Что изучает современная биология кратко. Роль биологии в современном обществе

Лекция № 1 Современный этап развития биологии

1 Введение. История развития биологии

Биология – это наука о жизни. Ее название возникло из сочетания двух греческих слов bios – жизнь и logos – учение. Этот термин впервые был предложен выдающимся французским естествоиспытателем и эволюционистом Жаном Батистом Ламарком (1802 г.) для обозначения науки о жизни как особом явлении природы.

Биология изучает строение, проявления жизнедеятельности, среду обитания всех живых организмов: бактерий, грибов, растений, животных.

Живое на Земле представлено необычайным разнообразием форм, множеством видов живых существ. В настоящее время уже известно около 500 тыс. видов растений, более 1,5 млн видов животных, большим количеством видов грибов и прокариот, населяющих нашу планету.

К основным задачам биологии относятся следующие:

1 Раскрытие общих свойств живых организмов;

2 Объяснение причин их многообразия;

3 Выявление связей между строением и условиями окружающей среды.

Важное место в этой науке занимают вопросы возникновения и законы развития жизни на Земле – эволюционное учение. Понимание этих вопросов служит не только основой научного мировоззрения, но и необходимо для решения практических задач.

Биология зародилась еще у древних греков и римлян, которые описали известные им растения и животные.

Аристотель (384 – 322 г.г. до н.э.) – основоположник многих наук - впервые попытался упорядочить знания о природе, разграничив ее на «ступени»: неорганический мир, растение, животное, человек. В труде древнеримского врача Галена (131-200 г.г. н.э.) «О частях человеческого тела» дано первое анатомо-физиологическое описание человека.

В средние века составлялись «травники», включавшие описания лекарственных растений.

В эпоху Возрождения интерес к живой природе усилился. Возникли ботаника и зоология.

Изобретение микроскопа в начале 17 века Галилеем (1564-1642) углубило представление о строении живых существ и положило начало изучению клеток и тканей.

А. Левенгук (1632-1723) увидел под микроскопом простейшие, бактерии и сперматозоиды, т.е. явился основоположником микробиологии.

Одним из главных достижений 18 века является создание Карлом Линнеем (1735 г.) системы классификации животных и растений. А в начале 19 века Ж.-Б. Ламарком в книге «Философия зоологии» (1809 г.) впервые была четко сформулирована мысль об эволюции органического мира.

Среди важнейших достижений 19 века – создание клеточной теории М. Шлейденом и Т. Шванном (1838-1839 г.г.), открытие закономерностей наследственности Менделем в 1859 г.

Переворот в биологии произвело учение Ч. Дарвина в 1859 г., который открыл движущие силы эволюции.

Начало 20 века ознаменовалось рождением генетики. Эта наука возникла в результате переоткрытия К. Корренсом, Э. Чермаком и Г. де Фризом законов наследственности, которые ранее были обнаружены Г. Менделем, но остались неизвестными биологам того времени, а также благодаря работа Т. Моргана, обосновавшего хромосомную теорию наследственности.

В 50-е годы значительных успехов достигли исследования тонкой структуры материи. В 1953 г. Д. Уотсон и Ф. Крик предложили модель структуры ДНК в виде двойной спирали и доказали, что она несет в себе наследственную информацию.

Для современной биологии наряду с детальным изучением отдельных структур и организмов характерна тенденция к целостному познанию живой природы, о чем свидетельствует развитие экологии.

Развитие биологии шло по пути последовательного упрощения предмета исследования. В результате возникли многочисленные биологические дисциплины, специализирующиеся на изучении структурно-функциональных особенностей определенных организмов. Этот путь познания – от сложного к простому – называют редукционистским . Редукционизм сводит познание к изучению элементарнейших форм существования материи. Это относится и к живой, и к неживой природе. При таком подходе человек познает законы природы, изучая вместо единого целого, отдельные его части.

Другой подход основан на виталистических принципах. В этом случае жизнь рассматривается как совершенно особое и уникальное явление, которое нельзя объяснить только действием законов физики или химии.

Поэтому основной задачей биологии как науки является истолкование всех явлений живой природы, исходя из научных законов и не забывая при этом, что целому организму присущи свойства, в корне отличающиеся от свойств частей, их составляющих. Например, нейрофизиолог может описать работу отдельного нейрона языком физики и химии, но сам феномен сознания так описать нельзя. Сознание возникает в результате коллективной работы и одновременного изменения электрохимического состояния миллионов нервных клеток, но мы до сих пор не знаем, как возникает мысль и каковы ее химические основы.

В настоящее время значение биологии возрастает с каждым годом. Возникло много биологических дисциплин и число их постоянно увеличивается. Связано это с тем, что биологию подразделяют на отдельные науки по предмету изучения: микробиология , ботаника, зоология ; выделились и развились области биологии, изучающие общие свойства живых организмов: генетика – закономерности наследования признаков; биохимия – пути превращения органических молекул; экология – взаимоотношения организмов с окружающей средой. Функции живых организмов изучает физиология.

В соответствии с уровнем организации живой материи выделились дисциплины:

молекулярная биология, цитология – учение о клетке, гистология – учение о тканях.

По мере расширения области знаний о живых организмах, появляются все новые биологические отрасли науки.

Вирусология Цитология Молекулярная

биология

Бактериология Микробиология Гистология

Микология Физиология

Фитопатология Ботаника БИОЛОГИЯ Анатомия

Орнитология

Биохимия Энзимология

Ветеринария Зоология Генетика Генная

Энтомология Экология инженерия

Эмбриология

2 Использование достижений биологических наук в деятельности человека

Биология имеет огромное значение в решении практических задач. Основные задачи ООН – продовольственная, здравоохранение, топливно-энергетическая, охрана окружающей среды.

