Что такое геркон? Принцип работы геркона Для чего нужен герконовый датчик.

В самых разнообразных электрических и электронных схемах применяется радиодеталь с красивым названием «геркон». Что это такое и как она работает?

Название и его смысл

Название действительно звучит поэтично, оно достойно прекрасного цветка. Но происхождение слова весьма прозаично, оно расшифровывается как «герметичный контакт». Именно отсутствием воздуха или заменой его обусловлены достоинства прибора по сравнению с обычными контактными группами. Принцип его работы крайне прост, и объясняется вкратце другим названием детали: «магнитоуправляемое электрическое соединение». Внутри стеклянной колбочки небольших размеров закреплены две упругие металлические пластины, одна из которых снабжена ферромагнитной накладкой. Герметизация достигается плотным прилеганием аморфного материала корпуса в момент изготовления, иными словами, выводы просто вплавляются с двух сторон.

Устройство прибора

Итак, в стеклянную трубочку вставлена механическая система, состоящая из двух пружинистых пластин, магнитного материала и наплавленных или напаянных на них контактных групп. В нормальном состоянии правая и левая составляющие могут находиться в гальваническом соприкосновении, обеспечивая возможность прохождения электрического тока (такие герконы называют нормальнозамкнутыми), или, напротив, могут быть разомкнутыми (геркон замыкающий). Затем внутри трубки создается вакуум либо в нее закачивается инертный (химически пассивный) газ. Это делается для увеличения детали. При прохождении тока происходит нагрев контактов и убыстряется процесс окисления, то есть соединения с кислородом. Если металл окружен средой инертной, то такой реакции не произойдет. Теперь трубку можно запаивать, и прибор готов.

Работа прибора, его достоинства и недостатки

Применение

И все же, несмотря на конструктивные принципиальные пороки, полностью исключить которые практически невозможно, характеристики герконов позволяют использовать их во многих областях человеческой деятельности, в которых недостатки не так уж важны, а достоинства преобладают. Например, в обычной компьютерной клавиатуре, в которой с так называемым «дребезгом» можно бороться, включив в схему демпфирующие фильтры, а затем не беспокоиться о чистоте контактов. Незаменимы эти приборы и в системах сигнализации. Нет ничего проще установки датчика, в основе которого лежит включенный в цепь геркон. Двери закрыты - контакт замкнут, а при их открывании магнит, прикрепленный к косяку, отдаляется, уменьшается, происходит размыкание цепи, служащее сигналом для срабатывания электронной схемы оповещения. Для определения положения кабины лифта также чаще всего применяют герконы. Осветительным оборудованием дайверов также легко управлять с помощью магнитов, не опасаясь того, что соленая морская вода затечет в электрические фонари через отверстия в коммутационных приспособлениях. В схемах как однофазных, так и трехфазных, герконы также присутствуют.

Геркотроны

При изучении высоковольтных схем студенты и специалисты иногда сталкиваются с термином «геркотрон», при этом из контекста ясно, что по своему принципиальному устройству это тот же геркон. Что это такое и в чем отличие? В характеристиках, а именно в напряжении (до 100 кВ) и токе, который может идти по контактам. Способность изоляции противостоять возможности пробоя и сечение проводника, а также площадь контакта - вот что отличает геркотрон от геркона. Во всем остальном, а главное, в принципиальном устройстве, эти приборы идентичны.

Поговорим мы в этой статье про герконы, слово геркон расшифровывается как: герметичный магнитоуправляемый контакт. Геркон представляет собой небольшую вытянутую колбу с откачанным воздухом, внутри которого содержится пара гибких металлических ферромагнитных контактов. Контакты по длине перекрываются, но находятся на небольшом расстоянии друг от друга, этих контактов может быть несколько, на разные включения (замыкание или размыкание). При поднесении магнита к геркону контакты замыкаются (или размыкаются).

Герконы могут использоваться в датчиках (например датчик скорости на велосипеде), выключателях и пр… Раньше герконы использовались в реле, поверх геркона наматывалась катушка в несколько сотен витков (сопротивление обмотки может достигать 500-1500 Ом) и при подаче напряжения контакты геркона замыкались, сейчас реле с герконами редко где используются.

