Характеристики и свойства минеральной ваты разных марок. Теплопроводность минеральной ваты в сравнении с другими утеплителями Конструкционные материалы и их показатели

Разновидности минеральной ваты

Минеральные утеплители – это утеплители, изготовленные из сырья минерального происхождения. Наиболее популярным и широко используемым утеплителем является минеральная вата. Теплопроводность минеральной ваты - важный показатель целесообразности использования в качестве утеплителя.

Различают минеральную вату каменную и шлаковую . Каменную вату производят из различных горных пород, например, базальта, известняка, доломита. Она долговечна, качественна, имеет высокие эксплуатационные характеристики и часто используется при постройке зданий и строений.

Сырьем для шлаковой ваты является смесь из шлаков чёрной и цветной металлургии. Она менее долговечна, не предназначена для строений длительного использования. Не стоит использовать ее в условиях перепадов температур и повышенной влажности.

Показатели минеральной ваты

Основные показатели минеральной ваты приведены в таблице

Характеристика

Минеральная вата

Плотность

Водопоглощение при полном погружении, не более

Средний диаметр волокна, не более

Теплопроводность при 283+1 К, не более

0,044 Вт/м *К

Предел прочности на сдвиг, не менее

Предел прочности на сжатие, не менее

Предел прочности на растяжение, не менее

Теплопроводность утеплителей. Что это?

Коэффициент теплопроводности показывает количество тепла, проводимое через 1 квадратный метр поверхности материала толщиной в 1 м за час при отсутвии утечки тепла сбоку и разности температур обеих поверхностей в 1 °С. Это одно из наиболее важных свойств теплоизоляционных материалов. Понятно, что чем меньше показатель теплопроводности, тем меньше тепла теряется.

Теплопроводность минеральной ваты

Если сравнивать теплопроводность минеральной ваты с теплопроводностью других теплоизоляционных материалов, то получим такие показатели:

Теплопроводность, Вт/м °С / необходимая толщина слоя утеплителя, мм:

Базальтовая вата – 0,039 /167 мм
Пенополистирол – 0,037 /159 мм
Стекловата – 0,044/189 мм
Керамзит – 0,170/869 мм
Кирпичная кладка – 0,520/1460 мм

Сравнительные коэффициенты теплопроводности строительных материалов:

Бетон – 1,5
Каменная кладка на растворе – 1,2
Рабочий кирпич – 0,6
Облицовочный кирпич – 0,4
Штукатурный гипс – 0,3
Ячеистый бетон – 0,2
Стекловата – 0,05
Пробковые покрытия – 0,039
Минеральная вата – 0,035
Пенопласт - 0,034

Как видно из показателей, теплопроводность минеральной ваты уступает только материалам из пенополистирола. Хотя если сравнить пенополистирол и каменную вату по огнестойкости, то тут каменная вата точно в победителях. Все виды каменной ваты относят к негорючим материалам.

Свойства минеральной ваты

Коэффициент теплопроводности показывает способность проводить тепло. Однако чтобы определиться с нужным материалом для утепления, важно учитывать не только его теплопроводность, но и другие, не менее важные характеристики.


Кроме хорошего показателя теплопроводности

  • Огнеупорная – материал противостоит воздействию высоких температур
  • Устойчивая к агрессивным химическим средам
  • Экологичная – материал безвреден для человека
  • Паропроницаемая - пропускает пары воды
  • Пластичная – под воздействием внешней силы способна принимать нужную форму
  • Легкая в монтаже – мягкая легко режется ножом, прочная – ножовкой
  • Влагостойкая – приполном погружения уровень поглощения воды составляет 0,5%
  • Устойчива к воздействию бактерий и грибков
  • Не дает усадки со временем, тем самым не допускает появление мостиков холода
  • Долговечная – при правильном использовании срок службы составляет около 70 лет.

Еще одним, немаловажным достоинством минеральной ваты является ее стоимость. Именно благодаря всем выше перечисленными характеристиками минеральная вата стала одной из наиболее популярных утеплителей на рынке строительных материалов.

Правильный выбор утеплителя позволить иметь комфортные условия в доме долгие годы.

Базальтовая вата для потолка является экологичным и экономичным материалом. Она изготавливается из природного сырья. Минералы базальтовой группы подвергаются высокотемпературной (более 1000 °С) обработке. В результате получаются тончайшие (1-7 мкм) волокна, которые образуют хаотичную структуру. Для их скрепления используются специальные полимерные смолы.

Хаотичная структура обуславливает наличие большого числа каналов, заполненных воздухом. Это объясняет хорошие тепло- и звукоизоляционные показатели материала. Теплопроводность базальтовой ваты разных производителей находится на уровне 0,035-0,042 Вт/м·К. При этом она способна задерживать 80-100 % сторонних звуков.

