была завершена в 1941 году. Она была построена на телефонных реле и работала вполне удовлетворительно. Тем самым, Z3 стала первым работающим компьютером, управляемым программой. Во многих отношениях Z3 была подобна современным машинам

Слайд №16

В 1939 году Джон Винсент Атанасов и Клиффорд Берри из Университета штата Айова разработали Atanasoff-Berry Computer (ABC). Это был первый в мире электронный цифровой компьютер. Конструкция насчитывала более 300 электровакуумных ламп, в качестве памяти использовался вращающийся барабан. Несмотря на то, что машина ABC не была программируемой, она была первой, использующей электронные лампы в сумматоре.В 1939 году Джон Винсент Атанасов и Клиффорд Берри из Университета штата Айова разработали Atanasoff-Berry Computer (ABC). Это был первый в мире электронный цифровой компьютер. Конструкция насчитывала более 300 электровакуумных ламп, в качестве памяти использовался вращающийся барабан. Несмотря на то, что машина ABC не была программируемой, она была первой, использующей электронные лампы в сумматоре.

Слайд №17

Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений. Это стало ключевым моментом в разработке вычислительных машин, прежде всего из-за огромного прироста в скорости вычислений, но также и по причине появившихся возможностей для миниатюризации. Созданная под руководством Джона Мочли и Дж. Преспера Эккерта, эта машина была в 1000 раз быстрее, чем все другие машины того времени. Разработка «ЭНИАК» продлилась с 1943 до 1945 года.Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений. Это стало ключевым моментом в разработке вычислительных машин, прежде всего из-за огромного прироста в скорости вычислений, но также и по причине появившихся возможностей для миниатюризации. Созданная под руководством Джона Мочли и Дж. Преспера Эккерта, эта машина была в 1000 раз быстрее, чем все другие машины того времени. Разработка «ЭНИАК» продлилась с 1943 до 1945 года.

Слайд №18

На ENIAC удавалось выполнять несколько тысяч операций в секунду в течение нескольких часов, до очередного сбоя из-за сгоревшей лампы.На ENIAC удавалось выполнять несколько тысяч операций в секунду в течение нескольких часов, до очередного сбоя из-за сгоревшей лампы.

Слайд №19

Первой работающей машиной с архитектурой фон Неймана стал манчестерский «Baby» - Small-Scale Experimental Machine (Малая экспериментальная машина), созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I.Первой работающей машиной с архитектурой фон Неймана стал манчестерский «Baby» - Small-Scale Experimental Machine (Малая экспериментальная машина), созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I.

Слайд №20

В 1955 году Морис Уилкс изобретает микропрограммирование, принцип, который позднее широко используется в микропроцессорах самых различных компьютеров. Микропрограммирование позволяет определять или расширять базовый набор команд с помощью встроенных программ, которые носят названия микропрограмма.В 1955 году Морис Уилкс изобретает микропрограммирование, принцип, который позднее широко используется в микропроцессорах самых различных компьютеров. Микропрограммирование позволяет определять или расширять базовый набор команд с помощью встроенных программ, которые носят названия микропрограмма.

Слайд №21

Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.

Слайд №22

«Сетунь» была первым компьютером на основе троичной логики, разработана в 1958 году в Советском Союзе.«Сетунь» была первым компьютером на основе троичной логики, разработана в 1958 году в Советском Союзе.

Слайд №23

Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel).Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel).

Слайд №24

Появление микропроцессоров привело к разработке микрокомпьютеров - небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк, один из основателей Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а позже - первого персонального компьютера. Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.Появление микропроцессоров привело к разработке микрокомпьютеров - небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк, один из основателей Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а позже - первого персонального компьютера. Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.

Презентация по Информатике - История развития ЭВМ

Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту

Когда людям надоело вести счёт при помощи загибания пальцев и перекладывания палочек, они изобрели абак (счёты).
Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента

В 1623 году Вильгельм Шикард придумал «Считающие часы» - первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестерёнок. Практическое использование это изобретение нашло в руках друга Шикарда, философа и астронома Иоганна Кеплера.

За этим последовали машины Блеза Паскаля («Паскалина», 1642 г.) и Готфрида Вильгельма Лейбница. Примерно в 1820 году создал первый удачный, серийно выпускаемый механический калькулятор - Арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница. Механические калькуляторы, считающие десятичные числа, использовались до 1970-х.

В 1801 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.

В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.

В 1890 году Бюро Переписи США использовало перфокарты и механизмы сортировки, разработанные Германом Холлеритом, чтобы обработать поток данных десятилетней переписи.

Компания Холлерита в конечном счёте стала ядром IBM. Эта корпорация развила технологию перфокарт в мощный инструмент для деловой обработки данных и выпустила обширную линию специализированного оборудования для их записи. К 1950 году технология IBM стала вездесущей в промышленности и правительстве. Предупреждение, напечатанное на большинстве карт, «не сворачивать, не скручивать и не рвать», стало девизом послевоенной эры.

