Генератор Ван де Граафа: устройство, принцип действия и применение. Ускорители заряженных частиц Принцип работы прибора

Генератор Ван де Граафа был изобретен в начале двадцатого столетия. Его использовали для разных целей, в частности, для ядерных исследований. Позже применение сузилось. Сегодня можно купить его как игрушку и демонстрировать детям, левитацию различных объектов. Также генератор можно соорудить самостоятельно. Тогда он станет отличной учебной моделью, с которой проводят разные опыты.

Детские фокусы

Хотите сотворить «волшебство»? Возьмите пакет из полиэтилена, обрежьте оба конца и завяжите на ниточке, чтобы получился бантик. Затем обычную линейку из пластика хорошенько потрите о шерстяную вещь и поднесите ее к бантику: начнется полет…

Готовую «волшебную палочку» с фигурками, с которыми можно делать такие фокусы, можно и купить в магазине.

Но самый простой вариант увидеть «волшебство» - это просто погладить кошку. Тогда можно и почувствовать, и увидеть возникшее статическое электричество.

А вот игрушка, повторяющая конструкцию генератора Ван де Граафа, работает на аккумуляторной батарее. Когда нажимают на кнопку, на кончике создается электростатический заряд. Поэтому фигурка перенимает его, и одноименные заряды начинают отталкиваться друг от друга. Так как фигурка вырезана определенным образом, она «надувается» и получает объем. Если заряд ослабевает, то нужно просто еще раз нажать на «волшебную» кнопку.

Немного истории

Конечно, генератор Ван де Граафа — это не только детские игрушки. Сам физик создал свое детище для проведения серьезных исследований в разделе атомной физики. Первый демонстрационный образец был сделан в 1929 году. Он был небольшого размера. Более внушительные габариты получил генератор Ван де Граафа, установленный на рельсы для дирижаблей. Модель состояла из двух столбов, наверху которых расположили полые сферы из алюминия диаметром пятнадцать футов.

Сооруженные в 1931 и 1933 годах установки достигали мощности в семь миллионов вольт. А ведь лишь заряд до восьмидесяти киловольт обеспечивал первый генератор Ван де Граафа.

Принцип действия

Внутри вращается вертикально диэлектрическая лента из бумаги. Ролик, расположенный наверху, является диэлектриком, а нижний выполнен из металла и соединен с землей. Щеточный электрод в сфере снимает и подает заряд, который распределялся в сфере равномерно. Рядом с электродом, находящимся внизу, воздух ионизируется, полезные ионы оседают на ленте, и та ее часть, которая направляется вверх, заряжается.

Чтобы получалась высокая разность потенциалов в линейных ускорителях частиц (для чего и нужны были эти генераторы), использовались две сферы с разными зарядами. В одной из них накапливались положительные, и в другой — отрицательные. Когда концентрация достигала определенного уровня, между ними проскакивал электроразряд. Именно он и исследовался. Напряжение здесь доходило до миллионов вольт.

Ранее устройства применялись для ядерных исследований и ускорения частиц. После того как появились другие способы ускорения, их стали использовать в этой сфере гораздо реже. В настоящее время генератор Ван де Граафа в большей степени служит для моделирования. К примеру, с его помощью имитируют природные разряды газа. Вместо лент в установках часто используют цепи, состоящие из пластиковых и железных звеньев поочередно.

Что нужно для самостоятельной сборки прибора

Модель несложно соорудить самостоятельно из подручных средств. Генератор Ван де Граафа, своими руками собранный, состоит из следующих составляющих:

  • карандаша;
  • обрезка трубы ПВХ;
  • резинки;
  • скрепки;
  • фольги из алюминия;
  • двигателя от игрушки;
  • неработающей лампочки;
  • сухих паст от ручки;
  • батарейки на девять вольт;
  • скотча;
  • провода;
  • дощечки.

Все элементы должны быть сухими, так же, как и воздух в помещении. В противном случае работать конструкция просто не будет или будет, но очень слабо.

Вот какой получится генератор Ван де Граафа. Фото ниже показывает, как должна выглядеть модель.