Глобальной проблемой современности является производство пищи. Население нашей планеты приближается к 10 млрд человек. Поэтому проблема обеспечения населения продуктами питания, причем питания полноценного, становится все более острой.

В основном эти задачи решают технологические науки: растениеводство и животноводство, которые базируются на достижениях фундаментальных биологических дисциплин, таких как генетика и селекция, физиология и биохимия, молекулярная биология и экология.

На основе методов селекции, развитых и обогащенных современной генетикой, во всем мире идет интенсивный процесс создания более продуктивных сортов растений и пород животных. Важное качество новых сортов с/х культур – их приспособленность к выращиванию в условиях интенсивных технологий. С/х животные, наряду с высокой продуктивностью, должны обладать специфическими морфолого-анатомическими и физиологическими признаками, позволяющими разводить их на птицефабриках, фермах с электродойкой и стойловым содержанием, в клетках звероферм.

С каждым годом увеличивается дефицит белковой пищи, особенно белков животного происхождения, этот дефицит достигает 2,5 млрд т в год. Уже сейчас по данным ВОЗ 4% населения Земли находятся на грани голодной смерти, а хронически не доедают 10 % населения планеты.

Существуют 2 источника пищи – животная и растительная. Гораздо быстрее и легче производить растительную пищу, чем животную. Поэтому изыскиваются возможности получения пищевого белка неживотного происхождения, в первую очередь из растений – из зеленых частей, а также из семян.

Лидирующее место по извлечению белков занимает соя, это основная масличная культура в США и Японии. Кроме растительного масла, соя содержит очень много биологически полноценного белка (около 44%), который используется в пищу после извлечения из семян масла.

Белковые продукты из сои широкое распространение в западных странах получили только в последние 20-30 лет, в то время как в Китае и Японии они используются в пищу уже более 2-х тысячелетий. В этих странах традиционными являются такие продукты как тофу – соевый творог, кори-тофу – замороженный соевый творог, соевое молоко, юба – пленки, снимаемые с соевого молока при кипячении, и др. продукты.

В 1987 г. в США было выпущено на потребительский рынок 330 новых продуктов на основе белков сои, причем растительные белки применяются в самых разнообразных продуктах: от сосисок до мороженого, сыров, йогуртов, салатных приправ.

Растительные белки очень широко используются в продуктах быстрого приготовления, не требующих сложной кулинарной или достаточно длительной термической обработки. Особенно это касается США, где все более используется пища, которую можно потреблять в любом месте и в любое время – это всевозможные готовые завтраки, обеденные блюда, хлопья, палочки, подушечки и т. д. Причем используются такие блюда не только ради экономии времени, но и по соображениям «здорового питания».

Растительные белки широко используются и в приготовлении аналогов молока и молочных продуктов. В практике пищевой промышленности известно производство восстановленного молока из порошка, полученного из обезжиренной соевой муки. Имеется также целый ряд прохладительных белоксодержащих питательных напитков. Например, во Франции, Швеции, Венгрии имеются полностью автоматизированные установки по производству жидкой соевой продукции, соевых напитков или десертных блюд с натуральным ванильным или шоколадным ароматом. Эти продукты по составу соответствуют сбалансированному питанию, но в них отсутствуют лактоза и холестерин, что определяет целевое назначение для лиц, страдающих желудочно-кишечными и сердечно-сосудистыми заболеваниями.

Растительные белки широко применяются также как обогатители пшеничной муки при производстве хлеба и хлебобулочных изделий. Их применение способствует улучшению свойств теста при замесе, удлиняет срок сохранения в свежем виде.

Применяются белки и в кондитерской промышленности. Кроме традиционных добавок соевой муки, в приготовлении печенья, сухих завтраков, смесей для кексов, используются также белки из семян подсолнечника. Используются также и белки других растений – хлопчатника, люпина, фасоли, горчицы, арахиса, рапса, сурепицы. Эти белки обладают высокой биологической ценностью, кроме того, их выход из отходов масло-жировой промышленности достигает 62%.

Растительные белки применяются при изготовлении пищевых изделий как:

1 белковые обогатители;

2 заменители и аналоги мясных продуктов;

3 безаллергенные и безлактозные заменители коровьего молока для детского и диетического питания;

4 структурообразователи и наполнители, а также для образования, стабилизации и разрушения пены, например, при приготовлении имитации мясного фарша, мяса, при приготовлении теста, сосисок, взбитых изделий (украшения на кондитерских товарах), кремов и т.д.;

5 разбавители для регулирования калорийности и биологической ценности диетических пищевых изделий для создания низкокалорийных «легких» продуктов.

В последнее время кроме растительных белков предпринимаются попытки использования белков микробного происхождения, особенно много внимания исследователи уделяют дрожжам. Рост и развитие микроорганизмов не зависит от времени года, погодных условий. В качестве субстрата для размножения микроорганизмов можно использовать отходы сельского хозяйства, спиртовой, целлюлозно-бумажной промышленности, а также нефть и газ. По скорости размножения микроорганизмы не имеют себе равных в мире живых существ. Например, организм коровы весом 500 кг за сутки при усиленном полноценном питании образует 0,5 кг белка, а 500 кг дрожжей за это же время синтезируют более 50 т белка, т.е. в 100 тыс. раз больше.

Производство кормовых и пищевых белков, как растительных, так и микробных, основывается на реализации принципов биотехнологии в промышленных масштабах. На основе принципов биотехнологии широко налажен микробиологический синтез органических кислот, аминокислот, ферментов, витаминов, стимуляторов роста, средств защиты растений.

