Интегрирование по частям. Решение интегралов онлайн

Формула интегрирования по частям имеет вид:
.

Метод интегрирования по частям состоит в применении этой формулы. При практическом применении стоит отметить, что u и v являются функциями от переменной интегрирования. Пусть переменная интегрирования обозначена как x (символ после знака дифференциала d в конце записи интеграла) . Тогда u и v являются функциями от x : u(x) и v(x) .
Тогда
, .
И формула интегрирования по частям принимает вид:
.

То есть подынтегральная функция должна состоять из произведения двух функций:
,
одну из которых обозначаем как u: g(x) = u , а у другой должен вычисляться интеграл (точнее находиться первообразная):
, тогда dv = f(x) dx .

В некоторых случаях f(x) = 1 . То есть в интеграле
,
можно положить g(x) = u, x = v .

Резюме

Итак, в данном методе, формулу интегрирования по частям стоит запомнить и применять в двух видах:
;
.

Интегралы, вычисляющиеся интегрированием по частям

Интегралы, содержащие логарифм и обратные тригонометрические (гиперболические) функции

По частям часто интегрируются интегралы, содержащие логарифм и обратные тригонометрические или гиперболические функции. При этом ту часть, которая содержит логарифм или обратные тригонометрические (гиперболические) функции обозначают через u , оставшуюся часть - через dv .

Вот примеры таких интегралов, которые вычисляются методом интегрирования по частям:
, , , , , , .

Интегралы, содержащие произведение многочлена и sin x, cos x или e x

По формуле интегрирования частям находятся интегралы вида:
, , ,
где P(x) – многочлен от x . При интегрировании, многочлен P(x) обозначают через u , а e ax dx , cos ax dx или sin ax dx - через dv .

Вот примеры таких интегралов:
, , .

Примеры вычисления интегралов методом интегрирования по частям

Примеры интегралов, содержащих логарифм и обратные тригонометрические функции

Пример

Вычислить интеграл:

Подробное решение

Здесь подынтегральное выражение содержит логарифм. Делаем подстановки
u = ln x ,
dv = x 2 dx .
Тогда
,
.

Вычисляем оставшийся интеграл:
.
Тогда
.
В конце вычислений нужно обязательно добавить постоянную C , поскольку неопределенный интеграл - это множество всех первообразных. Также ее можно было добавлять и в промежуточных вычислениях, но это лишь загромождало бы выкладки.

Более короткое решение

Можно представить решение и в более коротком варианте. Для этого не нужно делать подстановки с u и v , а можно сгруппировать сомножители и применить формулу интегрирования по частям во втором виде.

.
Ответ

Примеры интегралов, содержащих произведение многочлена и sin x, cos x или ex

Пример

Вычислить интеграл:
.

Решение

Введем экспоненту под знак дифференциала:
e - x dx = - e - x d(-x) = - d(e - x) .

Интегрируем по частям.
.
Также применяем метод интегрирования по частям.
.
.
.
Окончательно имеем.

В этой теме мы подробно поговорим вычислении неопределённых интегралов с помощью так называемой "формулы интегрирования по частям". Нам понадобится таблица неопределенных интегралов и таблица производных . В первой части будут разобраны стандартные примеры, которые большей частью встречаются в типовых расчётах и контрольных работах. Более сложные примеры разобраны во второй части .

Постановка задачи в стандартном случае следующая. Допустим, под интегралом у нас расположены две функции разной природы : многочлен и тригонометрическая функция, многочлен и логарифм, многочлен и обратная тригонометрическая функция и так далее. В этой ситуации выгодно отделить одну функцию от другой. Грубо говоря, имеет смысл разбить подынтегральное выражение на части, - и разобраться с каждой частью по отдельности. Отсюда и название: "интегрирование по частям". Применение этого метода основано на следующей теореме:

Пусть функции $u(x)$ и $v(x)$ дифференцируемы на некотором промежутке, и на этом промежутке существует интеграл $\int v \; du$. Тогда на этом же промежутке существует и интеграл $\int u \; dv$, при этом верно следущее равенство:

\begin{equation} \int u \; dv=u\cdot v-\int v\; du \end{equation}

Формулу (1) и называют "формулой интегрирования по частям". Иногда, применяя вышеуказанную теорему, говорят о использовании "метода интегрирования по частям". Нам будет важна суть этого метода, которую и рассмотрим на примерах. Существует несколько стандартных случаев, в которых явно применима формула (1). Именно эти случаи и станут темой данной страницы. Пусть $P_n(x)$ - многочлен n-й степени. Введём два правила:

Правило №1

Для интегралов вида $\int P_n(x) \ln x \;dx$, $\int P_n(x) \arcsin x \;dx$, $\int P_n(x) \arccos x \;dx$, $\int P_n(x)\arctg x \;dx$, $\int P_n(x) \arcctg x \;dx$ принимаем $dv=P_n(x)dx$.

Правило №2

Для интегралов вида $\int P_n(x) a^x \;dx$ ($a$ - некоторое положительное число), $\int P_n(x) \sin x \;dx$, $\int P_n(x) \cos x \;dx$, $\int P_n(x)ch x \;dx$, $\int P_n(x) sh x \;dx$ принимаем $u=P_n(x)$.

Сразу отмечу, что указанные выше записи не нужно воспринимать буквально. Например, в интегралах вида $\int P_n(x) \ln x \;dx$ не обязательно будет стоять именно $\ln x$. Там могут быть расположены и $\ln 5x$, и $\ln (10x^2+14x-5)$. Т.е. запись $\ln x$ нужно воспринимать как своего рода обобщение.

Ещё один момент. Бывает, что формулу интегрирования по частям приходится применять несколько раз. Об этом поговорим подробнее в примерах №4 и №5. Теперь перейдём непосредственно к решению типичных задач. Решение задач, уровень которых чуть выше стандартных, разбирается во второй части .

Пример №1

Найти $\int (3x+4) \cos (2x-1) \; dx$.

Под интегралом расположен многочлен $3x+4$ и тригонометрическая функция $\cos (2x-1)$. Это классический случай для применения формулы , поэтому возьмём заданный интеграл по частям. Формула требует, чтобы интеграл $\int (3x+4) \cos (2x-1) \; dx$ был представлен в форме $\int u \; dv$. Нам нужно выбрать выражения для $u$ и для $dv$. Можно в качестве $u$ принять $3x+4$, тогда $dv=\cos (2x-1)dx$. Можно взять $u=\cos (2x-1)$, тогда $dv=(3x+4)dx$. Чтобы сделать правильный выбор обратимся к . Заданный интеграл $\int (3x+4) \cos (2x-1) \; dx$ подпадает под вид $\int P_n(x) \cos x \;dx$ (многочлен $P_n(x)$ в нашем интеграле имеет вид $3x+4$). Согласно нужно выбрать $u=P_n(x)$, т.е. в нашем случае $u=3x+4$. Так как $u=3x+4$, то $dv=\cos(2x-1)dx$.

Однако недостаточно просто выбрать $u$ и $dv$. Нам еще понадобятся значения $du$ и $v$. Так как $u=3x+4$, то:

$$ du=d(3x+4)=(3x+4)"dx=3dx.$$

Теперь разберёмся с функцией $v$. Так как $dv=\cos(2x-1)dx$, то согласно определению неопределённого интеграла имеем: $ v=\int \cos(2x-1)\; dx$. Чтобы найти нужный интеграл применим внесение под знак дифференциала :

$$ v=\int \cos(2x-1)\; dx=\frac{1}{2}\cdot \int \cos(2x-1)d(2x-1)=\frac{1}{2}\cdot \sin(2x-1)+C=\frac{\sin(2x-1)}{2}+C. $$

Однако нам нужно не всё бесконечное множество функций $v$, которое описывает формула $\frac{\sin(2x-1)}{2}+C$. Нам нужна какая-то одна функция из этого множества. Чтобы получить искомую функцию нужно вместо $C$ подставить какое-либо число. Проще всего, разумеется, подставить $C=0$, получив при этом $v=\frac{\sin(2x-1)}{2}$.