Как генератор делается самостоятельно

Сначала сверлят отверстие на дощечке, которая станет основанием конструкции. Сверло подбирают подходящего диаметра, форма - в виде пера. Затем на трубке проделывают два отверстия: сверху и снизу, для паст. Делают еще два отверстия: одно чуть выше верхнего, а второе — перпендикулярно нижнему.

Далее пасты нужно полностью очистить от чернил. Вырезают кусок, соответствующий внутреннему диаметру трубы. Берут скрепку, выпрямляют и отрезают кусок достаточной длины, чтобы он на сантиметр выступал из трубки.

Из скотча изготавливают диэлектрическую ленту. Резинку обклеивают так, чтобы обе стороны тоже были липкими.

Подготовленные элементы собирают.

Добавляют щетки, собирающие заряд. Внизу кисть проходит через отверстие, а кончик делают распушенным. Кисти должны находиться близко к резинке, но не касаться ее. Верхнюю продевают через отверстие наверху.

После этого при помощи фольги из алюминия обклеивают неработающую уже лампочку. К фольге крепится верхний провод. Лампу вставляют сверху конструкции.

Генератор Ван де Граафа учебный готов.

Опыты

Если к верхнему электроду прикрепить несколько нитей и приблизить руки, то они «встанут дыбом» и обовьют пальцы. Попробуйте провести опыты в темноте.

Чтобы получить более мощное напряжение, соединяют два генератора.

Хорошим вариантом для опытов станет лейденская банка.

Самым известным опытом является тот, при котором волосы становятся дыбом. Для этого нужно встать на деревянную доску или фанеру. Руку ставят на сферу (при этом генератор должен быть выключен, чтобы не ударило током). После включения прибора пройдет искра, в результате чего волосы встанут дыбом.

Генератор следует разряжать после каждого применения и работать с ним крайне осторожно, так как ток может стать смертельно опасным для человека.

Начнем с простого и дойдем до классики!
А не хотите ли Вы взять обычный тонкий полиэтиленовый пакет, обвязать его по середине ниткой и обрезать полиэтилен с двух сторон от нитки, соорудив бантик, привязанный к длинной ниточке.
Берем в руки школьную пластиковую линейку, трем ее о шерстяной шарф и подносим к бантику.
Теперь любуемся полетом бантика и стараемся как можно дольше удерживать его в воздухе.

Это самый простой опыт по электризации трением, он вызывает восторг зрителей, желание попробовать сделать тоже самое самому.
Ну, и пожалуйста, кто был бы против!

А теперь возьмем в руки то, что продается в магазине!
Просто-напросто берем волшебную палочку, поднимаем вверх вырезную фигурки из фольги и, как заправский фокусник, заставляем фигурку парит в воздухе над палочкой.
Ну это, скажу я вам, не бантик!

Фигурка распрямляется, становится объемной и вот она, полностью в вашей власти, выделывает в воздухе замысловатые кульбиты.

Где же скрыт секрет?
Чем «волшебна» эта волшебная палочка, и, как говорят малые дети, что там внутри?

Вспомните ваше первое знакомство с генератором статического электричества - это ваша кошка!
Погладь и «наслаждайся» затем дергающими нервы электрическими прикосновениями …. Пробовали?

Другой известный со школы генератор статического электричества - это электрофорная машина.

И вот еще одно воплощение устройства для накопления электрических зарядов: в волшебной палочке находится миниатюрный электростатический генератор Ван де Граафа.

Генератор в волшебной палочке работает на батарейках, которые также расположены внутри палочки. При нажатии на кнопку, генератор начинает создавать на конце волшебной палочки электростатический заряд. Когда конец палочки дотрагивается до фигурки из фольги, она приобретает часть электростатического заряда палочки. Палочка и фигурка получают одноименные заряды, а такие заряды должны отталкиваться. Фигурка и палочка теперь будут отталкиваться друг от друга.
Фигурка из фольги становится объемной потому, что все её части имеют заряды одного знака. Получается эффект, словно мы из вырезанной бумажной фигурки надуваем воздушный шарик.
Через некоторое время, заряд на фигурке и палочке ослабевает, и нужно снова нажать на кнопку на палочке, чтобы накопить новый заряд статического электричества.