Для получения более продуктивных форм микроорганизмов используют методы генной инженерии, т.е. прямых манипуляций с индивидуальными генами. Например, зеленая плесень Penicillium glaucum вырабатывает антибиотик пенициллин в малых количествах, а используемая в промышленности плесень Penicillium notatum продуцирует этого антибиотика в 1000 раз больше и т.д.

С помощью пересадки генов биологи –селекционеры работают над созданием растений с контролируемыми сроками цветения, повышенной устойчивостью к заболеваниям, засолению почвы, со способностью к фиксации атмосферного азота (пример – томаты с одновременным созреванием плодов, что обеспечивает механическую уборку).

Теоретические достижения биологии, особенно генетики, широко применяются в медицине. Исследование наследственности человека позволяет разработать методы ранней диагностики, лечения и профилактики наследственных болезней, связанных с генами, а также хромосомными мутациями и аномалиями. Например, гемофилия, серповидно-клеточная анемия – серповидные эритроциты, наблюдается малокровие, изменение костей и др.; фенилкетонурия и т.д.

В условиях растущего воздействия человека на природу одной из коренных проблем является экологизация деятельности общества и сознания человека. Задача состоит не только в выявлении и устранении отрицательных эффектов воздействия человека на природу, например, местного загрязнения среды какими –то веществами, а главным образом в научном обосновании режимов рационального использования резервов биосферы. Негативные последствия хозяйственной деятельности приняли в последние десятилетия характер экологического кризиса, стали опасны не только для здоровья человека, но и для природной среды в целом. Поэтому еще одна из задач, стоящих перед биологией, это обеспечение сохранности биосферы и способности природы к воспроизводству.

Биологию в соответствии с этимологией слова (от греч. bios - жизнь и logos - слово, учение) можно в первом приближении определить как науку о жизни. Имея в виду, что до сих пор во всей Вселенной нам известна лишь одна, а именно - земная, форма жизни, уместно это ограничение ввести и в само определение науки о ней: биология - это наука о жизни во всем разнообразии проявления ее форм, связей и отношений на Земле. О том, сколь разнообразны формы жизни и ее проявления и, соответственно, сколь велико число частных, специальных наук, на которые распадается биология как паука о жизни, сейчас хорошо известно любому, окончившему среднюю школу. Все эти частные области биологической науки находятся в состоянии активного развития и содержат немалое число концепций (идей, гипотез, фактов), многие из которых представляют несомненный общегуманитарный интерес. Естественно, что нет ни малейшей возможности рассмотреть их все, поэтому элемента субъективности при отборе материала не избежать. Критерий же здесь один - отбор тех предельно общих концепций современной биологии, рассмотрение которых прямо выводит на осмысление философских (мировоззренческих, смысложизненных, методологических) проблем наших дней. В соответствии с этим уместно остановиться на разъяснении трех ключевых понятий - «современная биология», «жизнь» и «общая теория жизни» (или теоретическая биология).

Термин «современная биология» стал активно внедряться в общественное сознание с конца 1960 - начала 1970-х гг. Чаще всего его применение связывается с теми выдающимися открытиями в области физико-химической биологии, начало которым было положено в 1944 г. доказательством того, что таинственным «веществом наследственности» является особый класс химических образований, именуемых ДНК. В 1953 г. была раскрыта всем известная теперь структура ДНК в виде двойной спирали, а к началу 1960-х гг. были в основном поняты механизмы ее «деятельности», обеспечивающие выполнение двух главных функций: самовоспроизведения (репликации) и регулятора процесса биосинтеза белков в клетке. В эти же годы был расшифрован код наследственной информации и сформулированы два важнейших принципа молекулярной биологии:

  • 1) принцип комплементарное™;
  • 2) «центральная догма» молекулярной биологии, в соответствии с которой информация в живой клетке передается только по линии ДНК -> РНК -? белок.

Это были действительно выдающиеся достижения биологии середины XX в., которыми можно маркировать этап, отделяющий «современную биологию» от традиционной (классической, описательной). Но в этом случае необходимо сделать две в высшей степени важные оговорки. Прежде всего, следует иметь в виду, что не менее важные и значимые как в практическом, так и в теоретическом отношении события происходили и во многих других областях биологии, в том числе и в исследованиях, проводимых на уровне видов и популяций, биоценозов и экосистем, на уровне биосферы в целом, наконец. Достаточно упомянуть такие достижения нейрофизиологии, как установление факта межполушарной функциональной асимметрии головного мозга или раскрытие основных принципов распространения нервного импульса. В эти же десятилетия формулируется тот мощный корпус идей и концепций, которые лежат в основе современной этологии и экологии (в том числе и экологии человека и социальной экологии). Особенно следует выделить бурное развитие популяционной биологии и, прежде всего, такого ее раздела, как математическая генетика популяций. Именно она, как известно, стала своеобразным «мостом» между менделевской генетикой и классическим дарвинизмом, стержнем и основанием подлинно современной версии синтетической концепции эволюции, получившей название СТЭ.

Кроме того, середина XX в. - это еще и возникновение и стремительное внедрение в биологию методов кибернетики и теории информации. Они буквально революционизировали многие области биологии. Без них невозможно представить себе и развитие молекулярной биологии, где чистая «химия» во многом была переинтерпретирована в терминах кибернетики, теории информации, теории связи и криптографии.

Вторая оговорка касается преемственности научнобиологического знания. Сколь бы радикально новыми не были перечисленные достижения, они отнюдь не закрывают и не перечеркивают ни одного из достижений биологии классического периода ее развития. Появление многих открытий не могло бы совершиться, а свершившись, не могло быть в полной мере понято без таких достижений биологии прошлых столетий, как учение о клетке и клеточном строении живых организмов, теория естественного отбора Ч. Дарвина, теория корпускулярной наследственности Г. Менделя и многие другие.