Решение купить базальтовую вату для потолка также объясняется другими его положительными характеристиками:

  • негорючестью – материал не поддерживает горение и не может быть источником огня;
  • биологической инертностью – во время эксплуатации он не станет средой обитания бактерий или микроорганизмов;
  • химической стойкостью;
  • стабильностью форм и размеров – со временем материал не дает усадку, не меняет свою геометрию;
  • простотой монтажа;
  • долговечностью – минимальный заявляемый производителями срок эксплуатации базальтового утеплителя составляет 40-50 лет.

Для многих потребителей важным положительным фактором является привлекательная цена на базальтовую вату для потолка.

Какой материал выбрать

Реализуется базальтовая вата для утепления потолков в виде матов (плит) или рулонного материала плотностью 30-80 кг/м³. По утверждению пользователей первые более удобны при монтаже. При определении требуемой толщины утеплителя следует учитывать климатическую зону, где расположен дом, вид материала основания и конструкционные особенности. В большинстве регионов России достаточным будет слой базальтовой ваты в 10-15 см. Для обеспечения звукоизоляции квартиры потребуется материал толщиной в 3-5 см.

Особенности монтажа

Чтобы базальтовая вата для потолка обеспечивала надежную тепло- и звукоизоляцию, важно правильно провести монтаж. На начальном этапе производится устранение трещин и других значительных повреждений и обустройство обрешетки. Последняя может быть из металлических профилей или дерева. При использовании древесины следует провести ее обработку противогрибковым средством. Шаг обрешетки зависит от ширины используемого утеплителя.

Компания Rockwool известный мировой бренд, производящий высококачественный утеплитель для жилых и производственных помещений. Благодаря богатейшему опыту и применению самых современных технологий, утеплители Rockwood по многим параметрам опережают аналогичную продукцию других марок.
Основной особенностью утеплителя Rockwood является высокая устойчивость к плавлению, гарантируя высочайший уровень безопасность. В состав утеплителя входит минеральная вата из базальтового волокна, позволяющая во много раз повысить теплоизоляционные свойства, что особенно актуально для сурового российского климата. Несмотря на этой, утеплитель «дышит», обеспечивая постоянное кондиционирование воздуха и не давая застаиваться влаге между перекрытиями. Утеплитель Rockwool отлично подойдёт для изоляции полов, крыш и фасадов дачных домов, высоток или промышленных построек.
Особая пропитка сохраняет утеплитель от деформации. Так как материал не впитывает влагу, утеплитель Rockwool никогда не теряет своих теплоизоляционных свойств, обеспечивая комфортную температуру в любую погоду.

ROCKWOOL ЛАЙТ БАТТС ®

ROCKWOOL ЛАЙТ БАТТС® с технологией Флекси – это легкие теплоизоляционные плиты из каменной ваты. Отличительной чертой этого утеплителя является флексированный край (сжимающийся и разжимающийся), облегчающий установку утеплителя в каркас.
Данная модель предусматривает использование во внутренних межкомнатных и межэтажных перегородках, либо в качестве первого внутреннего, ненагруженного слоя в навесных фасадных системах.

Технические характеристики

Параметр Значение
Плотность 37 кг/м³

Теплопроводность

λ10 = 0,036 Вт/(м К)
λ25 = 0,038 Вт/(м К)
λA = 0,040 Вт/(м К)
λB = 0,042 Вт/(м К)

Группа горючести НГ
Сжимаемость, не более 30 %
μ = 0.30 мг/(м·ч·Па)
2.0

БЕТОН ЭЛЕМЕНТ БАТТС®

БЕТОН ЭЛЕМЕНТ БАТТС® – жесткие теплоизоляционные плиты, из каменной ваты. Используются в качестве среднего теплоизоляционного слоя в трехслойных бетонных и железобетонных стеновых панелях.

Технические характеристики
Параметр Значение
Плотность 90 кг/м³

Теплопроводность

λ10 = 0,035 Вт/(м К)
λ25 = 0,037 Вт/(м К)
λA = 0,039 Вт/(м К)
λB = 0,041 Вт/(м К)

Группа горючести НГ

Прочность на сжатие при 10 % деформации, не менее

20 кПа

Водопоглощение при полном погружении, не более

1.5 % по объему
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Модуль кислотности, не менее 2.0

ВЕНТИ БАТТС®

ROCKWOOL ВЕНТИ БАТТС® – жесткие теплоизоляционные плиты на синтетической связующей из каменной ваты. Предназначены для применения в качестве теплоизоляционного слоя в навесных фасадных системах с воздушным зазором при однослойном выполнении изоляции или в качестве наружного слоя при двухслойном выполнении изоляции. Механическое крепление осуществляется специальными тарельчатыми дюбелями. Дюбели должны заглубляться в основание минимум на 30 мм.