А настоящий большой генератор Ван де Граафа был создан американским физиком Робертом Ван де Граафом для серьезных научных исследований элементарных частиц в области атомной физики.

Большой мощный генератор Ван де Граафа был построен и установлен на рельсы в ангаре для дирижаблей.
Генератор состоял из двух столбов, на каждом из которых сверху были установлены полые алюминиевые, надежно изолированные от земли сферы диаметром 15 футов (1 фут равен 0, 3 м) каждая.

Вертикально установленная в колонне диэлектрическая бумажная лента, склееная в кольцо, вращалась на роликах. Верхний ролик был выполнен из диэлектрика, а нижний из металла и соединён с землёй. Нижний конец ленты получал электрические заряды от источника тока, а верхний конец находился внутри металлической сферы. Щеточный электрод внутри сферы касался ленты, снимал электрический заряд и подавал его на проводящую сферу, где он равномерно распределялся по всей внешней поверхности сферы.

Такие генераторы использовались для создания высокой разности потенциалов в линейных ускорителях частиц, поэтому требовались две сферы, накапливающие разноименные заряды. Одна сфера заряжалась положительно, другая отрицательно, при достаточном накоплении зарядов между шарами происходил электрический разряд, который и исследовался физиками.

Суммарное напряжение между сферами достигало миллионов вольт. Внутри каждой сферы огромного генератора располагались научные исследовательские лаборатории

Первоначально такие генераторы использовались в линейных ускорителях. Диаметр купола достигал несколько метров, а создаваемая разность потенциалов несколько миллионов вольт.
В настоящее время генераторы Ван де Граафа применяются в основном для моделирования процессов, например, для имитации природных грозовых разрядов.

Теперь генератор Ван де Граафа можно увидеть и в школе, выпускается миниатюрный учебный демонстрационный генератор, предназначенный для проведения демонстрационных опытов по электростатике: электризации тел и показов искрового газового разряда в воздухе.

Здесь резиновая лента приводится в движение электродвигателем, она проходит между электрически заряженными пластинами. Возникшие на внешней стороне ленты заряды переносятся на сферу, создавая достаточно сильные электростатические поля (высокие напряжения) в окружающем пространстве, а заряды с внутренней стороны ленты противоположного знака отводятся через заземление.

Генератор Ван де Граафа - это генератор статического электричества, он дает очень высокие напряжения при очень малых токах в микроамперах. Благодаря этому, используя генератор Ван де Граафа, можно демонстрировать интересные опыты, например, электризацию человеческого тела, когда волосы «встают дыбом», и опыты в темноте, показывая электрические разряды в виде маленьких молний.

Если человек встанет на изолирующую подставку, и дотронется до заряженной сферы генератора Ван де Графа, то его телу сообщится большой электрический заряд, и все волосы, получившие одноименный заряд, будут отталкиваться друг от друга и встанут дыбом.

Но «не дай бог», если человек в таком состоянии коснется заземленной батареи отопления и ощутит на себе перераспределение зарядов!

Генератор Ван де Граафа является одним из самых известных генераторов высокого напряжения, который позволяет визуализировать поведение электронов. Устройство не нашло практического применения, и обычно используется как развлекательный прибор, показывающий принцип действия различных физических процессов. Генератор изобретен в 1929 году и был назван в честь своего открывателя.

Как действует генератор Ван де Граафа

Данное устройство может иметь два варианта исполнения: горизонтальное и вертикальное. Оба работают по одинаковому принципу и имеют внутри аналогичный набор деталей. Чаще всего применяется вертикальная установка, поскольку она позволяет добиться лучшего обзора при генерировании зарядов.

Генератор состоит из 5 основных элементов:
  • Ремешок из диэлектрической ленты.
  • Металлический шкив.
  • Шкив из диэлектрического материала.
  • Металлическая сфера.
  • Диэлектрический корпус с подставкой.

