Графическое решение неравенств. Презентация на тему "графическое решение неравенств"

Графическое представление функций позволяет приближённо решать неравенства с одним неизвестным и системы неравенств с одним и двумя неизвестными. Чтобы решить графически неравенство с одним неизвестным , необходимо перенести все его члены в одну часть, т.e. привести к виду:

f (x ) > 0 ,

и построить график функции y = f ( x ). После этого, используя построенный график, можно найти нули функции , которые разделят ось Х на несколько интервалов. Теперь на основе этого определим интервалы x , внутри которых знак функции соответствует знаку неравенства. Например, нули нашей функции: a и b (рис.30). Тогда из графика очевидно, что интервалы, внутри которых f ( x ) > 0: x < a и x > b (они выделеныжирными стрелками). Ясно, что знак > здесь условный; вместо него может быть любой другой: < , .


Чтобы решить графически систему неравенств с одним неизвестным, нужно перенести в каждом из них все члены в одну часть, т.e. привести неравенства к виду:

и построить графики функций y = f (x ), y = g (x ) , ... , y = h (x ). Каждое из этих неравенств решается графическим методом, описанным выше. После этого нужно найти пересечение решений всех неравенств, т.e. их общую часть.

П р и м е р. Решить графически систему неравенств:

Р е ш е н и е. Сначала построим графики функций y = - 2 / 3 x + 2 и

y = x 2 -1 (рис.31):


Решением первого неравенства является интервал x > 3, обозначенный на рис.31 чёрной стрелкой; решение второго неравенства состоит из двух интервалов: x < -1 и x > 1, обозначенных на рис.31 серыми стрелками.

Из графика видно, что пересечением этих двух решений является интервал x > 3. Это и есть решение заданной системы неравенств.

Чтобы решить графически систему двух неравенств сдвумя неизвестными, надо:

1) в каждом из них перенести все члены в одну часть, т.e. привести

неравенства к виду:

2) построить графики функций, заданных неявно: f ( x, y ) = 0 и g (x, y ) = 0;

3) каждый их этих графиков делит координатную плоскость на две части:

в одной из них неравенство справедливо, в другой - нет; чтобы решить

графически каждое из этих неравенств, достаточно проверить

справедливость неравенства в одной произвольной точке внутри любой

части плоскости; если неравенство имеет место в этой точке, значит

эта часть координатной плоскости является его решением, если нет - то

решением является противоположная часть плоскости ;

4) решением заданной системы неравенств является пересечение

(общая область) частей координатной плоскости.

П р и м е р. Решить систему неравенств:

Р е ш е н и е. Сначала строим графики линейных функций: 5x - 7y = -11 и

2x + 3y = 10 (рис.32). Для каждой из них находим полуплоскость,

Внутри которой соответствующее заданное неравенство

Справедливо. Мы знаем, что достаточно проверить справедливость

Неравенства в одной произвольной точке области; в данном

Случае легче всего использовать для этого начало координат O (0, 0).

Подставляя его координаты в наши неравенства вместо x и y ,

Получим: 5 · 0 - 7 · 0 = 0 > -11, следовательно, нижняя

Полуплоскость (жёлтого цвета) является решением первого

Неравенства; 2 · 0 + 3 · 0 = 0 < 10, поэтому второе неравенство

Имеет своим решением также нижнюю полуплоскость (голубого

Цвета). Пересечение этих полуплоскостей (область цвета бирюзы)

Является решением нашей системы неравенств.

В ходе урока вы сможете самостоятельно изучить тему «Графическое решение уравнений, неравенств». Преподаватель на занятии разберет графические методы решения уравнений и неравенств. Научит строить графики, анализировать их и получать решения уравнений и неравенств. На уроке также будут разобраны конкретные примеры по этой теме.

Тема: Числовые функции

Урок: Графическое решение уравнений, неравенств

1. Тема урока, введение

Мы рассмотрели графики элементарных функций, в том числе графики степенных функций c разными показателями. Также мы рассмотрели правила сдвига и преобразований графиков функций. Все эти навыки необходимо применить, когда требуется графическое решение уравнений или графическое решение неравенств .

2. Решение уравнений и неравенств графическим способом

Пример 1. Графически решить уравнение:

Построим графики функций (Рис. 1).

Графиком функции является парабола, проходящая через точки

График функции - прямая, построим её по таблице.