Технические характеристики
Параметр Значение
Плотность 90 кг/м³

Теплопроводность

λ10 = 0,035 Вт/(м К)
λ25 = 0,037 Вт/(м К)
λA = 0,039 Вт/(м К)
λB = 0,041 Вт/(м К)

Группа горючести НГ
20 кПа
4 кПа
1.5 % по объему
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Модуль кислотности, не менее 2.0

ВЕНТИ БАТТС Д®

ROCKWOOL ВЕНТИ БАТТС Д® состоят из жесткого верхнего (наружного) и более легкого нижнего (внутреннего) слоев на синтетической связующей из каменной ваты.
Плиты ВЕНТИ БАТТС Д® используются в качестве теплоизоляционного слоя в фасадных системах с вентилируемым воздушным зазором и применяются для выполнения изоляции в один слой. В отличие от двухслойного решения нет необходимости крепить нижний слой плит, за счет этого снижается количество крепежа, уменьшаются сроки монтажа и стоимость системы. Благодаря плотному верхнему слою, более 90 кг/м3, плита ВЕНТИ БАТТС Д ® может устанавливаться без дополнительной ветрозащитной пленки.Механическое крепление осуществляется специальными тарельчатыми дюбелями. Дюбели должны заглубляться в основание минимум на 30 мм.

Технические характеристики
Параметр Значение

Плотность верхнего слоя

Плотность нижнего слоя

Теплопроводность

λ10 = 0,035 Вт/(м К)
λ25 = 0,037 Вт/(м К)
λA = 0,039 Вт/(м К)
λB = 0,041 Вт/(м К)

Группа горючести НГ
Предел прочности на отрыв слоев, не менее 4 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Модуль кислотности, не менее 2.0

КАВИТИ БАТТС®

ROCKWOOL КАВИТИ БАТТС® – лёгкие теплоизоляционные плиты из каменной ваты. Используются в качестве среднего теплоизоляционного слоя в трёхслойных наружных стенах из мелкоштучных материалов.

Технические характеристики
Параметр Значение

Плотность

45 кг/м³

Теплопроводность

λ10 = 0,035 Вт/(м К)
λ25 = 0,037 Вт/(м К)
λA = 0,039 Вт/(м К)
λB = 0,041 Вт/(м К)

Группа горючести НГ
Сжимаемость, не более 15 %
Водопоглощение при полном погружении, не более 1.5 % по объему
Модуль кислотности, не менее 2.0
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)

ПЛАСТЕР БАТТС®

ROCKWOOL ПЛАСТЕР БАТТС® – жёсткие теплоизоляционные плиты из каменной ваты на основе базальтовых пород. Используются в качестве теплоизоляционного слоя в системах фасадной изоляции с оштукатуриванием по стальной армирующей сетке. В качестве креплений следует использовать подвижные стальные кронштейны. Количество кронштейнов рассчитывается в соответствие с ветровой нагрузкой. Минимальное количество - 4 штуки на 1 м2. Для армирования базового штукатурного слоя следует применять сварную стальную сетку из оцинкованной проволоки.

Технические характеристики
Параметр Значение

Плотность

90 кг/м³

Теплопроводность

λ10 = 0,035 Вт/(м К)
λ25 = 0,037 Вт/(м К)
λA = 0,039 Вт/(м К)
λB = 0,041 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 15 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Модуль кислотности, не менее 2.0
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Предел прочности на отрыв слоев, не менее 4 кПа

РУФ БАТТС®

ROCKWOOL РУФ БАТТС® – повышенной жёсткости теплоизоляционные плиты из каменной ваты на основе базальтовых пород. Используются в качестве теплозвукоизоляционного слоя в покрытиях, в том числе и для устройства кровель без цементной стяжки. Плиты минераловатные РУФ БАТТС® желательно закреплять на покрытии механическим способом. Количество крепёжных элементов должно определяться расчётом.

Технические характеристики
Параметр Значение

Плотность

160 кг/м³

Теплопроводность

λ10 = 0,038 Вт/(м К)
λ25 = 0,040 Вт/(м К)
λA = 0,042 Вт/(м К)
λB = 0,043 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 60 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Модуль кислотности, не менее 2.0
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Предел прочности на отрыв слоев, не менее 12 кПа
500 Н

РУФ БАТТС В®

ROCKWOOL РУФ БАТТС В® – очень жёсткие теплоизоляционные плиты из каменной ваты. Используются в качестве верхнего теплозвукоизоляционного слоя в многослойных или однослойных конструкциях покрытия, в том числе и для устройства кровель без цементной стяжки.
Плиты должны закрепляться на покрытии механическим (анкерным) способом. Количество крепёжных элементов должно определяться расчётом, основанном на данных поставщика креплений.

Технические характеристики
Параметр Значение

Плотность

190 кг/м³

Теплопроводность

λ10 = 0,039 Вт/(м К)
λ25 = 0,041 Вт/(м К)
λA = 0,043 Вт/(м К)
λB = 0,045 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 70 кПа
Модуль кислотности, не менее 2.0
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Предел прочности на отрыв слоев, не менее 15 кПа
Сопротивление точечной нагрузке, не менее 600 Н

РУФ БАТТС Н®

ROCKWOOL РУФ БАТТС Н® – жесткие теплоизоляционные плиты из каменной ваты на основе базальтовых пород. Используются в качестве нижнего теплозвукоизоляционного слоя в многослойных кровельных покрытиях, в том числе и для устройства кровель без цементной стяжки. Плиты из каменной ваты РУФ БАТТС Н® должны закрепляться на покрытии механическим способом в сборе с РУФ БАТТС В®. Количество крепёжных элементов должно определяться расчётом.
Допускается клеевое крепление кровельного утеплителя. При этом прочность приклейки должна быть не ниже прочности на отрыв слоёв теплоизоляционного материала.