Достоинства герконовых реле :
Полная герметизация контакта позволяет их использовать герконовые реле в различных условиях влажности, запыленности и т. д.
Высокое быстродействие, что позволяет использовать герконовые реле при высокой частоте коммутаций.
Гальваническая развязка коммутируемых цепей и цепей управления герконовых реле.6. Расширенные функциональные области применения герконовых реле.
Надежная работа в широком диапазоне температур

Недостатки герконовых реле:
Восприимчивость к внешним магнитным полям, что требует специальных мер по защите от внешних воздействий.
Хрупкий корпус герконов, чувствительный к ударам.
Малая мощность коммутируемых цепей у герконов.
Возможность самопроизвольного размыкания контактов герконовых реле при больших токах.

Герконы на схемах обозначаются следующим образом:

Особенности и преимущества герконов:
Как уже говорил, контакты геркона находятся в вакууме или в инертном газе и как следствие при работе они слабо обгорают, даже если при замыкании или размыкании между контактами возникает искра.
Герконы достаточно долговечные, если не бить геркон и не пропускать очень большие токи, то срок службы геркона бесконечен.
Герконы в работе почти бесшумны, слышно только цоканье контактов.
Относительно высокое быстродействие.

Недостатки герконов:
Герконы очень хрупкие, корпус герконов как правило изготовлен из хрупкого стекла, следовательно их нельзя использовать в условиях сильных вибраций и ударов.
Для их срабатывания нужно создать или приложить магнитное поле.
Иногда контакты герконов залипают, такое происходит после прохождения больших токов и проскакивания искры при срабатывании контактов, такой геркон необходимо заменить, герконы в основном служат для коммутации небольших токов. Ниже на рисунке Вы можете увидеть фотографию геркона с обгоревшими контактами.

Применение герконов

Как уже говорилось, чаще всего герконы применяются в системах охранной сигнализации, ставят их на дверь, окна… при открывании двери мимо геркона проходит магнит (который расположен на двери) и замыкает геркон. Можно сделать включение какого либо устройства при поднесении магнита к геркону, например включение компьютера, или сделать так чтобы двигатель скутера заводился только после того как поднесут к датчику магнит, ставить в качестве датчиков контроля положения, сделать так чтобы при поднятии какого либо предмета сработала сирена, или прикрепить геркон на колесо велосипеда для контроля скорости, давайте рассмотрим такую схему ниже!

Справочная информация по отечественным и зарубежным герконам - обозначение и маркировка, технические характеристики, виды и типы. Магнитоуправляемые герметические контакты (герконы) находят широкое применение в радиоэлектронной аппаратуре. Они используются при конструировании реле, логических элементов, различных датчиков, тумблеров, концевых выключателей и переключателей.

Благодаря герметизации контактов повысилась надежность коммутации и стабильность сопротивления контактов. Малые размеры подвижных частей позволили повысить в десятки раз максимальную частоту коммутации по сравнению с электромагнитными реле. Время срабатывания герконов не превышает 2 мс, а максимальное число срабатывания достигает миллиона.

Условное обозначение герконов

  • первый элемент - определяет условное наименование геркона. МК - магнитоуправляемый контакт герметизированный, КЭМ - контакт электромагнитный, КМГ - магнитоуправляемый контакт с повышенным контактным нажатием (для коммутации больших токов - более 5 А);
  • второй элемент - указывает на систему коммутации геркона: А - замыкающий, В - размыкающий, С - перекидной, Д - переходной;
  • третий элемент - буква "Р" присутствует только в ртутных герконах;
  • четвертый элемент - двузначное число показывает длину баллона в миллиметрах;
  • пятый элемент - указывает на функциональное назначение геркона: 1 - малой и средней мощности, 2 - повышенной мощности, 3 - мощные, 4 - высоковольтные, 5 - высокочастотные, 6 - «с памятью», 7 - специальные (с повышенной устойчивостью к внешним факторам и характеру нагрузки), 8 - измерительные.
  • шестой элемент - указывает порядковый номер разработки.

По типу контактов различают герконы замыкающие и переключающие, по состоянию поверхности контактов - сухие и жидкостные. Внутри баллона сухих герконов находятся инертные газы. Контакты представляют собой ферромагнитные пружины, покрытые . Герконы подразделяются также на маломощные (коммутируемая мощность до 60 Вт) и повышенной мощности (до 1000 Вт), низкочастотные и высокочастотные, низковольтные (коммутируемое напряжение до 250 В) и высоковольтные (свыше 250 В), имеются герконы с «памятью» и специальные. Далее приводим справочные параметры отечественных герконов, а в конце статьи - импортных герконов-реле.