Графики пересекаются в точке Других точек пересечения нет, т. к. функция монотонно возрастает, функция монотонно убывает, а, значит, их точка пересечения является единственной.

Ответ:

Пример 2. Решить неравенство

a. Чтобы выполнялось неравенство, график функции должен располагаться над прямой (Рис. 1). Это выполняется при

b. В этом случае, наоборот, парабола должна находиться под прямой. Это выполняется при

Пример 3. Решить неравенство

Построим графики функций (Рис. 2).

Найдем корень уравнения При нет решений. При существует одно решение .

Чтобы выполнялось неравенство гипербола должна располагаться над прямой Это выполняется при .

Ответ:

Пример 4. Решить графически неравенство:

Область определения:

Построим графики функций для (Рис. 3).

a. График функции должен располагаться под графиком это выполняется при

b. График функции расположен над графиком при Но т. к. в условии имеем нестрогий знак, важно не потерять изолированный корень

3. Заключение

Мы рассмотрели графический метод решения уравнений и неравенств; рассмотрели конкретные примеры, при решении которых использовали такие свойства функций, как монотонность и четность.

1. Мордкович А. Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш. А., Колягин Ю. М., Сидоров Ю. В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Раздел College. ru по математике.

2. Интернет-проект «Задачи» .

3. Образовательный портал «РЕШУ ЕГЭ» .

1. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 355, 356, 364.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ИНСТИТУТ РАЗВИТИЯ ОБРАЗОВАНИЯ

«Графические методы решения уравнений и неравенств с параметрами»

Выполнил

учитель математики

МОУ СОШ №62

Липецк 2008

ВВЕДЕНИЕ.................................................................................................... 3

х ;у ) 4

1.1. Параллельный перенос........................................................................... 5

1.2. Поворот................................................................................................... 9

1.3. Гомотетия. Сжатие к прямой................................................................ 13

1.4. Две прямые на плоскости..................................................................... 15

2. ГРАФИЧЕСКИЕ ПРИЕМЫ. КООРДИНАТНАЯ ПЛОСКОСТЬ (х ;а ) 17

ЗАКЛЮЧЕНИЕ........................................................................................... 20

БИБЛИОГРАФИЧЕСКИЙ СПИСОК........................................................ 22

ВВЕДЕНИЕ

Проблемы, возникающие у школьников при решении нестандартных уравнений и неравенств, вызваны как относительной сложностью этих задач, так и тем, что в школе, как правило, основное внимание уделяется решению стандартных задач.

Многие школьники воспринимают параметр как «обычное» число. Действительно, в некоторых задачах параметр можно считать посто­янной величиной, но эта постоянная величина принимает неизвестные значения! Поэтому необходимо рассматривать задачу при всех возмож­ных значениях этой постоянной величины. В других задачах бывает удобно искусственно объявить параметром одну из неизвестных.

Иные школьники относятся к параметру как к неизвестной величине и, не смущаясь, могут выразить в ответе параметр через переменную х.

На выпускных и вступительных экзаменах встречаются, в осно­вном, два типа задач с параметрами. Вы сразу отличите их по формулировке. Первый: «Для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй: «Найти все значения параметра, при каждом из которых для данного уравнения или неравенства выполняются некоторые условия». Соответственно и ответы в задачах этих двух типов различаются по существу. В ответе к задаче первого типа перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответе к задаче второго типа указываются все значения параметра, при которых выполняются условия, указанные в задаче.

Решением уравнения с параметром для данного фиксированного зна­чения параметра называется такое значение неизвестной, при подста­новке которого в уравнение, последнее обращается в верное числовое ра­венство. Аналогично определяется решение неравенства с параметром. Решить уравнение (неравенство) с параметром - это значит для каждого допустимого значения параметра найти множество всех решений данного уравнения (не­равенства).

1. ГРАФИЧЕСКИЕ ПРИЕМЫ. КООРДИНАТНАЯ ПЛОСКОСТЬ (х ;у )

Наряду с основными аналитическими при­емами и методами решений задач с параметрами существуют способы обраще­ния к наглядно-графическим интерпретациям.

В зависимости от того какая роль параметру отводится в задаче (неравноправная или равноправная с переменной), можно соответственно выделить два основных графических приема: первый – построение графического образа на коорди­натной плоскости ; у), второй – на ; а).