Технические характеристики
Параметр Значение

Плотность

115 кг/м³

Теплопроводность

λ10 = 0,037 Вт/(м К)
λ25 = 0,039 Вт/(м К)
λA = 0,041 Вт/(м К)
λB = 0,042 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 35 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Модуль кислотности, не менее 2.0
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Предел прочности на отрыв слоев, не менее 7.5 кПа

РУФ БАТТС С®

ROCKWOOL РУФ БАТТС С® – жесткие теплоизоляционные плиты из каменной ваты. Используются в качестве теплозвукоизоляционного слоя в кровлях с защитным покрытием из бетонных, армоцементных и других плит, из цементно-песчаного раствора или песчаного асфальтобетона с максимально допустимой нормативной нагрузкой 3 кПа.
Допускается укладка плит ROCKWOOL РУФ БАТТС С® в несколько слоёв перед нанесением защитного слоя.

Технические характеристики
Параметр Значение

Плотность

135 кг/м³

Теплопроводность

λ10 = 0,037 Вт/(м К)
λ25 = 0,039 Вт/(м К)
λA = 0,041 Вт/(м К)
λB = 0,043 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 40 кПа
Сопротивление точечной нагрузке, не менее 300 Н
Модуль кислотности, не менее 2.0
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Предел прочности на отрыв слоев, не менее 7.5 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему

РУФ БАТТС ЭКСТРА®

ROCKWOOL РУФ БАТТС ЭКСТРА® – жесткие теплоизоляционные плиты на синтетическом связующем из каменной ваты. Плиты имеют комбинированную структуру и состоят из жесткого верхнего (наружного) и более легкого нижнего (внутреннего) слоев.
Верхний (жесткий) слой маркируется. Используются в качестве теплоизоляционного слоя в покрытиях из железобетона и металлического настила. Плиты применяются под устройство гидроизоляционного ковра из рулонных и мастичных материалов, в том числе и без устройства выравнивающих цементно-песчаных стяжек. Плиты РУФ БАТТС ЭКСТРА® применяются для выполнения изоляции в один слой. Плиты РУФ БАТТС ЭКСТРА® закрепляются на покрытии механическим способом.

Технические характеристики
Параметр Значение

Плотность верхнего слоя

Плотность нижнего слоя

Теплопроводность

λ10 = 0,037 Вт/(м К)
λ25 = 0,039 Вт/(м К)
λA = 0,040 Вт/(м К)
λB = 0,042 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 60 кПа
Сопротивление точечной нагрузке, не менее 550 Н
Модуль кислотности, не менее 2.0
Предел прочности на отрыв слоев, не менее 15 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему

РУФ БАТТС ОПТИМА®

ROCKWOOL РУФ БАТТС ОПТИМА® – жесткие теплоизоляционные плиты на синтетическом связующем из каменной ваты. Сконструированы в соответствии с принципом двойной плотности. Благодаря этому плиты обладают уменьшенным весом, удобны при монтаже.
Используются в качестве теплоизоляционного слоя в кровельных конструкциях. Плиты применяются под устройство гидроизоляционного ковра из рулонных и мастичных материалов, в том числе и без устройства цементно-песчаных стяжек. Допускается применение в теплоизоляции чердачных перекрытий.Плиты РУФ БАТТС ОПТИМА® закрепляются на покрытии механическим способом.

Технические характеристики
Параметр Значение

Плотность верхнего слоя

Плотность нижнего слоя

Теплопроводность

λ10 = 0,036 Вт/(м К)
λ25 = 0,038 Вт/(м К)
λA = 0,040 Вт/(м К)
λB = 0,042 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 45 кПа
Сопротивление точечной нагрузке, не менее 450 Н
Модуль кислотности, не менее 2.0
Водопоглощение при полном погружении, не более 1.5 % по объему

СЭНДВИЧ БАТТС С®

ROCKWOOL СЭНДВИЧ БАТТС С® – жесткие теплоизоляционные плиты, изготовленные из каменной ваты. Применяются в качестве среднего теплоизоляционного слоя в «сэндвич» панелях с металлической оболочкой, используемых в стеновых конструкциях.

Технические характеристики
Параметр Значение

Плотность

Теплопроводность

λ10 = 0,040 Вт/(м К)
λ25 = 0,042 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 60 кПа
50 кПа
100 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Паропроницаемость, не менее μ = 0.53 мг/(м ч Па)
Модуль кислотности, не менее 2.0

СЭНДВИЧ БАТТС К®

ROCKWOOL СЭНДВИЧ БАТТС К® – жесткие теплоизоляционные плиты, изготовленные из каменной ваты. Используются в качестве среднего теплоизоляционного слоя в «сэндвич» панелях с металлической оболочкой, применяемых для кровель зданий.