К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни. С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить. Словом «computer» (буквально - «вычислитель») называлась должность - это были люди, которые использовали калькуляторы для выполнения математических вычислений.

В 1948 году появился Curta - небольшой механический калькулятор, который можно было держать в одной руке.

В 1950-х - 1960-х годах на западном рынке появилось несколько марок подобных устройств. Первым полностью электронным настольным калькулятором был британский ANITA Мк. VII.

В 1936 году, работая в изоляции в нацистской Германии, Конрад Цузе начал работу над своим первым вычислителем сериии Z, имеющим память и (пока ограниченную) возможность программирования. Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершённая в 1938 году, так и не заработала достаточно надёжно, из-за недостаточной точности выполнения составных частей.

Следующая машина Цузе - Z3, была завершена в 1941 году. Она была построена на телефонных реле и работала вполне удовлетворительно. Тем самым, Z3 стала первым работающим компьютером, управляемым программой. Во многих отношениях Z3 была подобна современным машинам

В 1939 году Джон Винсент Атанасов и Клиффорд Берри из Университета штата Айова разработали Atanasoff-Berry Computer (ABC). Это был первый в мире электронный цифровой компьютер. Конструкция насчитывала более 300 электровакуумных ламп, в качестве памяти использовался вращающийся барабан. Несмотря на то, что машина ABC не была программируемой, она была первой, использующей электронные лампы в сумматоре.

Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений. Это стало ключевым моментом в разработке вычислительных машин, прежде всего из-за огромного прироста в скорости вычислений, но также и по причине появившихся возможностей для миниатюризации. Созданная под руководством Джона Мочли и Дж. Преспера Эккерта, эта машина была в 1000 раз быстрее, чем все другие машины того времени. Разработка «ЭНИАК» продлилась с 1943 до 1945 года.

На ENIAC удавалось выполнять несколько тысяч операций в секунду в течение нескольких часов, до очередного сбоя из-за сгоревшей лампы.

Первой работающей машиной с архитектурой фон Неймана стал манчестерский «Baby» - Small-Scale Experimental Machine (Малая экспериментальная машина), созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I

В 1955 году Морис Уилкс изобретает микропрограммирование, принцип, который позднее широко используется в микропроцессорах самых различных компьютеров. Микропрограммирование позволяет определять или расширять базовый набор команд с помощью встроенных программ, которые носят названия микропрограмма.

Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями

«Сетунь» была первым компьютером на основе троичной логики, разработана в 1958 году в Советском Союзе.

Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel).

Появление микропроцессоров привело к разработке микрокомпьютеров - небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк, один из основателей Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а позже - первого персонального компьютера. Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.

В 1977 году появился первый массовый персональный компьютер Apple II, что явилось предвестником бума всеобщей компьютеризации населения.
Домашние компьютеры стали более удобными и требовали от своих пользователей уже гораздо меньшего количества технических навыков. В августе 1981 года IBM выпустила компьютерную систему IBM PC, положившую начало эпохе современных персональных компьютеров.

В январе 1984 года начались продажи Apple Macintosh, ставшего первым по-настоящему массовым ПК с GUI. 23 июля 1985 года появился первый в мире мультимедийный персональный компьютер Amiga (Amiga 1000). Персональные компьютеры Amiga, наряду с макинтошами, оставались самыми популярными и продаваемыми машинами для домашнего использования.

Развитие ЭВМ

Слайдов: 8 Слов: 1066 Звуков: 0 Эффектов: 26

История развития вычислительной техники. Рождение ЭВМ. Уже в древности появилось простейшее счетное устройство - абак. Абак прочно занял свое место на бухгалтерских столах. Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века. Первое поколение ЭВМ. Развитие ЭВМ делится на несколько периодов. Второе поколение ЭВМ. ЭВМ 2-го поколения были разработаны в 1950-60 гг. Во 2-ом поколении были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Третье поколение ЭВМ. Применение интегральных схем в 3-ем поколении намного увеличило возможности ЭВМ. Четвертое поколение ЭВМ. - ЭВМ 3.ppt

Счётные машины

Слайдов: 35 Слов: 1257 Звуков: 0 Эффектов: 73

Как начинался счёт. Зарождение счёта. Изобретение счёт. Расчеты при помощи мелких камней. Древнегреческий абак. Римляне усовершенствовали конструкцию. В Китае счеты назывались «суан-пан». У китайцев в основе счета лежала не десятка, а пятерка. Цельные кукурузные початки. Русские счеты. Изобретение механического калькулятора. История происхождения счетных машин. Суммирующая машина. Паскаль. Первая счетная машина. Рукописи Леонардо да Винчи. Счетные машины. Изобретение ККМ. Кассовый аппарат. Служащие. Идея создания аппарата. Аппарат фиксировал каждую торговую операцию. Детище Джеймса. - Счётные машины.ppt