Характеристики переключающих и измерительных герконов

Наименование геркона МКС-27102 КЭМ-3 МКС-15101 МКА-52181 МКА-27801
50...74 30...100 30...45 80 30...100
Время срабатывания, мс 1,5 1,5 1,5 2 2
30 30 0,36 1,5 1
150 127 36 36 300
1 1 0,01 0,1 0,01
0,15 0,3 0,15 0,08 0,1
50 100 100 100 50
-60... + 125 -60... + 125 -60... + 125 -60... + 85 -60... + 85
1...2000 1...2000 1...2000 1...600 5...600
98 245 196 49 98
27/67 18/54 15/50 53/79,5 28/52,3

Параметры замыкающих герконов миниатюрного типа

Наименование геркона МУК-МА-1 КЭМ-2 МК-16-3 МК-10-3 МКА-10113
Магнитодвижущая сила срабатывания, А 35...90 21...64 35 13...40 14...25
Время срабатывания, мс 2 1 1 0,8 0,8
Максимальная коммутируемая мощность, Вт 15 7,5 0,3 3,6 1 (ВА)
Максимальное коммутируемое напряжение, В 115 180 30 36 36
Максимальный коммутируемый ток, А 0,5 0,25 0,01 0,1 0,1
Сопротивление электрических контактов, Ом 0,3 0,15 0,15 0,3 0,3
Максимальная частота коммутаций, Гц 100 100 100 10...10 100
Температура окружающей среды, °С -60...+125 -60...+125 -45...+70 -60...+125 -60...+125
Вибрационные нагрузки, диапазон частот, Гц 2000 1 ...2000 1...600 3000 1...3000
Вибрационные нагрузки, максимальное ускорение, м/с2 196 196 49 98 196
Диаметр баллона, общая длина, мм 21,5/40 20/46 16/- 10,5/30,5 10/42,5

Параметры замыкающих герконов стандартного и промежуточного типов

Наименование геркона КЭМ-1 КЭМ-6 МК-36701 МКА-27101
Тип геркона стандартный стандартный промежуточный промежуточный
Магнитодвижущая сила срабатывания, А 55...110 38...50 50...80 30...60
Время срабатывания, мс 3 2 2 1,5
Максимальная коммутируемая мощность, Вт 30 12 21 12
Максимальное коммутируемое напряжение, В 220 150 100 110
Максимальный коммутируемый ток, А 1 0,25 0,35 0,35
Электрическая прочность, В 500 500 - 500
Сопротивление электрических контактов, Ом 0,08 0,1 0,07 0,12
Максимальная частота коммутаций, Гц 100 20 50 100
Температура окружающей среды, °С -60…+125 -60…+125 -60…+100 -60…+100
Вибрационные нагрузки, диапазон частот, Гц 1…600 1…50 1…600 1…600
Вибрационные нагрузки, максимальное ускорение, м/с2 98 98 98 98
Диаметр баллона, общая длина, мм 50/80 36/63,5 36/63,5 27/45,6

Характеристики высоковольтных герконов и герконов повышенной мощности

Наименование геркона МКА-52141 МКА-52142 МКА-52202
Тип геркона высоковольтный высоковольтный мощный
Магнитодвижущая сила срабатывания, А 100...200 300 180...300
Время срабатывания, мс 3,0 3,0 8,0
Максимальная коммутируемая мощность, Вт 50 50 250
Максимальное коммутируемое напряжение, В 5000 10000 380
Максимальный коммутируемый ток, А 3,0 3,0 4,0
Электрическая прочность, В 10000 15000 800
Сопротивление электрических контактов, Ом 0,1 0,1 0,3
Температура окружающей среды, °С -40…+85 -60…+100 -45…+60
Вибрационные нагрузки, диапазон частот, Гц 1…600 1…60 1…10
Диаметр баллона, общая длина, мм 53/5,4/80 52/5,5/90 52/7,0/0