Несмотря на то, что весь XX в. отмечен выдающимися достижениями в самых разных областях современной биологии, касающихся самых тонких и глубинных механизмов функционирования живых систем, вопрос о том, что такое жизнь (и вопрос о ее происхождении) до сих пор остается предметом острых дискуссий. Ситуация здесь порой выглядит столь удручающей, что наводит многих серьезных исследователей даже на мысль о принципиальной невозможности определить сущность жизни. Так, в одной из первых монографий с названием «Современная биология» ее автор, известный немецкий ученый и популяризатор науки Г. Боген, начинает первую главу с параграфа, который так и называется «Можно ли и должно ли дать определение жизни?». И вот что любопытно. «Принято считать, - пишет он, - что, перед тем как всерьез обсуждать тот или иной вопрос, нужно прежде всего точно определить объект обсуждения и дать ему четкое определение». «Но, - решительно утверждает он далее, - что касается объекта науки биологии, т.с. жизни, то здесь упомянутое требование попросту невыполнимо. Может быть правильнее всего сказать, что жизни вообще невозможно дать исчерпывающее определение». Тем не менее, такая точка зрения представляется все- таки чрезмерно (и далее неоправданно) пессимистической.

Долгое время вопрос о природе (сущности) жизни был почти исключительно предметом философских споров между представителями витализма - сторонниками существования особой жизненной силы, и механицизма , с точки зрения которых живые системы есть ничто иное как машины, подчиняющиеся в своем функционировании обычным законам физики и химии, но лишь в более сложной их комбинации, чем это имеет место в неживой природе. И лишь по мере все более полного описания и все более глубокого осмысления различных механизмов жизнедеятельности обсуждение вопроса о том, «что такое жизнь?» стало вводиться в научно-конструктивное русло.

Первой влиятельной идеей по этой проблеме, господствовавшей в науке, по существу, до 1930-х - 1940-х гг., стало понимание жизни как процесса активного и целесообразного поддержания той специфической материальной структуры, формой проявления которой является сама эта активность. Вот как писал в 1930-е гг. один из ведущих биологов того времени Дж. Холдейн: «Активное поддержание нормальной и притом специфической структуры и есть то, что мы называем жизнью; понять сущность этого процесса - значит понять, что такое жизнь». Главным механизмом поддержания этой специфической структуры считался процесс обмена веществ (и, соответственно, энергией) организмов с окружающей средой, а главным материальным носителем этой способности - белок.

Однако постепенно по мере осознания фундаментальной значимости генетических структур во всех процессах жизнедеятельности, ученые все чаще приходят к мысли, что главным процессом, характеризующим жизнь, является не столько процесс обмена веществ, сколько способность всех живых систем к самовоспроизведению, посредством которого жизнь сохранялась именно в смене (потенциально бесконечной) череды поколений. Выдающийся американский генетик, лауреат Нобелевской премии Г. Меллер еще в 1926 г. написал работу «Ген как основа жизни», в которой обстоятельно обосновал мысль, что благодаря уникальной способности генов к самоконированию и сохранению своей специфичности даже в случае изменения (мутирования) своей структуры, именно они должны рассматриваться в качестве главных кандидатов на роль подлинно материальной основы жизни и ее эволюции путем естественного отбора. При этом тогда никто не сомневался, что с химической точки зрения гены представляют собой белки. Однако вопреки этим ожиданиям оказалось (это окончательно было доказано только в 1944 г.), что гены - это не белки, а представители совсем другого класса био- полимерных молекул, а именно нуклеиновых кислот. Появился соблазн определить жизнь как форму существования ДНК, но к этому времени уже пришло осознание того, что жизнь не может быть свойством тел, веществ, а только свойством систем, т.е. чего-то, что возникает в результате взаимодействия различных тел, веществ, структур, сил, полей и т.д. Открылась перспектива раскрыть тайну жизни на пути расшифровки механизмов взаимодействия двух важнейших классов биополимеров - нуклеиновых кислот и белков.

С выходом в свет в 1948 г. работы выдающегося американского математика Н. Винера «Кибернетика», исследование проблемы природы и сущности жизни получило еще одну руководящую идею - идею самоуправления (точнее - сохраняющего самоуправления). То, что живые организмы способны автоматически поддерживать важнейшие параметры своего функционирования в границах рабочей нормы, было известно давно. Уже в XIX в. на явление гомеостазиса (т.е. поддержания постоянства внутренней среды организма) как па, возможно, самое главное, что характеризует жизнь, обратил внимание выдающийся французский физиолог К. Бернар. С кибернетикой же пришло осознание решающей роли информации как важнейшего фактора процессов саморегулирования и самоуправления жизненными процессами. В литературе замелькали такие определения жизни: «Жизнь есть способ существования органических систем, организация которых от молекулярного до системного уровня определяется использованием их внутренней информации» или «Живое - это такая форма существования информации и кодируемых ею структур, которая обеспечивает воспроизводство этой информации в подходящих условиях внешней среды» и др.