Вычислительные машины

Слайдов: 35 Слов: 1104 Звуков: 0 Эффектов: 92

История развития вычислительной техники. Содержание. Вычисления в доэлектронную эпоху. Пальцы рук. Абак. Счёты. Личности, внёсшие вклад в развитие ВТ. Блез Паскаль. Чарльз Беббидж. Ада Лавлейс. Герман Холлерит. Машина Блеза Паскаля. Машина Чарльза Беббиджа. Подробнее. В-третьих, применение способа изменения хода вычислений, получившего в дальнейшем название условного перехода. В-четвертых, введение понятия циклов операций и рабочих ячеек. Герман Холлерит родился 29 февраля 1860 года в Буффало, штат Нью-Йорк. Данные на каждого человека наносились на перфокарты, почти не отличающиеся от современных, в виде пробивок. - Вычислительные машины.pptx

Компьютерные машины

Слайдов: 25 Слов: 1046 Звуков: 0 Эффектов: 95

Краткая история развития компьютерной техники /1617 – 1998 г.г./. Наука, которая изучает. Законы. Методы. Способы накопления. Способы обработки. Способы передачи. Информации. Немного из истории. Выполняла сложение и вычитание с 7 – значными числами. 1774 г. – Первая массовая «счётная машина» - механический калькулятор. 1947 г. – создан первый «точеный» транзистор. Разработан язык программирования «низкого уровня» Assembler. Первую клавиатуру и первый монитор выпустила компания Teletype в 1962 году. Microsoft представляет операционную систему WINDOWS 98. Интернет. Информация Общение Игра Как же появился Интернет??? - Компьютерные машины.ppt

История компьютера

Слайдов: 15 Слов: 515 Звуков: 0 Эффектов: 56

История компьютера. В последние годы наблюдается быстрое развитие компьютерных технологий. Компьютер внедряется практически во все сферы нашей жизни. Слово компьютер происходит от английского слова computer, что значит «вычислитель». Поначалу счет был неотделим от загибания пальцев. Пальцы стали первой вычислительной техникой. Переворот произошел с изобретением абака. В 1672 году Вильгельм Лейбниц создал арифмометр который умел ещё умножать и делить. В 1947 г. американцы придумали транзисторы Один транзистор заменял 40 ламп. В результате скорость возросла в 10 раз, уменьшились вес и размер машин. - История компьютера.ppt

Создание компьютера

Слайдов: 9 Слов: 154 Звуков: 1 Эффектов: 48

Компьютер. И вот в ХХ веке человек создал замечательную вещь, грандиозное изобретение. Кто и где применяет компьютер? Что можно делать с помощью компьютера? Возникновение компьютеров. Первые компьютеры. 1946 год. Современный компьютер. Из чего состоит компьютер? - Создание компьютера.ppt

Развитие компьютеров

Слайдов: 12 Слов: 475 Звуков: 0 Эффектов: 34

История развития вычислительной техники. Ты хочешь узнать об истории развития вычислительной техники? Соверши путешествие в прошлое на машине времени. Итак, в путь! Древние времена. Первобытные люди для счета использовали: пальцы рук; Камешки, косточки, ракушки. V век до н.э. Древняя Греция. С развитием торговли людям понадобились счетные устройства. Первым таким устройством был абак или калькули (камешки). Абак внешне напоминает современные счеты. Знакомые всем счеты впервые появились на Руси в XVI веке. XVII век. Изобретены первые механические счеты - арифмометр. Блез Паскаль, создатель первой суммирующей машины, 1641-1642 г.г. - Развитие компьютеров.ppt

Изобретение компьютера

Слайдов: 25 Слов: 1177 Звуков: 0 Эффектов: 0

История компьютеров. Краткая характеристика понятия компьютер. Первая «считающая машина». Вычислитель. Вычислитель сэра Сэмюэля Морланда. Вильгельм Годфрид фон Лейбниц. Джованни Полени. Чарльз Бэббидж. Дорр Фельт. Корпорация. Алан Тюринг. Конрад Цузе. Говард Эйкен. Первый электронный компьютер. Джон Таки. Коммерческие компьютеры. Новый процессор. Массовые компьютеры. Первый компьютер. Персональный компьютер. Первое поколение ЭВМ. Второе поколение ЭВМ. Третье поколение ЭВМ. Четвертое поколение ЭВМ. Пятое поколение ЭВМ. - Изобретение компьютера.pptx