Технические характеристики высокочастотных герконов

Наименование геркона МКА-10501 МКА-10701 МК-17
Тип геркона высокочастотный высокочастотный высокочастотный
Магнитодвижущая сила срабатывания, А 30…80 16...35 18...45
Максимальная частота коммутаций, Гц 100 100 2000
Максимальная коммутируемая мощность, Вт 7,5 5 2
Максимальное коммутируемое напряжение, В 80 90 10
Полное сопротивление электрических контактов (затухание), Ом 0,2 0,3 -
Емкость между контактами, пФ 0,6 0,3 0,2
Температура окружающей среды, °С -60...+ 100 -60...+ 100 -60...+ 125
Вибрационные нагрузки, диапазон частот, Гц 2000 2000 5...3000
Вибрационные нагрузки, максимальное ускорение, м/с2 98 144 196
Длина и диаметр баллона, мм 20/3,1 10/2,3 10/1,8
Общая длина с выводами, мм 45,6 40,75 25

Основные параметры запоминающих герконов

Наименование геркона МКА-27601 MKA-2060
Тип геркона запоминающий запоминающий
Мощность импульса управления, Вт - 1,2
Длительность импульса управления, мс 1,0 1,0
Максимальная коммутируемая мощность, Вт 1,5 7,5
Максимальный пропускаемый ток, А 0,35 0,25
Максимальное коммутируемое напряжение, В 110 36
Максимальный коммутируемый ток, А 0,1 0,25
Температура окружающей среды, °С -60...+ 70 -60...+ 125
Вибрационные нагрузки, диапазон частот, Гц 1…600 1…3000
Вибрационные нагрузки, максимальное ускорение, м/с2 49 196
Длина и диаметр баллона, общая длина, мм 27/3/42 20/3/42
Масса геркона, г 0,6 0,5

Краткая история создания герконов

Коммутационные устройства или просто контакты очень широко применяются в различной электрической и радиотехнической аппаратуре. С целью улучшения эксплуатационных свойств, прежде всего срока службы и надежности соединения и были разработаны магнитоуправляемые герметизированные контакты получившие название герконы .

Первые образцы таких контактов появились еще в 30 - е годы прошлого столетия, а первый магнитоуправляемый контакт был изобретен еще в 1922 году в Петербурге профессором В. Коваленковым, за что ему было выдано авторское свидетельство СССР №466. Конструкция такого контакта показано на рисунке 1.

Устроен такой контакт следующим образом. К сердечнику 3 из магнитомягкого материала через изолирующие прокладки 5 прикреплены контакты 1 и 2, выполненные также из магнитомягкого материала. При пропускании тока через катушку 4 в сердечнике 3 возникает магнитное поле и намагничивает контакты 1 и 2, которые замыкаются. Размыкание контактов происходит при прекращении тока через катушку.

Рисунок 1. Магнитоуправляемый контакт профессора В. Коваленкова

По сути это был самый первый магнитоуправляемый контакт, только без герметизирующей оболочки. В герметизирующую оболочку подобный контакт был впервые помещен американским инженером W.B. Ellwood лишь в 1936 году. В семидесятых годах прошлого столетия герконы достигли своего максимального развития, и нашли широкое применение в различных устройствах электронной техники.

В настоящее время герконы используются менее интенсивно, поскольку их «вытеснили» . Но в некоторых случаях герконы остались вне конкуренции, что обусловлено простотой применения, гальванической развязкой от источника питания, свойствами «сухого контакта», поэтому герконы до сих пор применяются в различных схемах и устройствах.

В тех случаях, когда требуется высокая надежность и долговечность коммутирующего элемента герконы просто незаменимы. Как составная часть герконы входят в конструкции различных датчиков, электромагнитных реле, особенно слаботочных, а также позиционных переключателей и некоторых других устройств.

Разновидности герконов

Так же, как и обычные контакты, герконы могут быть замыкающие (1 нормально - разомкнутый контакт), переключающие (1 переключающий контакт) и работающие на размыкание (1 нормально - замкнутый контакт). Это деление по функциональным признакам.

По признакам конструктивно - технологическим герконы делятся на две большие группы: с сухими контактами и с контактами ртутными. Первая разновидность так и называется сухими герконами, а вторая ртутными герконами. Собственно, в работе сухих герконов, по сравнению с обычными контактами, ничего особенного нет.

В ртутных герконах внутри герметичного стеклянного корпуса кроме контактов находится еще капелька ртути. Назначение этой ртутной капельки - смачивание контактов во время срабатывания для улучшения качества контакта за счет уменьшения переходного сопротивления, а кроме того для избавления от дребезга контактов.

Дребезгом называется вибрация контактов при замыкании и размыкании, что при однократном срабатывании приводит к многократной коммутации передаваемого сигнала, а кроме того к значительному увеличению времени срабатывания.