Металлический токопроводящий шкив находится в нижней части стойки генератора, а диэлектрический вверху. Между ними натянут ремешок из резины или шелка. Нижний шкив имеет заземление. В близи него находится электрод в виде щетки, на который подается напряжение. У верхнего шкива устанавливается второй электрод щетка, который подсоединен к сфере на верху генератора. Обе щетки трутся о диэлектрическую ленту.

Принцип работы генератора довольно простой. Его можно понять, даже имея пробелы в знаниях основных законов физики. Поскольку нижний щеточный электрод находится под высоким напряжением, а шкив, который закреплен рядом, выполнен из металла, то в воздушном пространстве между ними создаются положительно заряженные ионы. Они притягиваются к шкиву и налипают на электрическую ленту, которая вращается и поднимает ионы вверх к сфере, также выполняющей роль электрода. Верхние щетки снимают ионы, и отправляют их на металлическую сферу. Благодаря своей форме она накапливает положительно заряженные частицы. Вращающаяся лента постоянно доставляет все новые и новые ионы, пока не создастся их достаточного скопления для повышения потенциала на электроде.

Практическое использование

Генератор Ван де Граафа практически не нашел применения для выполнения полезных функций. Однако, его можно использовать для исследования поведения атомов. Многие ядерные лаборатории имеют среди своего технического оборудования и генератор Ван де Граафа, с помощью которого проводится ускорение частиц, что необходимо для начала ядерных реакций.

Подавляющее большинство существующих генераторов, работающих по данному принципу, используется в качестве учебного пособия, позволяющего демонстрировать процесс электростатики. Нередко генератор используется в развлекательных шоу. С его помощью имитируют миниатюрные молнии. Кроме того, вокруг сферы устройства создается поле, способное приподнимать легкие предметы. Самым известным и зрелищным способом демонстрации является отпускание над генератором небольшого кусочка фольги, который благодаря малому весу и токопроводимости удерживается на весу полем устройства. Он кружит вокруг сферы на протяжении продолжительного времени, особенно если имеет хорошую балансировку. Со временем траектория его полета искажается, и он прилипает к генератору.

Мощный генератор Ван де Граафа способен создавать крупные молнии, поэтому зрелище от использования такого прибора действительно завораживает. В связи с этим не удивительно, что на подобные представления приходят посетители, несмотря на то, что данные устройства существуют уже почти 100 лет. Вблизи генератора начиняют гореть осветительные приборы, неподключенные к сети.

Коронным трюком с использованием генератора является поднятие волос на голове. Нужно предварительно встать на резиновый коврик, после чего одной рукой прикоснуться к шару устройства.

Как пользоваться генератором

Применение генератора требует соблюдение определенных правил. Их нарушение может вызывать неприятные последствия. Получение разряда с его сферы по ощущениям похоже на удар молнии. Конечно, это опасно, но только в том случае если применяется генератор, который создает действительно большие напряжения.

Перед применением устройства его нужно очистить от постоянно прилипающей пыли, которая обычно покрывает диэлектрическую ленту и шкивы. Специально для этого в генераторах предусматривается возможность снятия сферы. Если грязь не захочет стираться, ее можно просто смыть, но после этого устанавливать детали обратно можно только после их высыхания.

Перед включением напряжения, генератор нужно заземлить, после чего запустить привод для обеспечения вращения ленты.

Правила предосторожности

В случае включения генератора в сетевую розетку необходимо, чтобы она имела заземление. Категорически запрещено прикасаться к поверхности устройства, за исключением нахождения ног на диэлектрическом коврике.

Запрещено приближаться к работающему генератору в случае использования кардиостимулятора. Также нужно учитывать, что прибор может навредить современному техническому оборудованию. В связи с этим, перед экспериментами с генератором нужно отложить в сторону мобильный телефон и электронные часы. Включенная вблизи от генератора компьютерная техника часто испытывает помехи, поэтому начинает показывать изображение на экране с дефектами. Это продолжается на протяжении всего периода, пока работает генератор.

Технические характеристики

Первый прототип генератора, который был успешно запущен, генерировал напряжение 80 КВ. Это высокий показатель, но является практически ничтожным против современных достижений. Установки, которые используются сегодня, способны генерировать 20 млн. вольт.