Этапы развития компьютера

Слайдов: 51 Слов: 1199 Звуков: 0 Эффектов: 24

История развития информационных технологий. От ручного счета до ЭВМ. Ручной счет. Вычисления в доэлектронную эпоху. Счёт на пальцах. Древние средства счёта. Абак и его потомки. Соробан. Первые механические машины. Первый проект счётной машины. Логарифмическая линейка. Круговая логарифмическая линейка. Машина Шиккарда. Счетная машина Паскаля. Арифмометр Лейбница. Жаккардов ткацкий станок. Перфокарты. Механический калькулятор. Чарльз Бэббидж. Разностная машина Чарльза Бэббиджа. Аналитическая машина Чарльза Бэббиджа. Ада Лавлейс. Механическая технология. Аппарат Чебышева. - Этапы развития компьютера.pptx

История развития компьютеров

Слайдов: 14 Слов: 469 Звуков: 0 Эффектов: 118

История развития вычислительной техники. Этапы развития вычислительной техники. Предыстория. 500 г. нашей эры: изобретение АБАКА (счетов) 1646г. Блез Паскаль изобрел СУММИРУЮЩУЮ МАШИНУ 1973г. В.Лейбниц изобрел АРИФМОМЕТР. Машина выпол- няла 4 арифметических Действия. Программа вводилась с перфоленты. Первое поколение эвм (1946-1959). Надеж- ность – невысокая, требовалась система охлаждения. ЭВМ имели значительные габариты Быстродействие 5-30 тыс. операций в секунду. Программирование в машинных кодах, позднее появились автокоды и ассемблеры. Использовались для научно-технических расчетов. - История развития компьютеров.ppt

История создания компьютера

Слайдов: 30 Слов: 2104 Звуков: 0 Эффектов: 0

Компьютерная история в лицах. Аукцион знаний по информатике. Кто является основателем математической логики. "Компьютерная история в лицах". Буль (Boole) Джордж. Кто является основателем кибернетики. Норберт Винер. Кто придумал схему ПК. Джон фон Нейман. Кто сконструировал счётную машину, которую назвали его именем. Паскаль (Pascal) Блез. Кто является родоначальником компьютерной техники в России. Сергей Алексеевич Лебедев. Эта женщина была 1 программистом. Лавлейс Огаста Ада Кинг. Американец, придумавший компьютер, который работал на электрореле. Герман Холлерит (1860-1929). - История создания компьютера.pptx

История изобретения компьютера

Слайдов: 10 Слов: 594 Звуков: 0 Эффектов: 0

История изобретения компьютера. Электронный компьютер. Оборудование. Компьютеры. Счетная механическая машина. Аналитическое устройство Бэббиджа. Труд. Технические возможности. Основные компоненты. Учёные-кибернетики. - История изобретения компьютера.ppt

История компьютерной техники

Слайдов: 20 Слов: 1287 Звуков: 0 Эффектов: 3

Мультимедийный проект на тему: «Компьютерная техника». Содержание. Введение Теоретическая часть Практическая часть Тесты Литература. Введение. Классификация. Тенденции. История. Поколения. Компьютерная техника. Задачи. Так компьютеры все больше и больше проникают в нашу жизнь. Тесты. Операций с плавающей запятой в секунду. Машин такого уровня около 500 в мире. Малые – ЭВМ. Для цифр разных разрядов были отведены различные зубчатые колеса. Каждое предыдущее колесо соединялось с последующим с помощью одного зубца. Аналитическая машина Чарльза Беббиджа 1832 г. Машина придуманная Ч. Беббиджа была похожа на настоящую фабрику по производству вычислений. - История компьютерной техники.ppt

История развития компьютерной техники

Слайдов: 22 Слов: 1594 Звуков: 0 Эффектов: 0

История создания персональных компьютеров

Слайдов: 12 Слов: 536 Звуков: 0 Эффектов: 0

История создания компьютера. Суан-пан. Леонардо да Винчи (1452 - 1519). Вильгельм Шиккард (1592 - 1635). Блез Паскаль (1623 - 1662). Готфрид Вильгельм Лейбниц (1646 - 1716). Чарльз Беббидж (1792 - 1871). Вильгодт Теофилович Однер (1846 - 1905). Развитие вычислительной техники. Поколения ЭВМ. Заполни пустые строки таблицы. - История создания персональных компьютеров.ppt

История программного обеспечения

Слайдов: 44 Слов: 2309 Звуков: 0 Эффектов: 0

Программное обеспечение компьютера. Системное программное обеспечение. История операционных систем. Операционная система. Классические (несетевые) ОС. Операционные системы привязывают к процессорам. Взаимодействие программного и технического обеспечения. Монолитное ядро. Слоеная система Technishe Hogeschool Eindhoven (THE). ОС- виртуальная машина. Многоядерная структура ОС. Программирование. Ада Лавлейс (1815-1852). История алгоритмических языков. Джон Бэкус и Питер Наур. Язык Кобол. Концепция структурного программирования. Язык программирования Паскаль (Pascal) создан швейцарцем Н.Виртом. - История программного обеспечения.ppt