Итак, соберём всё вышеизложенное воедино. Мы имеем: $u=3x+4$, $du=3dx$, $dv=\cos(2x-1)dx$, $v=\frac{\sin(2x-1)}{2}$. Подставляя всё это в правую часть формулы будем иметь:

$$ \int (3x+4) \cos (2x-1) \; dx=(3x+4)\cdot\frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx. $$

Осталось, по сути, только найти $\int\frac{\sin(2x-1)}{2}\cdot 3dx$. Вынося константу (т.е. $\frac{3}{2}$) за знак интеграла и применяя метод внесения под знак дифференциала , получим:

$$ (3x+4)\cdot \frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{2}\int \sin(2x-1) \;dx= \\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\int \sin(2x-1) \;d(2x-1)= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\cdot (-\cos (2x-1))+C=\\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C. $$

Итак, $\int (3x+4) \cos (2x-1) \; dx=\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C$. В сокращенном виде процесс решения записывают так:

$$ \int (3x+4) \cos (2x-1) \; dx=\left | \begin{aligned} & u=3x+4; \; du=3xdx.\\ & dv=\cos(2x-1)dx; \; v=\frac{\sin(2x-1)}{2}. \end{aligned} \right |=\\ =(3x+4)\cdot\frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{2}\int \sin(2x-1) \;dx=\\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\cdot (-\cos (2x-1))+C= \frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C. $$

Неопределённый интеграл по частям найден, осталось лишь записать ответ.

Ответ : $\int (3x+4) \cos (2x-1) \; dx=\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C$.

Полагаю, здесь не обойдётся без вопроса, поэтому попробую сформулировать его и дать ответ.

Почему мы приняли именно $u=3x+4$ и $dv=\cos(2x-1)dx$? Да, интеграл был решён. Но, может быть, если бы мы взяли $u=\cos (2x-1)$ и $dv=(3x+4)dx$ интеграл тоже был бы найден!

Нет, если принять $u=\cos (2x-1)$ и $dv=(3x+4)dx$, то ничего хорошего с этого не выйдет, - интеграл не упростится. Судите сами: если $u=\cos(2x-1)$, то $du=(\cos(2x-1))"dx=-2\sin(2x-1)dx$. Кроме того, так как $dv=(3x+4)dx$, то:

$$ v=\int (3x+4) \; dx=\frac{3x^2}{2}+4x+C.$$

Приняв $C=0$, получим $v=\frac{3x^2}{2}+4x$. Подставим теперь в формулу найденные значения $u$, $du$, $v$ и $dv$:

$$ \int (3x+4) \cos (2x-1) \; dx=\cos (2x-1)\cdot \left(\frac{3x^2}{2}+4x \right) - \int \left(\frac{3x^2}{2}+4x \right) \cdot (-2\sin(2x-1)dx)=\\ =\cos (2x-1)\cdot \left(\frac{3x^2}{2}+4x \right) +2\cdot\int \left(\frac{3x^2}{2}+4x \right) \sin(2x-1)\;dx $$

И к чему мы пришли? Мы пришли к интегралу $\int \left(\frac{3x^2}{2}+4x \right) \sin(2x-1)\;dx$, который явно сложнее нежели исходный интеграл $\int (3x+4) \cos (2x-1) \; dx$. Это говорит о том, что выбор $u$ и $dv$ был сделан неудачно. После применения формулы интегрирования по частям полученный интеграл должен быть проще исходного. Находя неопределенный интеграл по частям мы должны упрощать его, а не усложнять, поэтому если после применения формулы (1) интеграл усложнился, то выбор $u$ и $dv$ осуществлён некорректно.

Пример №2

Найти $\int (3x^4+4x-1) \ln 5x \; dx$.