Представьте себе, что такой дребезг будет присутствовать во время переключения входного сигнала! В случае, когда такой дребезжащий контакт работает совместно с цифровыми микросхемами, приходится принимать меры по подавлению дребезга в виде RC - цепочек или .

Различные контакты, в том числе и герконовые, применяются и в , но в них дребезг контактов подавляется программным способом. Это также снижает быстродействие системы в целом.

Конструкция герконов

Конструкция различных типов герконов представлена на рисунке 2.

Рисунок 2 . Конструкция герконов

Все герконы представляют собой герметичный стеклянный баллон , внутри которого находится контактная группа . Контакты представляют собой магнитные сердечники, вваренные в торцы баллона. Наружные концы сердечников предназначены для подключения к внешней электрической цепи.

Наибольшее распространение получил геркон с контактной группой, работающей на замыкание или, как показано на рисунке «разомкнутый». Каждый контакт - сердечник выполнен из ферромагнитной упругой проволоки, которая расплющена до прямоугольной формы. Для изготовления сердечников применяется пермаллоевая проволока диаметром 0,5 - 1,3 мм в зависимости от мощности геркона и, соответственно, его габаритов.

Непосредственно контактирующие поверхности покрыты благородным металлом, золотом, палладием, родием, серебром и сплавами на их основе. Такое покрытие не только уменьшает , но и способствует повышению коррозионной стойкости контактной поверхности.

Внутренне пространство баллона заполнено инертным газом (водородом, аргоном, азотом или их смесью) или просто вакуумировано, также способствует уменьшению коррозии контактов и повышению их надежности. При изготовлении сердечники располагают таким образом, чтобы между ними оставался зазор, кстати, определенного размера.

Рис. 3. Геркон

Принцип работы геркона

Для того, чтобы вызвать срабатывание контактной группы, необходимо вокруг геркона создать магнитное поле достаточной напряженности. При этом абсолютно не важно, как это поле будет создано, либо просто постоянным магнитом, либо электромагнитом. Силовые линии внешнего магнитного поля намагничивают внутренние контакты - сердечники геркона, в результате чего они преодолевают силы упругости, притягиваются и замыкают электрическую цепь.

В таком состоянии контакты будут находиться до тех пор, пока вокруг них есть магнитное поле достаточной напряженности: достаточно выключить электромагнит или убрать подальше обычный постоянный магнит, как контакты сразу разомкнутся. Следующее срабатывание контактов произойдет, когда магнитное поле появится вновь. Из всего сказанного можно сделать вывод, что контакты выполняют сразу три функции: упругих элементов (пружин), магнитопровода, и собственно проводящих контактов.

Несколько по-иному действует геркон, работающий на размыкание. Его магнитная система устроена так, что при воздействии магнитного поля контакты - сердечники намагничиваются одноименно, поэтому отталкиваются друг от друга, размыкая электрическую цепь.

У переключающего геркона один из трех контактов, как правило, нормально - замкнутый выполняется из металла немагнитного, а оба нормально - разомкнутых контакта из ферромагнитного, как было сказано чуть выше. Поэтому при воздействии на геркон магнитного поля нормально разомкнутые контакты просто замыкаются, а немагнитный нормально - замкнутый, оставаясь на своем первоначальном месте, размыкается.

Примечание. Нормально - разомкнутый контакт , это который разомкнут при отсутствии управляющего воздействия, в данном случае магнитного поля. Соответственно нормально - замкнутый контакт замкнут при отсутствии магнитного поля.

Конечно, магнитное поле присутствует всегда, например магнитное поле Земли. И нельзя, вроде бы, сказать про отсутствие магнитного поля совсем. Но магнитное поле Земли для срабатывания геркона недостаточно, поэтому им можно пренебречь и сказать об отсутствии магнитного поля, в данном случае внешнего.

Продолжение читайте в следующей статье.

Продолжение статьи:

Борис Аладышкин

Любые механические контакты подвержены износу. Чтобы уменьшить влияние этого деструктивного фактора, в первой половине прошлого века было разработаны магнитоуправляемые коммутационные устройства, контактная группа которых помещалась в вакуумную колбу. В СССР такие элементы получили название «Геркон», по сокращению от «герметизированный контакт», в англоязычной технической документации принято название «reed switch».

Давайте рассмотрим принцип действия этих устройств, конструкцию, основные характеристики, достоинства и недостатки. В завершении статьи будет приведена пара полезных схем, где используются герконы.