Технические характеристики
Параметр Значение

Плотность

140,155 кг/м³

Теплопроводность

λ10 = 0,042 Вт/(м К)
λ25 = 0,043 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 100 кПа
Предел прочности на сдвиг/срез, не менее 75 кПа
Предел прочности на растяжение, не менее 100 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Паропроницаемость, не менее μ = 0.53 мг/(м ч Па)
Модуль кислотности, не менее 2.0

ФАСАД БАТТС®

ROCKWOOL ФАСАД БАТТС® – жёсткие и плотные теплоизоляционные плиты, устойчивые к деформациям из каменной ваты. Используются в качестве теплоизоляционного слоя в системах фасадной изоляции с тонким штукатурным слоем. Продукт обеспечивает не только теплоизоляцию, но также является основанием для нанесения штукатурного слоя. Механическое крепление осуществляется специальными дюбелями.

Технические характеристики
Параметр Значение

Плотность

Теплопроводность

λ10 = 0,037 Вт/(м К)
λ25 = 0,039 Вт/(м К)
λA = 0,041 Вт/(м К)
λB = 0,042 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 45 кПа
Предел прочности на отрыв слоев, не менее 15 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Модуль кислотности, не менее 2.0

ФАСАД БАТТС Д®

ROCKWOOL ФАСАД БАТТС Д® – жесткие теплоизоляционные плиты на синтетическом связующем из каменной ваты. Плиты имеют комбинированную структуру и состоят из жесткого верхнего (наружного) и более легкого нижнего (внутреннего) слоев. Используются в качестве теплоизоляции с внешней стороны зданий в системах с тонким штукатурным слоем. Плиты обеспечивают не только теплоизоляцию, но также являются основанием для нанесения штукатурного слоя.
Концепция двойной плотности позволяет улучшить теплоизоляционные свойства фасадной системы, снизить расход армирующей шпаклевки, сократить сроки монтажа. Плиты ФАСАД БАТТС Д® монтируются при помощи специального клеевого состава. Механическое крепление осуществляется специальными дюбелями.

Технические характеристики
Параметр Значение
Плотность верхнего слоя
Плотность нижнего слоя
180кг/м³
94кг/м³

Теплопроводность

λ10 = 0,036 Вт/(м К)
λ25 = 0,038 Вт/(м К)
λA = 0,040 Вт/(м К)
λB = 0,042 Вт/(м К)

Группа горючести НГ
Предел прочности на отрыв слоев, не менее 15 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Модуль кислотности, не менее 2.0

ФАСАД ЛАМЕЛЛА®

ROCKWOOL ФАСАД ЛАМЕЛЛА® – полосы-ламели, нарезанные из плит каменной ваты соответствующей плотности и применяемые при расположении волокон перпендикулярно изолируемой поверхности. Предназначены для использования в качестве теплоизоляционного слоя в фасадных системах утепления с тонким штукатурным слоем или под обкладку клинкерной плиткой. Также изделия применяются при утеплении участков стен, имеющих криволинейную или "ломаную" поверхность (эркеры, пилястры и т.п.). Механическое крепление осуществляется специальными дюбелями. Допускается крепление полос ФАСАД ЛАМЕЛЛА® специальным клеевым составом, который должен наноситься на поверхность изделия полностью.

Технические характеристики
Параметр Значение
Плотность 90 кг/м³

Теплопроводность

λ10 = 0,039 Вт/(м К)
λ25 = 0,041 Вт/(м К)
λA = 0,042 Вт/(м К)
λB = 0,044 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 40 кПа
Предел прочности на отрыв слоев, не менее 80 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Модуль кислотности, не менее 2.0

ФЛОР БАТТС ®


Предназначены для полов с нормативной нагрузкой до 3 кПа.

Технические характеристики
Параметр Значение
Плотность 125 кг/м³

Теплопроводность

λ10 = 0,036 Вт/(м К)
λ25 = 0,038 Вт/(м К)
λA = 0,040 Вт/(м К)
λB = 0,042 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 35 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Модуль кислотности, не менее 2.0

ФЛОР БАТТС И ®

ROCKWOOL ФЛОР БАТТС® – жесткие теплоизоляционные плиты из каменной ваты. Предназначены для тепловой изоляции полов по грунту, а также для устройства акустических плавающих полов.
Предназначены для полов с нормативной нагрузкой свыше 3 кПа.

Технические характеристики
Параметр Значение
Плотность 150 кг/м³

Теплопроводность

λ10 = 0,037 Вт/(м К)
λ25 = 0,040 Вт/(м К)
λA = 0,041 Вт/(м К)
λB = 0,043 Вт/(м К)

Группа горючести НГ
Прочность на сжатие при 10 % деформации, не менее 50 кПа
Водопоглощение при полном погружении, не более 1.5 % по объему
Паропроницаемость, не менее μ = 0.30 мг/(м ч Па)
Модуль кислотности, не менее 2.0

Базальтовая вата имеет довольно разноплановые характеристики, среди которых следует выделить отличные противопожарные свойства, высокие тепло- и шумоизоляционные характеристики.