Под интегралом расположен многочлен (т.е. $3x^4+4x-1$) и $\ln 5x$. Этот случай подпадает под , поэтому возьмём интеграл по частям. Заданный интеграл имеет такую же структуру, как и интеграл $\int P_n(x) \ln x\; dx$. Вновь, как и в примере №1, нам нужно выбрать какую-то часть подынтегрального выражения $(3x^4+4x-1) \ln 5x \; dx$ в качестве $u$, а какую-то часть - в качестве $dv$. Согласно , нужно выбрать $dv=P_n(x)dx$, т.е. в нашем случае $dv=(3x^4+4x-1)dx$. Если из выражения $(3x^4+4x-1) \ln 5x \; dx$ "изьять" $dv=(3x^4+4x-1)dx$, то останется $\ln 5x$ - это и будет функция $u$. Итак, $dv=(3x^4+4x-1)dx$, $u=\ln 5x$. Для применения формулы нам понадобятся также $du$ и $v$. Так как $u=\ln 5x$, то:

$$ du=d(\ln 5x)=(\ln 5x)"dx=\frac{1}{5x}\cdot 5 dx=\frac{1}{x}dx. $$

Теперь найдём функцию $v$. Так как $dv=(3x^4+4x-1)dx$, то:

$$ v=\int(3x^4+4x-1)\; dx=\frac{3x^5}{5}+2x^2-x+C. $$

Из всего найденного бесконечного множества функций $\frac{3x^5}{5}+2x^2-x+C$ нам нужно выбрать одну. А проще всего это сделать приняв $C=0$, т.е. $v=\frac{3x^5}{5}+2x^2-x$. Для применения формулы всё готово. Подставим в правую часть указанной формулы значения $u=\ln 5x$, $du=\frac{1}{x}dx$, $v=\frac{3x^5}{5}+2x^2-x$ и $dv=(3x^4+4x-1)dx$ будем иметь:

$$ \int (3x^4+4x-1) \ln 5x \; dx=\left | \begin{aligned} & u=\ln 5x; \; du=\frac{1}{x}dx.\\ & dv=(3x^4+4x-1)dx; \; v=\frac{3x^5}{5}+2x^2-x. \end{aligned} \right |=\\ =\ln 5x \cdot \left (\frac{3x^5}{5}+2x^2-x \right)-\int \left (\frac{3x^5}{5}+2x^2-x \right)\cdot \frac{1}{x}dx=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x -\int \left (\frac{3x^4}{5}+2x-1 \right)dx=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \left (\frac{3x^5}{25}+x^2-x \right)+C=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \frac{3x^5}{25}-x^2+x+C. $$

Ответ : $\int (3x^4+4x-1) \ln 5x \; dx=\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \frac{3x^5}{25}-x^2+x+C$.

Пример №3

Найти $\int \arccos x \; dx$.

Этот интеграл имеет структуру $\int P_n(x) \arccos x \;dx$, подпадающую под . Понимаю, что сразу возникнет резонный вопрос: "а где в заданном интеграле $\int\arccos x \; dx$ спрятали многочлен $P_n(x)$? Там же нет никакого многочлена, только арккосинус и всё!". Однако на самом деле под интегралом расположен не только арккосинус. Я представлю интеграл $\int arccos x \; dx$ в таком виде: $\int 1\cdot\arccos x \; dx$. Согласитесь, что от домножения на единицу подынтегральное выражение не изменится. Вот эта единица и есть $P_n(x)$. Т.е. $dv=1\cdot dx=dx$. А в качестве $u$ (согласно ) принимаем $\arccos x$, т.е. $u=\arccos x$. Значения $du$ и $v$, кои учавствуют в формуле , найдём так же, как и в предыдущих примерах:

$$ du=(\arccos x)"dx=-\frac{1}{\sqrt{1-x^2}}dx;\\ v=\int 1\; dx=x+C. $$

Как и в предыдущих примерах, полагая $C=0$ получим $v=x$. Подставляя все найденные параметры в формулу , будем иметь следующее:

$$ \int \arccos x \; dx=\left | \begin{aligned} & u=\arccos x; \; du=-\frac{1}{\sqrt{1-x^2}}dx.\\ & dv=dx; \; v=x. \end{aligned} \right |=\\ =\arccos x \cdot x-\int x\cdot \left(-\frac{1}{\sqrt{1-x^2}}dx \right)= \arccos x \cdot x+\int \frac{xdx}{\sqrt{1-x^2}}=\\ =x\cdot\arccos x-\frac{1}{2}\cdot\int (1-x^2)^{-\frac{1}{2}}d(1-x^2)= =x\cdot\arccos x-\frac{1}{2}\cdot\frac{(1-x^2)^{\frac{1}{2}}}{\frac{1}{2}}+C=\\ =x\cdot\arccos x-\sqrt{1-x^2}+C. $$

Ответ : $\int\arccos x \; dx=x\cdot\arccos x-\sqrt{1-x^2}+C$.

Пример №4

Найти $\int (3x^2+x) e^{7x} \; dx$.

В этом примере формулу интегрирования по частям придётся применять два раза. Интеграл $\int (3x^2+x) e^{7x} \; dx$ имеет структуру $\int P_n(x) a^x \;dx$. В нашем случае $P_n(x)=3x^2+x$, $a=e$. Согласно имеем: $u=3x^2+x$. Соответственно, $dv=e^{7x}dx$.

$$ du=(3x^2+x)"=(6x+1)dx;\\ v=\int e^{7x}\;dx=\frac{1}{7}\cdot \int e^{7x}\;d(7x)=\frac{1}{7}\cdot e^{7x}+C=\frac{e^{7x}}{7}+C. $$

Опять-таки, как и в предыдущих примерах, полагая $C=0$, имеем: $v=\frac{e^{7x}}{7}$.

$$ \int (3x^2+x) e^{7x} \; dx=\left | \begin{aligned} & u=3x^2+x; \; du=(6x+1)dx.\\ & dv=e^{7x}dx; \; v=\frac{e^{7x}}{7}. \end{aligned} \right |=\\ =(3x^2+x)\cdot\frac{e^{7x}}{7}-\int \frac{e^{7x}}{7}\cdot (6x+1)dx= \frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \int (6x+1) e^{7x}\;dx. $$

Мы пришли к интегралу $\int (6x+1) e^{7x}\;dx$, который вновь необходимо брать по частям. Приняв $u=6x+1$ и $dv=e^{7x}dx$ будем иметь:

$$ \frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \int (6x+1) e^{7x}\;dx=\left | \begin{aligned} & u=6x+1; \; du=6dx.\\ & dv=e^{7x}dx; \; v=\frac{e^{7x}}{7}. \end{aligned} \right |=\\ =\frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \left ((6x+1)\cdot\frac{e^{7x}}{7} - \int\frac{e^{7x}}{7}\cdot 6\;dx \right)=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6}{49}\cdot\int\ e^{7x}\;dx=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6}{49}\cdot\frac{e^{7x}}{7}+C=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6\; e^{7x}}{343}+C. $$

Полученный ответ можно и упростить, раскрыв скобки и перегруппировав слагаемые:

$$ \frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6\; e^{7x}}{343}+C=e^{7x}\cdot \left(\frac{3x^2}{7}+\frac{x}{49}-\frac{1}{343} \right)+C. $$

Ответ : $\int (3x^2+x) e^{7x} \; dx=e^{7x}\cdot \left(\frac{3x^2}{7}+\frac{x}{49}-\frac{1}{343} \right)+C$.

Пример №5

Найти $\int (x^2+5)\sin(3x+1) \; dx$.