Внешний вид и особенности конструкции

Данные устройства представляют собой контактную группу, изготовленную на основе ферримагнитного материала, которая помещается в стеклянную колбу. Из нее откачен воздух (созданы условия максимально приближенные к вакууму), как вариант возможно наполнение инертным газом. Внешний вид устройства и его обозначение на принципиальных схемах представлены ниже.

С конструктивным исполнением, можно ознакомиться на рисунке 2.


Обозначение:

  • А – выводы устройства.
  • В – стеклянная колба.
  • С – контактная группа.
  • D – инертный газ или вакуум.

Разновидности

Коммутационные устройства данного класса принято разделять в зависимости от устройства контактной группы на следующие виды:

  1. Элементы с нормально-разомкнутыми контактами (внешний вид такого устройства показан на рис. 1).
  2. Элементы с нормально-замкнутым контактом.
  3. С переключающимся контактом.

Помимо функциональных признаков, перечисленных выше, имеются и технологические, разделяющие герметичные коммутирующие устройства на две группы: сухие и ртутные. Отличительная особенность последних заключается в том, что внутри колбы содержится капля ртути. Она служит для «смачивания» контактной группы, это позволяет существенно снизить переходное сопротивление и вибрацию (дребезг) контактов при коммутации, что положительно отражается на качестве контакта.

Принцип действия

Срабатывание устройства (замыкание, размыкание или переключение контактов) требуется воздействовать на элемент магнитным полем, напряженность которого будет достаточной для коммутации. В качестве источника такого поля может выступать обычный или электромагнит.

Под воздействием силовых линий происходит намагничивание контактов и по преодолению порога упругости они коммутируют цепь.


Соответственно, как только на контактную группу перестанет действовать магнитное поле, она вернется в исходное состояние. То есть, функционально контакты помимо своего прямого назначения играют роль магнитопровода и упругого элемента.

Устройства с нормально-замкнутыми контактами действуют несколько иначе. Их ферримагнитные упругие элементы, попадая под воздействие магнитного, поля приобретают одинаковый заряд, что заставляет их отталкиваться, разрывая контакт.


Иногда в таких коммутаторах только один упругий элемент выполнен из ферримагнитного сплава, в результате приближения магнита он притягивается к нему, отключая цепь.

Подобный принцип задействован в герконах с переключающей группой контактов, в котором два из них изготавливаются из магнитного материала. Под воздействием магнита они притягиваются друг к другу, а немагнитный контакт остается в исходном положении. В результате происходит перекоммутация цепи.


Основные параметры

Свойства герметичных коммутаторов определяются механическими и электрическими параметрами. К первым относятся:

  • N max – число, указывающее максимально допустимое количество срабатываний без изменения основных характеристик.
  • V cp – величина отображающая интенсивность поля необходимую для реакции устройства. В технической терминологии данную характеристику называют магнитодвижущей силой.
  • V отп – величина соответствующая силе размыкания.
  • t cp – время, необходимое на срабатывание контактной группы.
  • t отп – интервал времени, необходимый на отпускание.
  • Последние два параметра наиболее значимые из механических характеристик, поскольку описывают скорость коммутации.
  • Теперь перечислим основные электрические характеристики:
  • R K – сопротивление между контактами в замкнутом состоянии.
  • R ИЗ – сопротивление разомкнутых контактов.
  • U ПР – напряжения пробоя, данная характеристика зависит как от предыдущего параметра, так и расстояния между группой контактов. Помимо этого на электрическую прочность влияет наполнение колбы.
  • P max – коммутируемая мощность.
  • C K – емкость, образуемая разомкнутыми контактами.

Как осуществляется управление?

Управлять герметичным коммутатором можно двумя способами:

  • используя постоянный магнит;
  • воздействуя катушкой, подключенной к постоянному источнику тока.

В первом варианте управление может осуществляться путем линейного или углового перемещения постоянного магнита. Также встречается способ, при котором поле перекрывается при помощи специальной шторки.

В качестве примера использования способа управления при помощи магнита можно привести датчики уровня, а также положения, охранную сигнализацию и т.д.

Второй вариант позволяет создать реле на основе геркона. В отличие от традиционной конструкции, такое устройство будет более надежным и долговечным, поскольку практически не содержит в себе подвижных механических элементов. Что касается небольшого количества контактных групп, то этот недостаток легко устраняется путем увеличения количества задействованных герконов.