Эти три потока идей, идущие из трех разных областей исследования живого (биохимии, генетики и кибернетики), самым неожиданным и в высшей степени изящным образом были объединены в рамках молекулярной биологии, стремительно сформировавшейся после эпохального события - раскрытия структуры ДНК, позволившего понять ее как носителя кода наследственной информации, как своего рода «текст», в содержании которого записана программа формирования всех важнейших структур и отправлений его носителя, в том числе и программа собственного самовоспроизведения (самокопирования). Оказалось, что для реализации этой программы в равной мере важно наличие в клетке и определенного класса белков. Получается, что без нуклеиновых кислот невозможно образование белков, но, с другой стороны, без наличия белков невозможна специфическая активность нуклеиновых (и прежде всего дезоксирибонуклеиновых) кислот. Поэтому большинство исследователей - специалистов на сегодня считает, что жизнь на Земле появилась тогда, когда возникла открытая, т.е. непрерывно обменивающаяся со средой веществом, энергией и информацией система взаимодействующих полимеров (главными из которых являются нуклеиновые кислоты и белки), способная к самовоспроизведению, авторегуляции, развитию и эволюции.

С современной точки зрения именно самовоспроизведение, саморедупликация, а точнее даже - конвариантная (т.е. идущая с вариациями) редупликация составляет то главное, что конституирует систему взаимодействующих полимеров как живую. Именно это свойство лежит в основе деятельности естественного отбора (из вариантов), что и приводит к приспособительному изменению исходных систем, т.е. их эволюции, росту их сложности и разнообразию, образованию иерархической системы таксонов живой природы, возрастающей степени индивидуализации живых организмов, росту их активности, целенаправленности и целеустремленности поведения, а на вершине этого процесса - росту ментальности и активной преобразовательной деятельности, подготовивших появление человека и общества как исходного пункта нового, культурно- исторического этапа в развитии жизни на Земле.

Необходимо, однако, сказать, что наряду с этой генеральной линией проблематики сущности жизни, существовали и другие, не менее важные для более глубокого прояснения этих вопросов в будущем. Так, еще в 1944 г. один из выдающихся физиков XX в. Э. Шредингер выпустил книгу под названием «Что такое жизнь с точки зрения физики?», в которой подверг глубокому анализу важнейшие свойства жизни с точки зрения фундаментальных законов физики. Эта линия осмысления природы жизни нашла затем свое продолжение в современной биофизике, а также, в частности, в теории диссипативных структур и синергетике. В то же время еще в 1931 г. в статье под названием «Об условиях появления жизни на Земле» русский ученый В. И. Вернадский обосновал совершенно новое понимание жизни как изначального свойства биосферы в целом. С этой точки зрения жизнь, в известном смысле, древнее отдельно взятых живых организмов, поэтому, как пишет современный американский биофизик Г. Патти, «центральный вопрос происхождения жизни - это не вопрос о том, что возникло раньше, ДНК или белок, а вопрос о том, какова простейшая экосистема». Таким образом, на сегодня до окончательного ответа на вопрос о том, «что такое жизнь?» еще весьма далеко, и эта область научных и философских исследований ждет свежих идей от нового поколения талантливых энтузиастов.

С вопросом о сущности жизни (и возможности ее сколько-нибудь точного и исчерпывающего определения) тесно связан вопрос о возможности того, что часто именуют «общей теорией жизни» или «теоретической биологией». Для любой науки вопрос о путях и возможностях ее теоретизации является принципиально важным, поскольку принято считать, что степень зрелости любой научной области прямо пропорциональна степени ее теоретизации. Однако вопрос о возможности и путях построения теорий во всех науках, за исключением физики и химии (как и математики, разумеется), всегда представлял собой серьезную философско-методологическую проблему. В биологии этот вопрос был предметом острейших дискуссий на протяжении всего XX в.

Еще в 1930-е гг. целым рядом выдающихся биологов- мыслителей - Людвиг фон Берталанфи, Э. Бауэр, Н. Рашевский и др. - была сформулирована задача построения теоретической биологии, которая бы по степени общности, дедуктивной строгости и предсказательной силе не уступала теоретической физике. С тех пор дискуссии на эту тему непрерывно сопровождали развитие биологической науки и отнюдь не завершились в наши дни. Поэтому, возможно, полезно посмотреть на сегодняшнюю ситуацию в этой области в более широкой исторической перспективе.

Несмотря на то, что биология относится к числу старейших научных дисциплин, сложность и разнообразие форм живых организмов долгое время были серьезным препятствием для выдвижения идей общего порядка, опираясь на которые можно было бы сформулировать научное видение живой природы как единого целого. Только в 1735 г. К. Линнеем был сделан в этом направлении первый решительный шаг: с помощью предложенной им бинарной номенклатуры он построил первую искусственную классификацию всех известных тогда растений и животных. В XIX в. этот процесс объединения данных различных биологических наук в единую картину живой природы как единого целого был продолжен вначале Т. Шванном (1839) с помощью клеточной теории строения живых организмов, а затем Ч. Дарвиным (1859), показавшим историческое единство всего живого на Земле в рамках теории эволюции путем естественного отбора. Важным этапом на пути развития общей биологии явился 1900 г., когда тремя авторами независимо друг от друга были переоткрыты законы Г. Менделя и положено начало развития генетики, исходящей из положения о существовании единых дискретных материальных носителей наследственных свойств всех живых организмов и единого механизма их передачи из поколения в поколение по линии предок-потомок. Как уже говорилось выше, в 1944 г. была раскрыта химическая природа этого «вещества наследственности» (ДНК), а в 1953 г. раскрыта его структура. Этим была положена эра «молекулярной биологии», внесшей с тех пор исключительный вклад в дело понимания единых механизмов функционирования всего живого на Земле на молекулярном уровне. Наряду с этим в первой половине XX в. шла интенсивная обобщающая работа и на «надорганизменном» уровне организации жизни: учения об экосистемах (А. Тенсли, 1935), биогеоценозах (В. Н. Сукачев, 1942), о биосфере в целом (В. И. Вернадский, 1926).