На плоскости (х; у) функция у = f ; а) задает семейство кривых, зависящих от параметра а. Понятно, что каждое семейство f обладает определенными свойствами. Нас же в первую очередь будет интересовать, с помощью какого преобра­зования плоскости (параллельный перенос, поворот и т. д.) можно перейти от одной кривой семейства к какой-либо другой. Каждому из таких преобразований будет посвящен отдельный пункт. Как нам кажется, подобная классификация облегчает решающему поиск необходимого графического образа. Отметим, что при таком подходе идейная часть решения не зависит от того, какая фигура (прямая, окружность, парабола и т. п.) будет являться членом семейства кривых.

Разумеется, не всегда графический образ семейства у = f ; а) описывается простым преобразованием. Поэтому в подобных ситуациях полезно сосредоточить внимание не на том, как связаны кривые одного семейства, а на самих кривых. Иными словами можно выделить еще один тип задач, в которых идея решения прежде всего основана на свойствах конкретных геометрических фигур, а не семейства в целом. Какие же фигуры (точнее семейства этих фигур) нас будут интересовать в первую очередь? Это прямые и параболы. Такой выбор обусловлен особым (основным) положением линейной и квадратичной функций в школьной математике.

Говоря о графических методах, невозможно обойти одну проблему, «рожденную» практикой конкурсного экзамена. Мы имеем в виду вопрос о строгости, а следовательно, о законности решения, основанного на графических соображениях. Несомнен­но, с формальной точки зрения результат, снятый с «картинки», не подкрепленный аналитически, получен нестрого. Однако кем, когда и где определен уровень строгости, которого следует придерживаться старшекласснику? По нашему мнению, требования к уровню математической строгости для школьника должны определяться здравым смыслом. Мы понимаем степень субъек­тивности такой точки зрения. Более того, графический метод – всего лишь одно из средств наглядности. А наглядность может быть обманчивой..gif" width="232" height="28"> имеет единственное решение.

Решение. Для удобства обоз­начим lg b = а. Запишем урав­нение, равносильное исходному: https://pandia.ru/text/78/074/images/image004_56.gif" width="125" height="92">

Строим график функции с областью определе­ния и (рис. 1). Полученный график семейство прямых у = а должно пересекать только в одной точке. Из рисунка видно, что это требование выполняется лишь при а > 2, т. е. lg b > 2, b > 100.

Ответ. https://pandia.ru/text/78/074/images/image010_28.gif" width="15 height=16" height="16"> определить число решений уравнения .

Решение . Построим график функции 102" height="37" style="vertical-align:top">



Рассмотрим . Это прямая параллельна оси ОХ.

Ответ ..gif" width="41" height="20">, то 3 решения;

если , то 2 решения;

если , 4 решения.

Перейдем к новой серии задач..gif" width="107" height="27 src=">.

Решение. Построим прямую у = х +1 (рис. 3)..gif" width="92" height="57">

иметь одно решение, что равносильно для уравнения (х +1)2 = х + а иметь один корень..gif" width="44 height=47" height="47"> исходное неравенство решений не имеет. Заметим, что тот, кто знаком с произ­водной, может получить этот результат иначе.

Далее, смещая «полупараболу» влево, зафиксируем послед­ний момент, когда графики у = х + 1 и имеют две общие точки (положение III). Такое расположение обеспечива­ется требованием а = 1.

Ясно, что при отрезок [х 1; х 2], где х 1 и х 2 – абсциссы точек пересечения графиков, будет решением исходно­го неравенства..gif" width="68 height=47" height="47">, то

Когда «полупарабола» и прямая пересекаются только в одной точке (это соответствует случаю а > 1), то решением будет отрезок [-а ; х 2"], где х 2" – больший из корней х 1 и х 2 (положение IV).

Пример 4 ..gif" width="85" height="29 src=">.gif" width="75" height="20 src=">. Отсюда получаем .

Рассмотрим функции и . Среди них лишь одна задает семейство кривых. Теперь мы видим, что произведенная замена приносит несомненную пользу. Парал­лельно отметим, что в предыдущей задаче аналогичной заменой можно заставить двигаться не «полупараболу», а прямую. Обратимся к рис. 4. Очевидно, если абсцисса вершины «полупараболы» больше единицы, т. е. –3а > 1, , то уравнение корней не имеет..gif" width="89" height="29"> и име­ют разный характер моно­тонности.