Примером применения данного способа управления может служить токовое реле на основе геркона. Оно представляет собой катушку, намотанную проводом толстого сечения, внутри которой размещается герметичный коммутатор. Данное приспособление может служить в качестве защитной системы от перегрузки в цепях постоянного тока. Чувствительность прибора легко регулировать путем линейного перемещения коммутатора внутри катушки.

Плюсы и минусы

Любая конструкция помимо преимуществ не лишена недостатков. Зная сильные и слабые стороны устройства можно найти оптимальную сферу для его применения. Давайте рассмотрим, в чем заключается преимущества герметичных коммутаторов, к таковым свойствам можно отнести:

  • Высокую надежность коммутации. Она практически на два порядка превышает этот показатель у открытых контактных групп. Это достигается за счет высокого сопротивления между разомкнутыми контактами (R ИЗ), оно может исчисляться десятками МОм. Немаловажную роль играет и показатель электрической прочности (U ПР), напряжение пробоя у некоторых моделей превышает 10 кВ.
  • Быстродействие также является неоспоримым преимуществом. Частота коммутации многих моделей приближается к 1 кГц. Что касается параметров, описывающих скорость коммутации, то они находятся в следующих диапазонах: t cp – от 0,4 до 1,8 мс, t отп – от 0,25 до 0,9 мс, что намного превышает подобные характеристики открытых контактных групп.
  • Долговечность, число срабатываний исчисляется миллиардами, ни одна открытая контактная группа даже близко не может приблизиться к этому рубежу.
  • Данный тип коммутаторов нетребователен к согласованию с нагрузкой.
  • Управление может производиться без использования электроэнергии.

Характерные недостатки:

  • Низкие показатели коммутируемой мощности.
  • Небольшое число контактов.
  • Дребезг при срабатывании (конструкции «мокрого» типа избавлены от этого недостатка).
  • Большие размеры для современной радиотехнической базы.
  • Недостаточная прочность стеклянной колбы.
  • Чувствительность к воздействию внешних магнитных полей.

Несмотря на явное преобладание положительных качеств, данные устройства постепенно вытесняются полупроводниковыми аналогами, такими как датчики Холла. Отсутствие дребезга, небольшие размеры и более высокая прочность сыграли решающую роль.

Примеры практического применения в быту

Как и было обещано в начале статьи, приводим пару полезных схем, в которых используются герконы. Начнем с универсального управления освещением в прихожей. Принцип работы заключается в следующем: при открытии входной двери автоматически включается свет, и спустя несколько минут выключается. При достаточном уровне освещения, свет в прихожей не включается.


Обозначения:

  • Резисторы: R1 – 68 кОм, R2 – 33 кОм, R3 – 470 кОм, R4 – 10 кОм, R5 – 27 кОм.
  • Конденсаторы: С1 – 0,1 мкФ, С2 – 100 мкФ х 25 В, С3 – 470 мкФ х 25 В.
  • Стабилитрон и диоды: VD1 – КС212Ж, VD2 и VD3 – КД522 (1N4148), VD4 – КД209 (1N4004).
  • Транзисторы: VT1 и VT2 – ÌRF840.
  • SG1 – любой обычный герконовый датчик, например, 59145-030.
  • FR1 – фоторезистор, подойдет любого типа с сопротивлением на свету не ниже 8 кОм, в темноте – 120-180 кОм.
  • Триггер D1 – К561ТМ2 (СD4013).

Настройка схемы сводится к подбору сопротивления R1, для выбора оптимального времени задержки отключения освещения.

Теперь рассмотрим схему простой домашней сигнализации, где в также используется типовой герконовый датчик для двери.


Обозначения:

  • Резисторы: R1, R2 и R3 – 100 кОм, R4 – 33 кОм, R5 – 100 кОм, R6 – 1 кОм.
  • Конденсаторы: С1 – 100 мкФ х 16 В, С2 – 50 мкФ х 16 В, С3 0,068 мкФ.
  • Диоды и светодиод: VD1 и VD2 – КД522 (1Т4148), HL1 – АЛ307Б.
  • Транзисторы: VT1 – КТ829, VT2 – К361.
  • Микросхема: К561ЛА7.
  • S1 – герконовый датчик 59145-030.

В качестве сирены используется звуковой оповещатель АС-10.

Питание схемы осуществляется от аккумулятора 12 В, емкостью 4 А*ч.