Первый компьютер

Слайдов: 47 Слов: 818 Звуков: 0 Эффектов: 57

АРХИТЕКТУРА СОВРЕМЕННЫХ ЭВМ Лекция 1: История компьютеров. Шины Уровень микроархитектуры. Костяшки на прутьях для вычислений Используется в Азии! Логарифмическая линейка. Логарифмическая Линейка 1630 Основана на правилах логарифмирования Нэпера Использовалась до 1970. Логарифмическая Линейка. Логарифмические Линейки. Цилиндрическая Логарифмическая Линейка. Спиральная Логарифмическая Линейка. Вильям Шиккард (1592-1635). Первая работающая машина для сложения. Блез Паскаль (1623-1662). Множество зубчатых колёс Вычитание в дополнительном коде. Готфрид Лейбниц (1646 – 1716). Механический калькулятор, выполняющий арифмитические действия. - Первый компьютер.ppt

Изобретения

Слайдов: 28 Слов: 2786 Звуков: 0 Эффектов: 59

Лень как двигатель прогресса. Цель. Лень. Колесо. Электричество. Значимые для нашей цивилизации изобретения. Развитие средств связи. Телеграф заговорил. Электрическая лампочка. Лазер. Влияние на развитие цивилизации. История развития вычислительных устройств. Счет на пальцах. Счет на камнях. Счет на Абаке. Палочки Непера. Логарифмическая линейка. Эскиз механического тринадцатиразрядного суммирующего устройства. Машина Блеза Паскаля. Разностная машина Чарльза Бэббиджа. Герман Холлерит. Компьютеры первого поколения. Компьютеры второго поколения. Компьютеры третьего поколение. Компьютеры четвертого поколения. - Изобретения.ppt

Первые компьютеры

Слайдов: 46 Слов: 1619 Звуков: 0 Эффектов: 501

Кости с зарубками («вестоницкая кость», Чехия, 30 тыс. лет до н.э). Древние средства счета. о. Саламин в Эгейском море (300 лет до н.э.). Бороздки – единицы, десятки, сотни, … количество камней – цифры десятичная система. Саламинская доска. Первые проекты счетных машин. «Паскалина» (1642). Вильгельм Готфрид Лейбниц (1646 - 1716). Сложение, вычитание, умножение, деление! 12-разрядные числа десятичная система. Арифмометр «Феликс» (СССР, 1929-1978) – развитие идей машины Лейбница. Машина Лейбница (1672). Машины Чарльза Бэббиджа. Основы математической логики: Джордж Буль (1815 - 1864). - Первые компьютеры.ppt

История ноутбуков

Слайдов: 20 Слов: 2084 Звуков: 0 Эффектов: 140

Как возник лэптоп. Задачи. Происхождение слова «ноутбук». Сравним ноутбук и компьютер. Исторический путь ноутбука. Самые первые ноутбуки. Техническая характеристика прототипа ноутбука. Ноутбук Адама Осборна. Переломный момент в истории компьютерной индустрии. Ноутбуки 80-х годов. Ноутбуки 90-х. Дальнейшее усовершенствование ноутбуков. Современные ноутбуки. Ноутбук для слепых. Инновационные технологии нового поколения ноутбуков. Ноутбук Cario. Ноутбук Никиты Головлёва. - История ноутбуков.ppt

История развития ЭВМ

Слайдов: 20 Слов: 1020 Звуков: 0 Эффектов: 13

История вычислительной техники. Возникновение счёта. Понятие числа возникло задолго до появления письменности. Раньше люди очень медленно и трудно учились считать, перебивая свой опыт из поколения в поколение. Древнейшие орудия счёта. Камешки, зарубки, засечки… Единичная ("палочная") система счисления. В единичной системе счисленич для записи чисел применялся только один вид знаков - "палочка". В наше время счётные палочки используются для обучения первоклассников. Русские счёты. Паскалево колесо. В 1820 году эльзасец Карл Ксавье Томас получает патент на арифмометр. - ЭВМ 2.ppt

История вычислительной техники

Слайдов: 9 Слов: 468 Звуков: 0 Эффектов: 9

История развития вычислительной техники. История науки и есть наука. Основные этапы развития вычислительной техники. Ручной период автоматизации вычислений. Абак. Счеты. Логарифмическая линейка. Механический период автоматизации вычислений. Машина Шиккарда 1642г. Машина Паскаля 1673г. Машина Лейбница 1881г. Производство арифмометров 1882г. Разностная машина Бэббиджа 1892г. Аналитическая машина Бэббиджа. Электромеханический этап развития вычислительной техники. Счетно-аналитический комплекс Германа Холлерита 1930 г. Ванновер Буш разрабатывает дифференциальный анализатор 1944 г. - Вычислительная техника.ppt