Здесь, как и в предыдущем примере, интегрирование по частям применяется дважды. Подробные пояснения были даны ранее, поэтому приведу только решение:

$$ \int (x^2+5)\sin(3x+1) \; dx=\left | \begin{aligned} & u=x^2+5; \; du=2xdx.\\ & dv=\sin(3x+1)dx; \; v=-\frac{\cos(3x+1)}{3}. \end{aligned} \right |=\\ =(x^2+5)\cdot \left(-\frac{\cos(3x+1)}{3} \right)-\int\left(-\frac{\cos(3x+1)}{3} \right)\cdot 2xdx=\\ = -\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2}{3}\int x\cos(3x+1)dx= \left | \begin{aligned} & u=x; \; du=dx.\\ & dv=\cos(3x+1)dx; \; v=\frac{\sin(3x+1)}{3}. \end{aligned} \right |=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2}{3}\cdot \left(x\cdot\frac{\sin(3x+1)}{3}-\int\frac{\sin(3x+1)}{3}dx \right)=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{2}{9}\cdot\int\sin(3x+1)dx=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{2}{9}\cdot \left(-\frac{\cos(3x+1)}{3}\right)+C=\\ = -\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}+\frac{2\cos(3x+1)}{27}+C=\\ =-\frac{x^2\cdot\cos(3x+1)}{3}-\frac{5\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}+\frac{2\cos(3x+1)}{27}+C=\\ =-\frac{x^2\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{43\cos(3x+1)}{27}+C. $$

Ответ : $\int (x^2+5)\sin(3x+1) \; dx=-\frac{x^2\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{43\cos(3x+1)}{27}+C$.

Применение метода интегрирования по частям в несколько нестандартных случаях, не подпадающих под действие правил №1 и №2, будет дано во

Понятие первообразной и неопределенного интеграла. Теорема о совокупности первообразных. Свойства неопределенного интеграла. Таблица интегралов.

Функция F(x) называется первообразной для функции f(x) , на заданном промежутке, если на этом промежутке функция F(x) непрерывна, и в каждой внутренней точке промежутка справедливо равенство: F’(x) = f(x)

Теорема 1 . Если функция F(x) имеет на промежутке первообразную F(x), то и все функции вида F(x)+C будут для нее первообразными на том же промежутке. Обратно, любая первообразная Ф(x) для функции y = f(x) может быть представлена в виде Ф(x) = F(x)+C, где F(x) - одна из первообразных функций, а C - произвольная постоянная.

Доказательство:

По определению первообразной имеем F’(x) = f(x). Учитывая, что производная постоянной равна нулю, получаем

(F(x)+C)’ = F’(x)+C’ = F’(x) = f(x). Это и означает, что F(x)+C является первообразной для y = f(x).Покажем теперь, что если функция y = f(x) задана на некотором промежутке и F(x) - одна из ее первообразных, то Ф(x) может быть представлена в виде

В самом деле, по определению первообразной имеем

Ф’(x) = F(x)+C и F’(x) = f(x).

Но две функции, имеющие на промежутке равные производные, отличаются друг от друга лишь на постоянное слагаемое. Значит, Ф(x) = F(x)+C, что и требовалось доказать.

Определение.

Совокупность всех первообразных для функции y = f(x) на заданном промежутке называется неопределенным интегралом этой функции и обозначается ∫f(x)dx = F(x)+C

Функция f(x) называется подынтегральной функцией, а произведение f(x)*dx - подынтегральным выражением.

Часто говорят: "взять неопределенный интеграл" или "вычислить неопределенный интеграл", понимая под этим следующее: найти множество всех первообразных для подынтегральной функции,

Свойства неопределенного интеграла

1. (f(x)dx) = f(x)

2. ∫f′(x)dx = f(x) + c

3. ∫a ⋅ f(x)dx = a∫f(x)dx, a ≠ 0

4. ∫(f1(x) + f2(x))dx = ∫f1(x)dx + ∫f2(x)dx

Таблица интегралов

Интегрирование подстановкой и по частям в неопределенном интеграле.

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (т. е. подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводащимся (в случае «удачной» подстановки). Общих методов подбора подстановок не существует.