Содержание статьи о теплопроводности базальтовой ваты

Свойства базальтового утеплителя

1. Негорючесть.

Базальтовая вата подвергалась проверкам во многих странах по различным методикам, в результате чего ее признали абсолютно негорючей, что позволяет использовать ее для теплоизоляции дымоходов. Это очень важный параметр в строительстве. На сегодняшний день множество материалов характеризируются как негорючие, но на самом деле многие оказываются не такими. Естественно, чтобы базальтовая вата была противопожарной, нужно приобретать ее у проверенных производителей.

2. Высокие водоотталкивающие свойства.

Кроме этого следует отметить отличные гидрофобные . Базальтовая вата имеет в своем составе волокна, которые уже сами по себе водоотталкивающие. Кроме этого хорошие производители при производстве применяют особые добавки, увеличивающие свойства отталкивать влагу. В сравнении с другими разновидностями утеплителей базальтовая вата хорошо пропускает пар, а главное, что при этом она остается сухой. Это свойство незаменимое в строительстве.

Что касается устойчивости к нагрузкам, базальтовая вата хорошо справляется со всеми нагрузками, которыми она подвергается. Ее устойчивость напрямую зависит от того, где именно она применяется. Вата выдерживает нагрузки на сжатие 5-80 кПа при 10% деформации. Это свойство является особо важным физико-механическим показателем строительных материалов, подвергаемым нагрузкам. Изделия из могут быть разными. В основном это зависит от положения волокон, плотности, размеров и количества связывающего вещества в определенном элементе.

4. Небольшая плотность.

Базальтовая вата – это материал, состоящий из очень тонких волокон (3-5 мкм), которые переплетены между собой в хаотическом порядке, образовывая ячейки. Именно ячейки обеспечивают отличительные теплоизоляционные свойства материала, так как в них содержится воздух. Утеплитель имеет небольшую плотность, особенно в сравнении с другими материалами, применяемыми в строительстве. Это значит, что в нем содержится много воздуха. Когда базальтовый утеплитель находится в сухом состоянии, его теплопроводность превышает теплопроводность воздуха, находящегося в неподвижном состоянии. Рассмотрим данную характеристику более подробно.

Коэффициент теплопроводности базальтовой ваты

Сегодня теплоизоляция базальтовой ватой широко распространена. И это не удивительно, ведь за невысокую вы покупаете негорючий материал с низкой теплопроводностью. В свое время минеральная вата появилась в качестве замены асбестового полотна, которое убрали из рынка из-за небезопасности для здоровья человека.

Одно из самых существенных преимуществ, которое отличает базальтовую вату от других материалов – это стоимость. Заменители на основе пенопласта, пенополистерола и полиуретана или стоят на порядок больше, или не обеспечивают такой же уровень безопасности, теплоизоляции и негорючести. Среди проверенных производителей базальтовой ваты, выпускающих качественные изделия, следует выделить такие компании, как Лайнрок, Роквул, Теплит и .

Выбор продукции определенного производителя зависит от назначения или характеристик продукта. Свойства базальтового утеплителя зависят от того, для чего она предназначена. Например, для характеристики будут одними, а для стен – совершенно другими. Плиты производятся с разной плотностью и ориентировкой под разные нагрузки. Естественно, на строительном рынке вы можете найти более дешевую минеральную вату неизвестных производителей за низкую цену. Но здесь нужно быть предельно осторожным, так как непроверенные компании часто предоставляют некачественную продукцию с вредными добавками.

Что касается теплопроводности базальтовой ваты, то значение колеблется в пределах 0.032-0.048 Вт/мК. Такую же теплопроводность имеет пенопласт, пенополистерол, пробки и вспененный каучук. Минеральная вата обладает высокой паропроницаемостью. Это способствует хорошему влагообмену с окружающей средой, при этом вы навсегда избавитесь от проблемы возникновения конденсата, образования на стенах грибка и плесени.

Для обеспечения качественной пароизоляции можно использовать . Часто это незаменимо для изоляции труб, трубопроводов, стен бань и саун. Фольга осуществляет высокую защиту от ветра, что очень важно для утепления мансард. В наше время базальтовая минеральная вата используется для строительства загородных домов, вентилируемых и «мокрых» фасадов, утепления для воздуховодов и оборудования. Сейчас практически не найти материала, способного составить конкуренцию вате, произведенной на основе минеральных горных пород. Это высококачественный материал, поэтому смело отдавайте предпочтение именно этому утеплителю.

Теплопроводность базальтовой ваты ведущих производителей

На рынке базальтовых утеплителей хорошо зарекомендовали себя такие производители, как Изовер, Роквул и Кнауф. Какие же характеристики имеют материалы этих производителей?