История ЭВМ

Слайдов: 27 Слов: 1048 Звуков: 0 Эффектов: 70

История развития ЭВМ. Содержание: Что такое ЭВМ? ЭВМ = Компьютер. Электронно-вычислительная машина (ЭВМ). Computer (английское слово) – вычислять. V – VI век до нашей эры. Древнегреческий абак. Основная заслуга изобретателей абака – создание позиционной системы представления чисел. XV век нашей эры. Русский абак. XVII век. Блез ПАСКАЛЬ Blas? Paskal (19.06.1623 – 19.08.1662). Арифметическая машина Паскаля. Готфрид Вильгельм ЛЕЙБНИЦ Gottfried Wilhelm Leibnitz (1.07.1646 – 14.11.1716). Механический арифмометр Лейбница (1673г.). XIX век. Чарльз БЭББИДЖ (26.12.1791 – 18.10.1871). Картонные перфокарты. - История ЭВМ.ppt

История создания ЭВМ

Слайдов: 124 Слов: 5251 Звуков: 0 Эффектов: 0

Электронные вычислительные машины. Работы Атанасова. Первая ЭВМ ENIAC. ЭВМ ENIAC. Руководители проекта ENIAC. Проект фон Неймана и его вклад в архитектуру ЭВМ. Фрагменты статьи фон Неймана с соавторами (русский перевод). Основные черты классической фон-неймановской архитектуры ЭВМ. Реализация проекта фон Неймана в США. Сверхсекретная криптоаналитическая лаборатория. Специализированная электронная вычислительная машина. Американская ЭВМ с хранимой программой EDVAC. Первые поколения ЭВМ. Формирование индустрии ЭВМ. ЭВМ Whirlwind – «Вихрь». В 1953 г. к производству ЭВМ общего назначения подключилась фирма IBM. - История создания ЭВМ.ppt

История развития ЭВМ

Слайдов: 12 Слов: 413 Звуков: 0 Эффектов: 46

История развития вычислительных машин. Домеханический этап развития вычислительной техники. Простейшие счетные устройства. Набор деревянных брусков. Механический этап развития. Немецкий философ. Счетные устройства 19 века. Жозеф Марри Жаккар. Аналитическая машина Чарльза Беббиджа. Аналоговые вычислительные машины. Электронно-вычислительные машины. Поколения компьютеров. - История развития ЭВМ.ppsx

История ЭВМ по информатике

Слайдов: 45 Слов: 1605 Звуков: 0 Эффектов: 22

Определение информатики? как науки. Определение Французской Академии наук: Значение термина “Информатика“ на немецком языке - Informatik , на английском - Computer Science. Основные этапы технологического процесса в информационных системах. Цены на отдельные элементы ЭВМ снижаются ежегодно на 25-40%. Классификация современных вычислительных машин. Такие машины являются специализированными, т.е. решают узкий круг однотипных задач. Цифровая вычислительная машина (ЦВМ) – оперирует информацией, представленной в дискретном виде. Классификация современных ЭВМ. Эвм. Супер ЭВМ. - История ЭВМ по информатике.ppt

История создания и развития ЭВМ

Слайдов: 18 Слов: 916 Звуков: 0 Эффектов: 48

История создания ЭВМ. Доэлектронный период. Паскалина. Машина Лейбница. Пафнутий Львович Чебышев сконструировал счетную машину. Аналитическая машина Беббиджа. Табулятор. Первое поколение ЭВМ. Первая в мире ЭВМ – ENIAC. Второе поколение ЭВМ. В 60 – х годах транзисторы стали элементной базой для ЭВМ. Третье поколение. В 1958 году Джон Килби впервые создал опытную интегральную схему. Четвертое поколение. Американская фирма intel объявила о создании микропроцессора. Пятое поколение. - История создания и развития ЭВМ.ppt

Этапы развития ЭВМ

Слайдов: 22 Слов: 1368 Звуков: 0 Эффектов: 120

Вычислительная техника и человек. Он быстрее человека. Маршрут. Период. Механический период. Электронно-вычислительный этап. Фашистский режим. Машина Colossus. Говард Эйкен. Первая электронная вычислительная машина. Создана ЭВМ. Годы применения. Этап. Электронно-вычислительный этап. Информатика в лицах. Прогресс наук и машин. - Этапы развития ЭВМ.pptx

История развития ВТ

Слайдов: 11 Слов: 176 Звуков: 0 Эффектов: 6

Знаковые фигуры в истории ЭВМ (по материалам музея МУК-21). Проект. В 1937 г. машина заработала! С.Лебедев, внес большой вклад в развитие ЭВМ в СССР. МЭСМ 1951 г. Легендарная БЭСМ-6, 1965 г. - История развития ВТ.ppt

История развития техники

Слайдов: 5 Слов: 510 Звуков: 0 Эффектов: 0

История развития вычислительной техники. Изложение материала носит обзорный характер. В действительности история развития ВТ поучительна и достойна более глубокого изучения. Детально раскрыть вышеупомянутую тему, можно используя метод проектов. Планирование проекта. Работа над проектом. Защита проекта. - История развития техники.ppt