В результате всех этих усилий к середине XX в. было достигнуто единое понимание жизни как многоуровнего, но единого целого, а биология стала пониматься как наука о живых системах на всех уровнях их сложности - от молекул до биосферы в целом.

Однако все попытки продвинуться в этом направлении наталкиваются на непримиримые разногласия среди современных биологов как раз по вопросу о дальнейших генеральных линиях и путях формирования теоретической биологии. Так, одни авторы видят будущее теоретической биологии преимущественно (или даже исключительно) в развитии комплекса наук, изучающих молекулярные, физико-химические основы жизни, и именно физике отводят роль теоретической основы всей классической (описательной) биологии. На другом полюсе находятся исследователи, которые связывают надежду на создание теоретической биологии с дальнейшей разработкой идеи системной организованности живой природы. Однако подавляющее большинство биологов продолжает считать эволюционный подход и эволюционную теорию (т.е. теорию естественного отбора в ее современной интерпретации) наиболее общей теоретической концепцией биологии. Обсуждение этого комплекса вопросов в наши дни инициировало постановку большого числа философских и методологических проблем. На смену многовековой дилемме «механицизм или витализм» пришла оппозиция «молекулярная биология или органицизм», имеющая самые разные формы своего выражения: редукционизм или холизм, редукционизм или композиционизм и др. К числу наиболее остро и продуктивно дискутируемых в последние десятилетия XX в. философских и методологических вопросов на материале современной биологии можно отнести проблему редукции, проблему телеологии, проблему структуры эволюционной теории и существования специфических «законов эволюции», проблему соотношения биологического и социального в происхождении и эволюции человека и вообще проблему существования биологических корней морали, религии и других фундаментальных реалий ценностно-духовного мира. На некоторых из этих проблем мы остановимся ниже.

Биология – это наука о живом, его строении, формах активности, природных сообществ живых организмов, их распространение и развитие, связях друг с другом и связах с неживой природой.

i) По объектам исследования биологическая наука делится на: вирусологию, бактериологию, ботаника, зоология, антропология.

II) По свойствам проявления живого: морфология (наука о строении живых организмов), физиология (функционирование живых организмов), молекулярная биология (структурах живых тканей), генетика (исследует законы изменчивости и наследственности).

III) По структурным уровням организации систем живой природы: цитология (изучает клетки), гистология (строение ткани), анатомия (макроскопическое строение живых организмов).

Выделяют 3 основных этапа в развитии биологии:

1) Этап систематики. Связан с именем Карла Линнея.

2) Эволюционный этап. Связан с именем Чарльза Дарвина.

3) Биология микромира. Связан с работа Грегора Менделя.

Современная биология развивается в 3 основных направлениях:

1) В рамках натуралистической биологии.

2) В рамках эволюционной биологии.

3) В рамках Физико-химическая.

Традиционная (натуралистическая) биология. Биологическая систематика Карла Линнея.

Объект изучения – природа в её естественном состоянии. Основные метод – наблюдение и классификация.

Задача: классификация наблюдаемых явлений. Вершины искусственной классификации, стала система Карла-Линнея. Прежде всего, согласно этой классификации, все растительные организмы делятся на группы. Группы он навал – таксоны. С именем этого ученого связана бинарная система классификации рода и вида. Его вторая заслуга – он указал, что между таксонами существует принцип иерархичной соподчиненности: Таксоны делятся на классы, отряды, род, вид, разновидность.

В наши дни, традиционная биология не утратила своего значения по следующим основаниям:

1) Описано всего лишь только 2/3 животного и растительного вида. То есть не все виды описаны и классифицированы в рамках современной биологии.

2) Наличие экологических проблем.

Физико-химическая биология. Прежде всего, с одной стороны, название обусловлено тем, что изучает объекты живой природы на физико-химическом уровне организации. Обусловлено применение физико-химических методов для исследования живых систем:

1) Метод меченых атомов. Его используют при наблюдении за перемещением и превращением веществ внутри живых организмов. Благодаря этому методу, по сути, все обменные процессы живых организмов были изучены.

2) Метод рентгено-структурного анализа и электронной микроскопии. Этот метод позволяет исследовать крупные молекулярные компоненты и микроскопические структуры живых организмов.

3) Хроматографические методы. Используют при биохимических исследований.

4) Спектральные методы. И методы зондирования в ткани. Например, ЯМР томография, УЗИ томографы, оптические зонды.

5) Компьютеризированная. Привели к созданию томографов, которые позволяют провести послойный анализ ткани.

Эволюционная биология. Теория Ч. Дарвина. Развитие живых систем (изменение во времени). Развитие во времени, неотъемлемое свойство живой природы.

Основные положения были сформулированы в рамках теории Дарвина 1859 год. В этой работе он сформулировал движущие силы эволюции:

1) Наследственность.

2) Изменчивость.

3) Естественный отбор.

Основной вывод: весь ход эволюции видов ведет к тому, что генетические и иные признаки, обеспечивающие выживание вида, от поколения к поколению все чаще. Современная эволюционная теория базируется на синтетической теории эволюции.

Современная теория эволюции базируется на:

1) На эволюционные теории Дарвина.

2) На выводах современной генетики.

В рамках синтетической теории эволюции (СТЭ) существенные изменения претерпели понятия изменчивости и естественного отбора. В настоящее время выделяют 3 типа изменчивости:

1) Наследственная изменчивость. Является аналогом неопределенной изменчивости Ч. Дарвин, которая обусловлена возникновением новых генотипов.

2) Ненаследственная изменчивость. Отражает изменение фенотипа, а не генотипа. Их еще называют фенотипическими изменениями. У Дарвина, такой тип изменчивости назывался – определенная изменчивость.