ISOVER

Для теплоизоляции кровель используется базальтовая вата Изовер Руф, Руф Н и Руф Н Оптимал теплопроводностью 0.036- 0.042 Вт/(м*K). Теплопроводность 0.035-0.039 Вт/(м*K) имеют материалы ISOVER Стандарт и Венти соответственно для утепления скатных кровель, мансард, каркасных стен и изоляции вентилируемых фасадов.

Материал Использование Коэффициент теплопроводности, Вт/(м*K) λ10, λА, λБ
ISOVER Фасад утепление штукатурных фасадов 0.037, 0.041, 0.042
ISOVER Стандарт утепление скатных кровель, мансард, каркасных стен 0.035, 0.038, 0.039
ISOVER Лайт теплоизоляция внешних каркасных стен 0.036, 0.039, 0.040
ISOVER Венти теплоизоляция вентилируемых фасадов 0.035, 0.038, 0.039
ISOVER Акустик тепло- и звукоизоляция стен 0.035, 0.039, 0.041
ISOVER Флор теплоизоляция пола, звукоизоляция от ударного шума 0.04, - , -
ISOVER Оптимал изоляция всех видов поверхностей 0.04, - , -
ISOVER Руф теплоизоляция кровель, однослойная изоляция 0.037, 0.041, 0.042
ISOVER Руф Н Оптимал теплоизоляция кровель 0.036, 0.040, 0.041
ISOVER Руф Н теплоизоляция кровель 0.036, 0.040, 0.042

Теплопроводность базальтовой ваты ROCKWOOL

Самый низкий коэффициент теплопроводности (0.035 и 0.037 Вт/(м*K) для λ10°C, λ25°C имеют материалы КАВИТИ БАТТС, ВЕНТИ БАТТС, ВЕНТИ БАТТС Д для теплоизоляции внешних стен. Более высокий коэффициент имеют плиты РУФ БАТТС (0.040) для утепления кровли.

Материал Использование Коэффициент теплопроводности, Вт/(м*K) λ10°C, λ25°C
ЛАЙТ БАТТС теплоизоляция легких покрытий, мансардных помещений, междуэтажных перекрытий, перегородок 0.036, 0.038
КАВИТИ БАТТС средний слоя в трехслойных наружных стенах 0.035, 0.037
ВЕНТИ БАТТС, ВЕНТИ БАТТС Д теплоизоляция фасадных систем с вентилируемым воздушным зазором 0.035, 0.037
РУФ БАТТС теплоизоляция кровель 0.038, 0.040
ФАСАД БАТТС теплоизоляция фасадов 0.037, 0.039
ФАСАД БАТТС Д теплоизоляция фасадов 0.036, 0.038
ФЛОР БАТТС тепловая изоляция полов по грунту, устройство акустических плавающих полов 0.037, 0.038

Теплопроводность базальтовой ваты Knauf

Как известно, чем низшую теплопроводность имеет утеплитель, тем высший уровень теплоизоляции он обеспечивает. Самый низкий коэффициент теплопроводности (0.035 Вт/м*K) имеет материал Knauf Insulation WM 640 GG/WM 660 GG, предназначенный для теплоизоляции оборудования и трубопроводов.

Материал Использование Коэффициент теплопроводности, Вт/(м*K) λ10
Knauf Insulation FKD-S утепление стен снаружи 0.036
Knauf Insulation FKD утепление стен снаружи 0.039
Knauf Insulation LMF AluR теплоизоляция наружных поверхностей, трубопроводов, воздуховодов,оборудования 0.04
Knauf Insulation WM 640 GG/WM 660 GG 0.035
Knauf Insulation HTB теплоизоляция оборудования и трубопроводов 0,035-0,039
Knauf Insulation DDP-K теплоизоляция плоской кровли и перекрытий 0.037