История вычислительной техники

Слайдов: 17 Слов: 2502 Звуков: 0 Эффектов: 2

История вычислительной техники. Прошлое. Начало счета. Вид инструментального счета. Римский абак. Вычислительные машины. Блез Паскаль. Цифровые вычислительные устройства. Конрад Цузе. Говард Айкен. Первое поколение ЭВМ. Вклад русских ученых. Сотрудники лаборатории. Эра персональных компьютеров. Поколения ЭВМ. Характеристика поколений ЭВМ. Путешествие. - История вычислительной техники.ppt

Развитие вычислительной техники

Слайдов: 25 Слов: 2565 Звуков: 1 Эффектов: 0

История развития вычислительной техники. В Древнем Риме абак появился, вероятно в V-VI вв н.э., и назывался calculi или abakuli. Изготовлялся абак из бронзы, камня, слоновой кости и цветного стекла. Проволоки соответствуют десятичным разрядам. На верхней крышке 8 круглых отверстий, вокруг каждого нанесена круговая шкала. Принцип работы. Машина Паскаля. Принцип работы машины Паскаля. В отверстиях видны зубчатые колеса, находящиеся ниже плоскости верхней крышки. Каждое колесо может вращаться независимо от другого на собственной оси. Биография Паскаля. Блез Паскаль был третьим ребенком в семье. - Развитие вычислительной техники.ppt

История средств вычислительной техники

Слайдов: 41 Слов: 3146 Звуков: 0 Эффектов: 0

История развития вычислительной техники. Домеханический этап. Ручной этап. Абак. Китайские счеты. Счеты. Появление приборов. Открытие логарифмов. Механический этап. Блез Паскаль. Немецкий ученый Лейбниц. Счетная машина. Склад. Аналитическая машина. Электромеханический этап. Алан Тьюринг. Характеристики. Машины строились на электровакуумных лампах. ЭВМ. ЭНИАК. Академик Сергей Алексеевич Лебедев. Основоположник компьютерной техники в СССР. I поколение ЭВМ. Быстродействие. Строилась на транзисторах. Полупроводниковые машины на транзисторах. Большая электронная счетная машина. - История средств вычислительной техники.ppt

История развития вычислительной техники

Слайдов: 32 Слов: 790 Звуков: 0 Эффектов: 58

История развития вычислительной техники. Цель: Изучить историю создания вычислительной техники; Исследовать этапы компьютеризации с.Поташка. Задачи: Содержание: V веку до н.э. абак получил широкое распространение в Египте, Греции, Риме. Абак. Палочки соотносятся с колонками, а бусинки с числами. У китайцев в основе счета лежала не десятка, а пятерка. Счёты. Счетное устройство. Блез Паскаль (Blaise Pascal, 1623-1662). Логарифмическая линейка. «Ступенчатый вычислитель». Готфрид Вильгельм Лейбниц(Gottfried Wilhelm Leibniz, 1646-1716). Аналитическую машину Бэббиджа построили энтузиасты из Лондонского музея науки. - История развития вычислительной техники.ppt

История создания вычислительной техники

Слайдов: 19 Слов: 2474 Звуков: 0 Эффектов: 68

История вычислительной техники. Потребность в автоматизации обработки данных. Докомпьютерная эпоха. Логарифмическая линейка. Б.Паскаль. Француз Блез Паскаль. Машина Паскаля. Г.В.Лейбниц. Ч.Беббидж. ЭНИАК. Джон Преспер Экерт и Джон Уильям Мокли. Компьютеры на электронных лампах. Первый универсальный программируемый компьютер в континентальной. Изобретение транзистора. Сфера использования электронной вычислительной техники. Элементная база ЭВМ. Язык программирования. Большие интегральные схемы. Быстродействие. - История создания вычислительной техники.pptx

История развития средств вычислительной техники

Слайдов: 84 Слов: 6782 Звуков: 0 Эффектов: 108

История. Времена Ромула. Рука. Простейшим и первым искусственным счетным прибором является бирка. Счетные бирки. Счет при помощи веревок. Счетные узелки у разных народов считались неприкосновенными. Рост и расширение торговли потребовали новые средства для вычислений. Маленький эпизод из истории русских счет. Счет на таблицах. Направление развития счетных инструментов. Выполним умножение. Таблицу можно перенести на дощечки. Логарифмические таблицы. Механические счетные устройства. Эскиз механического тринадцатиразрядного суммирующего устройства. Молодой 18-летний французский математик. - История развития средств вычислительной техники.ppt

Этапы развития вычислительной техники

Слайдов: 27 Слов: 375 Звуков: 0 Эффектов: 6

Виртуальный музей вычислительной техники. Ручной этап развития вычислительной техники. 50 тысяч лет до нашей эры. Древний Египет. Россия. Механический этап развития вычислительной техники. Франция XVII век. Первое программируемое устройство. Англия XIX век. Первый программист - Ада Лавлейс. Электромеханический этап развития вычислительной техники. Герман Холлерит создал табулятор для статистических подсчётов. А. Тьюринг и Пост доказали, что машина может решить любую задачу. Электронный этап развития вычислительной техники. I поколение компьютеров. II поколение компьютеров. - Этапы развития вычислительной техники.ppt