Пусть тpебyетcя вычислить интеграл ∫f(x)dx. Сделаем подстановку х =φ(t), где φ(t) - функция, имеющая непрерывную производную. Тогда dx=φ"(t) dt и на основании свойства инвариантности формулы интегрирования неопpeделeннoгo интеграла получаем формулу интегриpoвaния подcтaнoвкoй ∫f(x)dx = ∫f(φ(t)) * φ’(t)dt Эта формула также называется формулой замены переменных в неопределeннoм интеграле. Пoслe нахождения интеграла правой части этого равенства следует перейти от новой переменной интегрирования t назад к переменной х.

Метод интегрирования по частям

Пусть u=u(х) и ν=v(х) - функции, имеющие непрерывные производные. Тогда d(uv)=u dv+v du.

Интегрируя это равенство, получим ∫d(uv) = ∫udv + ∫vdu или

∫udv =uv - ∫vdu

Полученная формула называется формулой интегрирования по частям. Она дает возможность свести вычисление интеграла ∫udv к вычислению интеграла ∫vdu, который может оказаться существенно более простым, чем исходный.

Что такое интегрирование по частям? Чтобы освоить этот вид интегрирования, давайте для начала вспомним производную произведения:

${{\left(f\cdot g \right)}^{\prime }}={f}"\cdot g+f\cdot {g}"$

Спрашивается: ну и при чем тут интегралы? А давайте теперь проинтегрируем обе стороны этого уравнения. Так и запишем:

$\int{{{\left(f\cdot g \right)}^{\prime }}\text{d}x=}\int{{f}"\cdot g\,\text{d}x+\int{f\cdot {g}"\,\text{d}x}}$

Но что такое первообразная от штриха? Это просто сама функция, которая стоит внутри штриха. Так и запишем:

$f\cdot g=\int{{f}"\cdot g\,\text{d}x+\int{f\cdot {g}"\,\text{d}x}}$

В данном уравнении предлагаю выразить слагаемое. Имеем:

$\int{{f}"\cdot g\,\text{d}x=f\cdot g-\int{f\cdot {g}"\,\text{d}x}}$

Это и есть формула интегрирования по частям . Таким образом, мы, по сути, меняем местами производную и функцию. Если изначально у нас был интеграл от штриха, умноженной на что-либо, то затем получается интеграл от нового чего-либо, умноженной на штрих. Вот и все правило. На первый взгляд данная формула может показаться сложной и бессмысленной, но, на самом деле, она может значительно упрощать вычисления. Сейчас посмотрим.

Примеры вычисления интегралов

Задача 1. Вычислите:

\[\int{\ln x\,\text{d}x}\]\[\]

Перепишем выражение, добавив перед логарифмом 1:

\[\int{\ln x\,\text{d}x}=\int{1\cdot \ln x\,\text{d}x}\]

Мы имеем право сделать это, потому что ни число, ни функция не изменятся. Теперь сравним это выражение с тем, что у нас написано в формуле. В роли ${f}"$ выступает 1, так и запишем:

$\begin{align}& {f}"=1\Rightarrow f=x \\& g=\ln x\Rightarrow {g}"=\frac{1}{x} \\\end{align}$

Все эти функции есть в таблицах. Теперь, когда мы расписали все элементы, которые входят в наше выражение, перепишем данный интеграл по формуле интегрирования по частям:

\[\begin{align}& \int{1\cdot \ln x\,\text{d}x}=x\ln x-\int{x\cdot \frac{1}{x}\text{d}x}=x\ln x-\int{\text{d}x}= \\& =x\ln x-x+C=x\left(\ln x-1 \right)+C \\\end{align}\]

Все, интеграл найден.

Задача 2. Вычислите:

$\int{x{{\text{e}}^{-x}}\,\text{d}x=\int{x\cdot {{e}^{-x}}\,\text{d}x}}$

Если в роли производной, от которой нам нужно будет сейчас найти первообразную, мы возьмем $x$, то получим${{x}^{2}}$, и итоговое выражение будет содержать ${{x}^{2}}{{\text{e}}^{-x}}$.