3) Онтогенетическая изменчивость. Отражает изменения в ходе индивидуального развития организма.

Сущность живого, его основные признаки.

Жизнь – это форма существования сложных открытых систем., способных к самоорганизации и к самовоспроизведению. Одна из форм движения материи.

Свойства живых организмов:

1) Наличие сложной упорядоченной структуры.

2) Способность к изменению и усложнению.

3) Способность к самовоспроизведению на основе генетического кода.

4) Высокая приспособляемость к внешней среде.

5) Получение энергии извне для поддержания собственного упорядочения.

6) Активная реакция на окружающую среду

7) Способность сохранять и передавать информацию.

8) Молекулярная хиральность (диссимметрия).

Киплинг: «Я определяю жизнь как некую закодированную информацию, сохраняемую естественным отбором».

Структурные уровни организации живого:

1) Молекулярно-генетический уровень.

2) Клеточный уровень.

3) Организменный (органо-тканевый уровень).

4) Популяционно-биоценотический.

5) Биосферный.

Молекулярно-генетический уровень организации живой природы. 3 основные проблемы, которые решает биология на этом уровне организации материи:

1) Проблема происхождения жизни. Охватывает 5 основных парадигмальных концепций происхождения жизни. 1) Концепция креационизма. Объясняется божественным началом. Согласно Библии, сначала были созданы растения и животные из воды, а затем в соответствии со своим замыслом, Бог создает звери и их земные породы. Суть – создается сразу. 2) Концепция панспермий. Основывается на том, что жизнь на землю привнесена извне с других планет. Слабым местом данной концепции является, что любые формы жизни под действием жесткого ультрафиолетового погибают, а на земле защищает озоновый слой, а за пределами нет. Это и есть слабое место этой теории. 3) Концепция самопроизвольного зарождения жизни. Считается, что жизнь многократна, может возникать из неживого вещества. Данная концепция существовала в Древнем Египте, Китае, Греции, Индии. Данной концепции придерживались Фалес, Демокрит, Аристотель, Ламарк, Гегель, Галилей, Декарт. На этой концепции поговорим подробнее. Считалось, что жизнь может многократно зарождаться из неживого вещества. Данная концепция была опровергнута 1688 году, Франческо Реди. Он сформулировал основную концепцию благодаря силе опытов, которыми он провел с закрытыми сосудами. Опытным путем показал, что живое вещество может иметь только от живого вещества. Была сформулирована основная концепция биогенеза, суть которой сводилась к следующему: Все живое из живого.

В 1860 году Луи Пастер, опытным путем показал, что бактерии вездесущи и могут зарождаться в рамках неживого вещества. Кроме того, он показал, что чтобы избавиться от них, нужна пастеризация – нагревание продукта до 100 градусов Цельсия.

Таким образом, Луи Пастер обосновал справедливость теории биогенеза и окончательно опроверг концепцию спонтанного зарождения жизни, которому придерживалось большинство великих ученых. 4) Концепция стационарного состояния. Жизнь на земле существовала всегда. Сильная сторона этой теории: разрывы в палеонтологической летописи. Слабая сторона: не вписывается в биогеохимическую концепцию происхождению земли. Данной концепции придерживался В. И. Вернадский. 5) Биогеохимическая концепция происхождения жизни. Он придумал - А. И. Опарин. 1924 год. «Происхождение жизни». Основная идея – зарождение жизни – это длительный эволюционный процесс становление жизни в недрах неживой материи. В рамках этого процесса ряд неорганических соединений самопроизвольно, под действием физико-химических факторов превращаются в так называемые «кирпичики жизни», превращаются в аминокислоты, нуклеотиды и нуклеозиды, АТФ, ДНК, РНК. Сильная сторона теории: данная теория согласуется с гипотезой до биологической эволюции. Кроме того, данная теория имеет эмпирическое подтверждение. Оно было получено 1953 году. Миллер Стейли Лойд провел следующий эксперимент. В запаянный сосуд были помещены газы первичной атмосферы земли, а именно – водород, аммиак, метан, газообразная вода. Через эту газовую смесь пропускали электрические заряды при высокой температуре. После вскрытия ампул были обнаружены аминокислоты и другие органические кислоты, которые являются составными частями живого. Слабая сторона теории Опарина: уязвимость, Не может ответить на вопрос – Что произошло раньше аминокислоты или белки. Гипотезы: 1) Утверждают первичность аминокислот, объединяют под общим названием голобиоз. 2) Утверждает генобиоз, первичность происхождения органических систем генетического кода. Концепция Опарина достаточно точно описывает происхождение первичных клеток. Первичные клетки называются коацерваты. Как они возникают? Первые органические соединения под действием мощных физических факторов образуются молекулы жирных кислот – липиды. Данные молекулы имеют 2 полярности, один из которых смачивается молекулами воды, а другой нет. Гидрофильные и гидрофобные концы липидов. Гидрофильные концы липидов обращаются к внешней среде, а гидрофобные образуют замкнутое пространство. Образуются коацерваты. Пространственно-обособленная целостная система. Она поглощает из внешней среды вещества и процессы жизнедеятельности выбрасываются продукты. В результате, начинается обмен веществ.

2) Молекулярно-генетический подход к изучению эволюции. Классическая менделевская генетика поставила перед современной 2 основных вопроса:

1) Что такое ген и генотип?

2) Каким образом происходит развитие популяций и возникновение новых биологических видов?

Классическая генетика базируется на 3 основных законах. Первый закон Менделя – закон единообразия первого поколения. Второй закон Менделя – закон расщепления. Этот закон отражает появление доминантных и рецессивных признаков. Третий закон фиксирует независимое комбинирование признаков.