Тенденции развития вычислительной техники

Слайдов: 30 Слов: 1325 Звуков: 0 Эффектов: 120

История развития вычислительной техники. Компьютер. Древние люди. Первые средства счета. Абак. Счеты. Первые проекты счетных машин. Машина Шиккарда. Паскалина. Логарифмическая линейка. Арифмометр Лейбница. Усовершенствованный арифмометр. Механический калькулятор. Аналитическая машина Бэббиджа. Первый программист. Энигма. Время Второй мировой войны. Конрад Цузе. Марк-I. Хранение данных на бумажной ленте. Эниак. Первые компьютеры. Малая электронно-счетная машина. Большая электронно-счетная машина. Поколения компьютеров. Первое поколение ЭВМ. Операционные системы. - Тенденции развития вычислительной техники.pptx

Этапы истории развития вычислительной техники

Слайдов: 17 Слов: 2566 Звуков: 0 Эффектов: 0

История развития вычислительной техники. Определение ВТ. Этапы развития. Домеханический этап. Механический этап. Электромеханический этап. Перфокарта. Электронный этап. ЭВМ 1-го поколения. ЭВМ 2-го поколения. ЭВМ 3-го поколения. ЭВМ 4-го поколения. Последние разработки. Операционная система. Операционная система Windows. Современный персональный компьютер. - Этапы истории развития вычислительной техники.ppt

Основные этапы развития вычислительной техники

Слайдов: 25 Слов: 1240 Звуков: 0 Эффектов: 121

История развития вычислительной техники. Характеристика поколения ЭВМ. Первые вычислительные машины в ХХ веке. Цифровые ЭВМ. Много аналоговых вычислительных машин. Разработки более эффективных счетных машин. Колосс. Эниак. Первые компьютеры. Компьютеры С.А. Лебедева. Большая электронно-счетная машина. Ламповая вычислительная машина. Поколения компьютеров. Первое поколение ЭВМ. Быстродействие. Магнитная лента. Операционные системы. Компьютеры на больших и сверхбольших интегральных схемах. Характеристика различных поколений ЭВМ. Суперкомпьютеры. Cray-2. - Основные этапы развития вычислительной техники.ppt

История развития поколений вычислительной техники

Слайдов: 51 Слов: 2964 Звуков: 0 Эффектов: 0

История создания и развития вычислительной техники. Основные даты. Первая серийная ЭВМ. Вестоницкая кость. Инструмент. Китайские счеты. Дощаный счет. Греки и египтяне. Индийские ученые. Арабский ученый. Блез Паскаль. Механическое устройство. Леонардо да Винчи. Стержни. Чертежи. Автоматическое вычислительное устройство. Английский математик. Ноябрь. Первая программистка мира. Ада Августа Байрон. Первые ЭВМ. Болгарин. Первая универсальная ЭВМ. Революция в мире компьютеров. Шаг в развитии. Личность в истории. Доклад фон Неймана. Разработки отечественной вычислительной техники. - История развития поколений вычислительной техники.ppt

Вычисления в доэлектронную эпоху

Слайдов: 28 Слов: 988 Звуков: 0 Эффектов: 0

Тема древние вычислительны машины. Создатели. Туров Д. Иваненко К. Письменко М. Вычисления в доэлектронную эпоху. Потребность счета предметов у человека возникла еще в доисторические времена. У большинства народов первым таким эталоном были пальцы (счет на пальцах). Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками. В России счеты появились в XVI веке. - Вычисления в доэлектронную эпоху.ppt

Первые механические машины

Слайдов: 33 Слов: 994 Звуков: 0 Эффектов: 0

История ЭВМ. Механические калькуляторы, считающие десятичные числа, использовались до 1970-х. Паскалина. В 1801 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Компания Холлерита в конечном счёте стала ядром IBM. К 1950 году технология IBM стала вездесущей в промышленности и правительстве. Предупреждение, напечатанное на большинстве карт, «не сворачивать, не скручивать и не рвать», стало девизом послевоенной эры. В 1948 году появился Curta - небольшой механический калькулятор, который можно было держать в одной руке. - Первые механические машины.ppt

Джон фон Нейман

Слайдов: 12 Слов: 418 Звуков: 0 Эффектов: 24

Джон фон Нейман. Венгро-американский математик. Праотец современной архитектуры компьютеров. Архитектура фон Неймана. Джон фон Нейман придумал схему постройки компьютера. Этапы выполнения цикла. Цикл выполняется неизменно. Процессор. Команды центрального процессора. Скорость перехода. -