Ответ. Если то уравнение имеет один корень; если https://pandia.ru/text/78/074/images/image039_10.gif" width="141" height="81 src=">

имеет решения.

Решение. Ясно, что прямые семейства https://pandia.ru/text/78/074/images/image041_12.gif" width="61" height="52">..jpg" width="259" height="155">

Значение k1 найдем, подставив в первое уравнение системы пару (0;0). Отсюда k 1 =-1/4. Значение k 2 получим, потребовав от системы

https://pandia.ru/text/78/074/images/image045_12.gif" width="151" height="47"> при k > 0 иметь один корень. Отсюда k2 = 1/4.

Ответ. .

Сделаем одно замечание. В некоторых примерах этого пункта нам придется решать стандартную задачу: для прямой семейства находить ее угловой коэффициент, соответствующий моменту касания с кривой. Покажем, как это сделать в общем виде при помощи производной.

Если (х0 ; y 0) = центр поворота, то координаты 1; у 1) точки касания с кривой у = f (х) можно найти, решив систему

Искомый угловой коэффициент k равен .

Пример 6 . При каких значениях параметра уравнение имеет единственное решение?

Решение ..gif" width="160" height="29 src=">..gif" width="237" height="33">, дуга АВ.

Все лучи проходящие между ОА и ОВ пересекают дугу АВ в одной точке, также в одной точке пересекают дугу АВ ОВ и ОМ (касательная)..gif" width="16" height="48 src=">. Угловой коэффициент касательной равен . Легко находится из системы

Итак, прямые семейства https://pandia.ru/text/78/074/images/image059_7.gif" width="139" height="52">.

Ответ . .

Пример 7 ..gif" width="160" height="25 src="> имеет решение?

Решение ..gif" width="61" height="24 src="> и убывает на . Точка - является точкой максимума.

Функция же - это семейство прямых, проходящих через точку https://pandia.ru/text/78/074/images/image062_7.gif" width="153" height="28"> является дуга АВ. Прямые , которые будут находиться между прямыми ОА и ОВ, удовлетворяют условию задачи..gif" width="17" height="47 src=">.

Ответ ..gif" width="15" height="20">решений нет.

1.3. Гомотетия. Сжатие к прямой.

Пример 8. Сколько решений имеет система

https://pandia.ru/text/78/074/images/image073_1.gif" width="41" height="20 src="> система решений не имеет. При фиксированном а > 0 графиком первого уравнения является квадрат с вершинами (а ; 0), (0;-а ), (-a ;0), (0;а). Таким образом, членами семейства являются гомотетичные квадраты (центр гомотетии – точка О(0; 0)).

Обратимся к рис. 8..gif" width="80" height="25"> каж­дая сторона квадрата име­ет две общие точки с ок­ружностью, а значит, сис­тема будет иметь восемь решений. При окружность окажется вписанной в квадрат, т. е. решений станет опять четыре. Очевидно при система решений не имеет.

Ответ. Если а < 1 или https://pandia.ru/text/78/074/images/image077_1.gif" width="56" height="25 src=">, то решений четыре; если , то решений восемь.

Пример 9 . Найти все значения параметра , при каждом из которых уравнение https://pandia.ru/text/78/074/images/image081_0.gif" width="181" height="29 src=">. Рассмотрим функцию ..jpg" width="195" height="162">

Число корней будет соответствовать числу 8 тогда, когда радиус полуокружности будет больше и меньше , то есть . Заметим, что есть .

Ответ . или .

1.4. Две прямые на плоскости

По существу, в основе идеи решения задач настоящего пункта лежит вопрос об исследовании взаимного расположения двух прямых: и . Несложно показать решение этой задачи в общем виде. Мы же обратимся непосредственно к конкретным характерным примерам, что, на наш взгляд, не нанесет ущерба общей стороне вопроса.

Пример 10. При каких a и b система

https://pandia.ru/text/78/074/images/image094_0.gif" width="160" height="25 src=">..gif" width="67" height="24 src=">, т..gif" width="116" height="55">

Неравенство системы задает полуплоскость с границей у = – 1 (рис. 10). Легко сооб­разить, что полученная система имеет решение, если прямая ах + by = 5 пересекает границу полуплоскости или, будучи па­раллельной ей, лежит в полупло­скости у 2х + 1 < 0.