Видео: Минвата в плитах – базальтовая вата

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 - 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 - 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 - 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 - 400 кг/м3 0,085-0,1
Пеноблок 100 - 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 - 220 кг/м3 0,057-0,063
Пеноблок 221 - 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Название материала, плотность Коэффициент теплопроводности
в сухом состоянии при нормальной влажности при повышенной влажности
ЦПР (цементно-песчаный раствор) 0,58 0,76 0,93
Известково-песчаный раствор 0,47 0,7 0,81
Гипсовая штукатурка 0,25
Пенобетон, газобетон на цементе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементе, 800 кг/м3 0,21 0,33 0,37
Пенобетон, газобетон на цементе, 1000 кг/м3 0,29 0,38 0,43
Пенобетон, газобетон на извести, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на извести, 800 кг/м3 0,23 0,39 0,45
Пенобетон, газобетон на извести, 1000 кг/м3 0,31 0,48 0,55
Оконное стекло 0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м3 1,51
Легкий бетон с природной пемзой, 500-1200 кг/м3 0,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м3 0,35-0,58
Бетон на котельном шлаке, 1400 кг/м3 0,56
Бетон на каменном щебне, 2200-2500 кг/м3 0,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м3 0,3-0,7
Керамическийй блок поризованный 0,2
Вермикулитобетон, 300-800 кг/м3 0,08-0,21
Керамзитобетон, 500 кг/м3 0,14
Керамзитобетон, 600 кг/м3 0,16
Керамзитобетон, 800 кг/м3 0,21
Керамзитобетон, 1000 кг/м3 0,27
Керамзитобетон, 1200 кг/м3 0,36
Керамзитобетон, 1400 кг/м3 0,47
Керамзитобетон, 1600 кг/м3 0,58
Керамзитобетон, 1800 кг/м3 0,66
ладка из керамического полнотелого кирпича на ЦПР 0,56 0,7 0,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) 0,35 0,47 0,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) 0,41 0,52 0,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) 0,47 0,58 0,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) 0,7 0,76 0,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот 0,64 0,7 0,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот 0,52 0,64 0,76
Известняк 1400 кг/м3 0,49 0,56 0,58
Известняк 1+600 кг/м3 0,58 0,73 0,81
Известняк 1800 кг/м3 0,7 0,93 1,05
Известняк 2000 кг/м3 0,93 1,16 1,28
Песок строительный, 1600 кг/м3 0,35
Гранит 3,49
Мрамор 2,91
Керамзит, гравий, 250 кг/м3 0,1 0,11 0,12
Керамзит, гравий, 300 кг/м3 0,108 0,12 0,13
Керамзит, гравий, 350 кг/м3 0,115-0,12 0,125 0,14
Керамзит, гравий, 400 кг/м3 0,12 0,13 0,145
Керамзит, гравий, 450 кг/м3 0,13 0,14 0,155
Керамзит, гравий, 500 кг/м3 0,14 0,15 0,165
Керамзит, гравий, 600 кг/м3 0,14 0,17 0,19
Керамзит, гравий, 800 кг/м3 0,18
Гипсовые плиты, 1100 кг/м3 0,35 0,50 0,56
Гипсовые плиты, 1350 кг/м3 0,23 0,35 0,41
Глина, 1600-2900 кг/м3 0,7-0,9
Глина огнеупорная, 1800 кг/м3 1,4
Керамзит, 200-800 кг/м3 0,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 0,23-0,41
Керамзитобетон, 500-1800 кг/м3 0,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 0,22-0,28
Кирпич клинкерный, 1800 - 2000 кг/м3 0,8-0,16
Кирпич облицовочный керамический, 1800 кг/м3 0,93
Бутовая кладка средней плотности, 2000 кг/м3 1,35
Листы гипсокартона, 800 кг/м3 0,15 0,19 0,21
Листы гипсокартона, 1050 кг/м3 0,15 0,34 0,36
Фанера клеенная 0,12 0,15 0,18
ДВП, ДСП, 200 кг/м3 0,06 0,07 0,08
ДВП, ДСП, 400 кг/м3 0,08 0,11 0,13
ДВП, ДСП, 600 кг/м3 0,11 0,13 0,16
ДВП, ДСП, 800 кг/м3 0,13 0,19 0,23
ДВП, ДСП, 1000 кг/м3 0,15 0,23 0,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 0,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 0,38
Линолеум ПВХ на тканевой основе, 1400 кг/м3 0,2 0,29 0,29
Линолеум ПВХ на тканевой основе, 1600 кг/м3 0,29 0,35 0,35
Линолеум ПВХ на тканевой основе, 1800 кг/м3 0,35
Листы асбоцементные плоские, 1600-1800 кг/м3 0,23-0,35
Ковровое покрытие, 630 кг/м3 0,2
Поликарбонат (листы), 1200 кг/м3 0,16
Полистиролбетон, 200-500 кг/м3 0,075-0,085
Ракушечник, 1000-1800 кг/м3 0,27-0,63
Стеклопластик, 1800 кг/м3 0,23
Черепица бетонная, 2100 кг/м3 1,1
Черепица керамическая, 1900 кг/м3 0,85
Черепица ПВХ, 2000 кг/м3 0,85
Известковая штукатурка, 1600 кг/м3 0,7
Штукатурка цементно-песчаная, 1800 кг/м3 1,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

Наименование Коэффициент теплопроводности
В сухом состоянии При нормальной влажности При повышенной влажности
Сосна, ель поперек волокон 0,09 0,14 0,18
Сосна, ель вдоль волокон 0,18 0,29 0,35
Дуб вдоль волокон 0,23 0,35 0,41
Дуб поперек волокон 0,10 0,18 0,23
Пробковое дерево 0,035
Береза 0,15
Кедр 0,095
Каучук натуральный 0,18
Клен 0,19
Липа (15% влажности) 0,15
Лиственница 0,13
Опилки 0,07-0,093
Пакля 0,05
Паркет дубовый 0,42
Паркет штучный 0,23
Паркет щитовой 0,17
Пихта 0,1-0,26
Тополь 0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Название Коэффициент теплопроводности Название Коэффициент теплопроводности
Бронза 22-105 Алюминий 202-236
Медь 282-390 Латунь 97-111
Серебро 429 Железо 92
Олово 67 Сталь 47
Золото 318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.


Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.