Самый мощный генератор Ван де Граафа построенный в истории выдавал напряжение в 20 МВ. Именно с его помощью были открыты суперформированные ядра.

Серийно выпускаются компактные генераторы, предназначенные для использования в кабинетах физики как наглядное учебное пособие. Такие устройства значительно более безопасные, и не выдают мощные разряды. Для проведения шоу по созданию молний обычно применяются генераторы, напряжение которых на выходе составляет до 100 кВ. Они питаются от обычной сети переменного тока на 220В. Высота таких устройств составляет 40-60 см, а вес редко превышает 7 кг.

Самостоятельное изготовление

Генератор Ван де Граафа очень часто изготовляется самостоятельно любителями физических экспериментов. Сделать его совсем несложно, но конечно самоделка не питается от сети переменного тока, поэтому совершенно безопасна. Нижняя щетка прибора подключается к блоку питания зарядного устройства обыкновенного мобильного телефона. В качестве диэлектрического ремешка для натяжения между роликами применяется изолента. Вместо токопроводящей сферы устанавливается обыкновенная алюминиевая банка из-под газировки.

Подобный примитивный генератор хотя и не может генерировать зрелищные молнии, но вполне способен при работе приподнимать фольгу, заставлять уклоняться в сторону тонкую струю воды из-под крана, и питать мелкие светодиоды, от чего они светятся.

Это инструкции о том, как я построил Генератор Ван де Графа своими руками из некому ненужного мусора. Вот он на рисунке:

Итак, первое, что нужно сделать, это собрать все необходимые компоненты. Они включают в себя: 1 карандаш, два старых высохших пасты, кусок трубу ПВХ, одна мертвая лампочка, длинный кусок резинки, скрепка, алюминиевая фольга, скотч, один маленький двигатель от игрушки, девятивольтовая батарея, и немного провода, ну и основание – деревянная дощечка. Все видно на фото:

Первым шагом на ваших действий станет сверления отверстия под трубку в основании основания. Нужно взять дрель с перьевым сверлом нужного диаметра, чтобы ПВХ трубка плотно входила.

Следующее, вы делаете два сквозных отверстия через обе стороны трубки. Расстояние между отверстиями такое, чтобы при вставке пасты и натягом между пастами резинки так чтоб резинка была слегка натянута. Убедитесь, что резинка сидит не слишком туго иначе она будет остановить двигатель.

Затем делаем еще два отверстия в трубке. Первое отверстие должны быть просверлено чуть выше первого на той же оси. Второе отверстие должно быть прямо перпендикулярно нижнему. Внимательно посмотрите на фото:

Теперь необходимо вытащить чернила из пасты. Я использовал ленту галстук, как те, которые приходят с мешки для мусора, чтобы очистить пасту. Что используете Вы думайте сами.

Далее вам вырезать кусок пасты по длине внутренний диаметр труб из ПВХ. Затем возьмите скрепку и вырежьте кусочек достаточной длины, так чтоб кусочек выступал из трубки как минимум на сантиметр. Смотрите фото:

Как Вы наверное догадались таких валика нам понадобится два. Перед сборкой необходимо собрать диэлектрическую пленку. Она делается из скотча и нашей резинки. Резинка обклеивается скотчем, чтоб клеящие стороны были слеины друг с другом. Можно и не обклеивать полоску скотча, а просто надеть с верху резинку для прижимку к нашим роликам.

Потом возьмем ластик от карандаша и соберём нашу конструкцию как показано на рисунке ниже. Для надежности соединения супер клеем вал мотора приклеивается к ластику и скрепке.

Следующим шагом будем добавить щетки, которые собирают заряд. Нижняя кисть, как показано на картинке слева проходит через отверстие в нижней части, конечик проволоки должен быть размохрён. Вы должны убедиться, что кисти близки к резинке, но не должны прикосаться к ней. Верхняя кисть, как показано на рисунке справа проходит через верхнее отверстие.

Следующий этап и финал - обклеиваем сгоревшую лампочку куском алюминиевой фольги. Ключевую роль в обеспечении алюминиевого проводини больше заряда для того чтобы собрать его как можно больше. Потом к этой фольге на лампе подключаем верхний провод и нашу лампу-электрод вставляем на верх всей конструкции. Ну, вот что вы теперь знаете, как построить самим генератор Ван де Графа.