Начнем со случая b = 0. Тогда, казалось бы, урав­нение ах + by = 5 задает верти­кальную прямую, которая оче­видно пересекает прямую у = 2х – 1. Однако это утверж­дение справедливо лишь при ..gif" width="43" height="20 src="> система имеет решения..gif" width="99" height="48">. В этом случае условие пересечения прямых достигается при , т. е. ..gif" width="52" height="48">.gif" width="41" height="20"> и , или и , или и https://pandia.ru/text/78/074/images/image109_0.gif" width="69" height="24 src=">.

− В координатной плоскости xOa строим график функции .

− Рассмотрим прямые и выделим те промежутки оси Oa, на которых эти прямые удовлетворяют следующим условиям: a) не пересекает график функции https://pandia.ru/text/78/074/images/image109_0.gif" width="69" height="24"> в одной точке, в) в двух точках, г) в трех точках и так далее.

− Если поставлена задача найти значения x, то выражаем x через a для каждого из найденных промежутков значения a в отдельности.

Взгляд на параметр как на равноправную переменную находит свое отражение в графических методах..jpg" width="242" height="182">

Ответ. а = 0 или а = 1.

ЗАКЛЮЧЕНИЕ

Мы надеемся, что разобранные задачи достаточно убедитель­но демонстрируют эффективность предложенных методов. Одна­ко, к сожалению, сфера применения этих методов ограничена трудностями, с которыми можно столкнуться при построении графического образа. А так ли это плохо? По-видимому, нет. Ведь при таком подходе в большой степени теряется главная дидактическая ценность задач с параметрами как модели миниатюрного исследования. Впрочем, приведенные соображения адресованы учителям, а для абитуриентов вполне приемлема формула: цель оправдывает средства. Более того возьмем на себя смелость сказать, что в немалом числе вузов составители конкурсных задач с параметрами идут по пути от картинки к условию.

В этих задачах обсуждались те возможности решения задач с пара­метром, которые открываются нам при изображении на листе бумаге графиков функций, входящих в левую и правую части уравнений или неравенств. В связи с тем, что параметр может принимать произ­вольные значения, один или оба из изображаемых графиков движутся определенным образом на плоскости. Можно говорить о том, что получается целое семейство графиков, соответствующих различным значениям параметра.

Решительно подчеркнем две детали.

Во-первых, речь не идет о «графическом» решении. Все значения, координаты, корни вычисляются строго, аналитически, как решения соответствующих уравнений, систем. Это же относится к случаям касания или пересечения графиков. Они определяются не на глазок, а с помощью дискриминантов, производных и других доступных Вам инструментов. Картинка лишь дает путь решения.

Во-вторых, даже если Вы не найдете никакого пути решения задачи, связанного изображенными графиками, Ваше представление о задаче значительно расширится, Вы получите информацию для самопроверки и шансы на успех значительно возрастут. Точно представляя себе, что происходит в задаче при различных значениях параметра, Вы, возможно, найдет правильный алгоритм решения.

Поэтому эти слова завершим настоятельным предло­жением: если в хоть мало-мальски сложной задаче встречаются функции, графики которых Вы рисовать умеете, обязательно сделайте это, не пожалеете.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Черкасов, : Справочник для старшеклассников и поступающих в вузы [Текст] / , . – М.: АСТ-ПРЕСС, 2001. – 576 с.

2. Горштейн, с параметрами [Текст]: 3-е издание, дополненное и переработанное / , . – М.: Илекса, Харьков: Гимназия, 1999. – 336 с.

Пусть f(x,y) и g(x, y) - два выражения с переменными х и у и областью определения Х . Тогда неравенства вида f(x, y) > g(x, y) или f(x, y) < g(x, y) называется неравенством с двумя переменными .


Значение переменных х, у из множества Х , при которых неравенство обращается в истинное числовое неравенство, называется его решением и обозначается (x, y) . Решить неравенство - это значит найти множество таких пар.


Если каждой паре чисел (x, y) из множества решений неравенства поставить в соответствие точку М(x, y) , получим множество точек на плоскости, задаваемое этим неравенством. Его называют графиком данного неравенства . График неравенства обычно является областью на плоскости.