Очевидно, задача не упрощается, поэтому мы поменяем местами множители под знаком интеграла:

$\int{x\cdot {{\text{e}}^{-x}}\,\text{d}x}=\int{{{\text{e}}^{-x}}\cdot x\,\text{d}x}$

А вот теперь вводим обозначения:

${f}"={{\text{e}}^{-x}}\Rightarrow f=\int{{{\text{e}}^{-x}}\,\text{d}x}=-{{\text{e}}^{-x}}$

Дифференцируем ${{\text{e}}^{-x}}$:

${{\left({{\text{e}}^{-x}} \right)}^{\prime }}={{\text{e}}^{-x}}\cdot {{\left(-x \right)}^{\prime }}=-{{\text{e}}^{-x}}$

Другими словами, сначала добавляется «минус», а затем обе стороны интегрируются:

\[\begin{align}& {{\left({{\text{e}}^{-x}} \right)}^{\prime }}=-{{\text{e}}^{-x}}\Rightarrow {{\text{e}}^{-x}}=-{{\left({{\text{e}}^{-x}} \right)}^{\prime }} \\& \int{{{\text{e}}^{-x}}\,\text{d}x}=-\int{{{\left({{\text{e}}^{-x}} \right)}^{\prime }}\text{d}x}=-{{\text{e}}^{-x}}+C \\\end{align}\]

Теперь разберёмся с функцией$g$:

$g=x\Rightarrow {g}"=1$

Считаем интеграл:

$\begin{align}& \int{{{\text{e}}^{-x}}\cdot x\,\text{d}x}=x\cdot \left(-{{\text{e}}^{-x}} \right)-\int{\left(-{{\text{e}}^{-x}} \right)\cdot 1\cdot \text{d}x}= \\& =-x{{\text{e}}^{-x}}+\int{{{\text{e}}^{-x}}\,\text{d}x}=-x{{\text{e}}^{-x}}-{{\text{e}}^{-x}}+C=-{{\text{e}}^{-x}}\left(x+1 \right)+C \\\end{align}$

Итак, мы выполнили второе интегрирование по частям.

Задача 3. Вычислите:

$\int{x\cos 3x\,\text{d}x}$

Что в этом случае брать за${f}"$ , а что за$g$? Если в роли производной будет выступать$x$ , то при интегрировании возникнет$\frac{{{x}^{2}}}{2}$, и никуда у нас первый множитель не пропадет — будет $\frac{{{x}^{2}}}{2}\cdot \cos 3x$. Поэтому опять поменяем множители местами:

$\begin{align}& \int{x\cos 3x\,\text{d}x}=\int{\cos 3x\cdot x\,\text{d}x} \\& {f}"=\cos 3x\Rightarrow f=\int{\cos 3x\,\text{d}x}=\frac{\sin 3x}{3} \\& g=x\Rightarrow {g}"=1 \\\end{align}$

Переписываем наше исходное выражение и раскладываем его по формуле интегрирования по частям:

\[\begin{align}& \int{\cos 3x\cdot x\ \text{d}x}=\frac{\sin 3x}{3}\cdot x-\int{\frac{\sin 3x}{3}\text{d}x}= \\& =\frac{x\sin 3x}{3}-\frac{1}{3}\int{\sin 3x\,\text{d}x}=\frac{x\sin 3x}{3}+\frac{\cos 3x}{9}+C \\\end{align}\]

Все, третья задача решена.

В заключение еще раз взглянем на формулу интегрирования по частям . Как мы выбираем, какой из множителей будет производной, а какой будет настоящей функцией? Критерий здесь всего один: элемент, который мы будем дифференцировать, должен давать либо «красивое» выражение, которое потом сократится, либо при дифференцировании вообще исчезать. На этом урок закончен.

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями:


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.