Это генератор высокого напряжения, механизм работы его базируется на электризации движущейся диэлектрической ленты. Впервые был создан в 1929 г. в США физиком Робертом Ван де Граафом и давал разность потенциалов до 80 Квольт. В 1931 он же разработал устройства, вырабатывающее 1 млн, а два года спустя – 7 млн вольт.

Известно, что при трении разных материалов друг об друга можно получить электрический заряд, который притягивать всякие мелкие бумажки, пыль и даже отклонять струю воды. Например, используем канализационную ПВХ-трубу и носок, работает не хуже знаменитой эбонитовой палочки. Любое вещество состоит из положительно заряженных ядер атомов и отрицательно заряженных электронов, которые вращаются вокруг них. Обычно в веществе положительного и отрицательного заряда поровну, поэтому суммарный равен нулю, такое тело не заряжено. Но когда носок касается трубы, то электроны переходят с носка на нее, потому что электроны лучше притягиваются к её молекулам.

Трение – это способ привести в контакт как можно больше молекул, поэтому во время эксперимента лучше еще нажимать на носок силой. Но не все осознают, что таким простым способом достигается напряжение в 1000 В, чтобы убедиться в этом, рекомендовано проделать эксперимент в абсолютной темноте, например, заперевшись в комнате без окон. И пронаблюдать вспышки разрядов, возникающие при трении носка об трубу.


Генератор Ван де Граафа тоже получает заряд за счет соприкосновения двух материалов друг с другом, однако он умеет получать куда большее напряжение. При устроен он довольно просто. В нижней части генератора закреплен двигатель, он нужен, чтобы вращать специальную ленту, на оси двигателя нужно закрепить что-то, что при соприкосновении заряжать ленту. Перепробовали целую кучу материалов надевать на ось, а также несколько вариантов лент. В качестве ленты лучше всего работал медицинский бинт Мартенса, а на ось в итоге надели кусочки все той же ПВХ-трубы, которая хорошо притягивает электроны, заряжаясь отрицательно. А положительно зарядившаяся лента, вращаясь, несет свой заряд наверх, и он накапливаться на металлическом шаре все больше и больше. Если хочется, чтобы шар стал не плюсом, а минусом, просто просовываем свои пальцы в трубу, кожа при трении отдает электроны. Напряжение на шаре накапливается действительно большое, судя по размеру пробивающих молний 100000 В набирается. Крутые генераторы, созданные по технологии Ван де Граафа, умеют получать миллионы вольт и используют в физике, чтобы ускорять частицы до больших энергий.

Почему лента всегда только приносит заряд на шар, и никогда его оттуда не уносит? Чтобы ответить на вопрос, нужно разобраться в одном важном свойстве проводников, ведь шар в отличие от ленты специально сделан из металла, хорошо проводящего материала. Объяснение для обывателя, прошаренные чуваки сами прочитают про теорему Гаусса и экранировку.

Предположим, есть кусок металла, и внутрь него каким-то образом попал заряд, пусть это кучка отрицательных электронов, однако, если это металл, то не пройдет и доли секунды, как там уже не будет, потому что это кучка электронов, они все друг от друга отталкиваются. Быстро весь избыточный заряд окажется размазанным по внешней стенке металла очень-очень тонким слоем, т.е. всегда скапливается на внешней поверхности проводников. Поэтому лента и не может взять заряд с шара, внутри его просто нет. Это и есть основной принцип работы генератора изобретателя Ван де Граафа. Вся фишка в том, что подносим ленту изнутри шара, а не снаружи.

Шар сделали из двух салатниц, купленных в Икея. Внутри втулка из велосипеда, на которой держится, свободно вращаясь, лента. Заряд с ленты на шар попадает либо через втулку, либо с помощью дополнительного провода, поднесенного максимально близко к ленте. В конце он разделен на множество мелких острых проводников. Дело в том, что через воздух на острие намного лучше стекает заряд. Половник, в который бьет молния, заземлен через корпус самодельного генератора.