Чтобы изобразить множество решений неравенства f(x, y) > g(x, y) , поступают следующим образом. Сначала заменяют знак неравенства знаком равенства и находят линию, имеющую уравнение f(x,y) = g(x,y) . Эта линия делит плоскость на несколько частей. После этого достаточно взять в каждой части по одной точке и проверить, выполняется ли в этой точке неравенство f(x, y) > g(x, y) . Если оно выполняется в этой точке, то оно будет выполняться и во всей части, где лежит эта точка. Объединяя такие части, получаем множество решений.


Задача. y > x .


Решение. Сначала заменим знак неравенства знаком равенства и построим в прямоугольной системе координат линию, имеющую уравнение y = x .


Эта линия делит плоскость на две части. После этого возьмем в каждой части по одной точке и проверим, выполняется ли в этой точке неравенство y > x .


Задача. Решить графически неравенство
х 2 + у 2 £ 25.
















Рис. 18.



Решение. Сначала заменим знак неравенства знаком равенства и проведем линию х 2 + у 2 = 25. Это окружность с центром в начале координат и радиусом 5. Полученная окружность делит плоскость на две части. Проверяя выполнимость неравенства х 2 + у 2 £ 25 в каждой части, получаем, что графиком является множество точек окружности и части плоскости внутри окружности.

Пусть даны два неравенства f 1(x, y) > g 1(x, y) и f 2(x, y) > g 2(x, y) .

Системы совокупностей неравенств с двумя переменными

Система неравенств представляет собой конъюнкцию этих неравенств. Решением системы является всякое значение (x, y) , которое обращает каждое из неравенств в истинное числовое неравенство. Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.


Совокупность неравенств представляет собой дизъюнкцию этих неравенств. Решением совокупности является всякое значение (x, y) , которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности. Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.


Задача. Решить графически систему неравенств


Решение. у = х и х 2 + у 2 = 25. Решаем каждое неравенство системы.


Графиком системы будет множество точек плоскости, являющихся пересечением (двойная штриховка) множеств решений первого и второго неравенств.


Задача. Решить графически совокупность неравенств



















Решение. Сначала заменяем знак неравенства знаком равенства и проводим в одной системе координат линии у = х + 4 и х 2 + у 2 = 16. Решаем каждое неравенство совокупности. Графиком совокупности будет множество точек плоскости, являющихся объединением множеств решений первого и второго неравенств.

Упражнения для самостоятельной работы


1. Решите графически неравенства: а) у > 2x ; б) у < 2x + 3;


в) x 2 + y 2 > 9; г) x 2 + y 2 £ 4.


2. Решите графически системы неравенств:


а) в)

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

Шаги

Графическое изображение линейного неравенства на числовой прямой

    Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения. Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

    Нарисуйте кружок, обозначающий найденное значение. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) этого значения, кружок не закрашивается, потому что множество решений не включает это значение. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) этому значению, кружок закрашивается, потому что множество решений включает это значение.

    На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.

    Графическое изображение линейного неравенства на координатной плоскости

    1. Решите неравенство (найдите значение y {\displaystyle y} ). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов. В правой части должна остаться переменная x {\displaystyle x} и, возможно, некоторая постоянная.

      На координатной плоскости постройте график линейного уравнения. Для этого преобразуйте неравенство в уравнение и постройте график, как строите график любого линейного уравнения. Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

      Проведите прямую. Если неравенство строгое (включает знак < {\displaystyle <} или > {\displaystyle >} ), проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой. Если неравенство нестрогое (включает знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } ), проведите сплошную прямую, потому что множество решений включает значения, лежащие на прямой.

      Заштрихуйте соответствующую область. Если неравенство имеет вид y > m x + b {\displaystyle y>mx+b} , заштрихуйте область над прямой. Если неравенство имеет вид y < m x + b {\displaystyle y, заштрихуйте область под прямой.

    Графическое изображение квадратного неравенства на координатной плоскости

      Определите, что данное неравенство является квадратным. Квадратное неравенство имеет вид a x 2 + b x + c {\displaystyle ax^{2}+bx+c} . Иногда неравенство не содержит переменную первого порядка ( x {\displaystyle x} ) и/или свободный член (постоянную), но обязательно включает переменную второго порядка ( x 2 {\displaystyle x^{2}} ). Переменные x {\displaystyle x} и y {\displaystyle y} должны быть изолированы на разных сторонах неравенства.