С точки зрения современного естествознания. Носителями наследственной информации являются хромосомы и гены, открытые в конце 19 века. 1953, Д. Уотсон открывают молекулу ДНК, раскрывают структуру носителя. Позже были открыты РНК, в своем составе имеют водород, азот, кислород и фосфор. Имеют универсальное распространение в живой природе.

ДНК – двойная спираль, состоящая из аминокислот, которые выполняют 3 функции:

1) Хранение информации.

2) Реализация информации в процессе роста новых клеток.

3) Самовоспроизведение.

Ген, геном – это совокупность генов, содержавшихся в одинарном наборе хромосом.

Генотип – это совокупность всех генов организма.

С точки зрения современной генетики существует несколько уровней организации. Несколько типов изменчивости на молекулярном уровне. Важнейшим механизмом являются мутации.

Мутации генов – это преобразование генов под действием внешних факторов среды.

Мутаген – это внешне факторы, вызывающие мутации. Являются, прежде всего, радиация, токсичные химические соединения, вирусы – это мутагены.

Еще один механизм изменчивости – это рекомбинация генов.

Неклассическая комбинация генов. В этом типе происходит общее увеличение генетической информации. Приносятся вирусами.

3) Изучение молекулярных основ воспроизводства жизни и процессов жизнедеятельности. 3 типа обмена веществ катаболизм (диссимиляция), анаболизм, метаболизм. Катаболизм – это процесс расщепления сложных органических соединений, которые сопровождаются выделением химической энергии, при наличии химической связи. Избыток энергии запасается в АТФ.

Амфоболизм – это процесс образования в ходе катаболизма мелких органических молекул. Они являются кирпичиками в построении более сложных. Анаболизм –это представляет собой разветвленную систему процессов синтеза сложных молекул с расходованием молекул АТФ.

Все 3 типа обмена полностью расшифрованы. Концепции биохимического единства возникла во второй половине 19 века. Суть: единство состава и механизма функционирования всех систем живой природы.

Клеточный уровень живого.

Клетка- это основной элементарный уровень жизни, способный к воспроизводству. В клетке протекают все обменные процессы. История открытия клетки посмотреть самостоятельно. Связана с развитием микроскопии. С именем Гука и Галилея. Разделили на прокариотную и эукариотные формы жизни. С точки зрения строения клеток.

Прокариот - безъядерный ствол жизни.

Эукариоты – имеют ядро.

Самые ранние формы жизни были прокариотные формы жизни. Живут в бескислородной среде. Для эукариот необходим кислород. В результате появления в атмосфере кислорода, форма обмена энергии с окружающей средой в рамках эукариотной формы жизни, становится более выгодной, чем в рамках прокариотной. Центральным элементом у прокариот – брожение. А у эукариот – дыхание.

В рамках дыхания передается в 18 раз больше энергии, чем в рамках брожении.

Крупнейшим шагом в развитии эволюции стало возникновение фотосинтеза. Суть фотосинтеза является то, что берутся не органические вещества, а углекислый газ и вода. В результате образуется Органическое вещество + кислород. Данная реакция идет в прямом и в обратном направлении. Процессы окисления. Сильнейший антиоксидант – этиловый спирт, оливковое масло. Процесс обратной реакции сопровождается энергией дыхания.

Организменный уровень живой системы.

Возникновение многоклеточных организмов. Промежуточная стадия – это возникновение…

Страница 1

Биология

Это наука о живом, его строении, формах его активности, его строении, сообществах живых организмов, их распространении развитии, связях между собой и средой обитания.

Современная биологическая наука - результат длительного процесса развития. Но только в первых древних цивилизованных обществах люди стали изучать живые организмы более тщательно, составлять перечни, животных и растений, населяющих разные регионы и классифицировать их. Одним из первых биологов древности был Аристотель. Отзывы о Русская рыбная. Русская рыбная компания отзывы .

В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассматривать с разных точек зрения.

По объектам исследования биология подразделяется на вирусологию, бактериологию, ботанику, зоологию и антропологию.

По свойствам проявления живого в биологии выделяются:

1) морфология - наука о строении живых организмов;

2) физиология - наука о функционировании организмов;

3) молекулярная биология изучает микроструктуру живых тканей и клеток;

4) экология рассматривает образ жизни растений и животных и их взаимосвязи с окружающей средой;

5) генетика исследует законы наследственности и изменчивости.

По уровню организации исследуемых живых объектов выделяются:

1) анатомия изучает макроскопическое строение животных;

2) гистология изучает строение тканей;

3) цитология исследует строение живых клеток.

Эта многоплановость комплекса биологических наук обусловлена чрезвычайным многообразием живого мира. К настоящему времени биологами обнаружено и описано более 1 млн. видов животных, около 500 тыс. растений, несколько сот тысяч видов грибов, более 3 тыс. видов бактерий.

Причем мир живой природы исследован далеко не полностью Число неописанных видов оценивается по меньшей мере в 1 млн.

В развитии биологии выделяют три основных этапа:

1) систематики (К. Линней);

2) эволюционный (Ч. Дарвин);

3) биологии микромира (Г. Мендель).

Каждый из них связан с изменением представлений о мире живого и самих основ биологического мышления.

Три «образа» биологии

Традиционная, или натуралистская биология

Объектом изучения традиционной биологии всегда была и остается живая природа в ее естественном состоянии и нерасчлененной целостности.

Традиционная биология имеет ранние истоки своего зарождения. Они идут к средним векам, а становление ее в самостоятельную науку, получившую название «натуралистская биология», приходится на XVIII-XIX века.

Её методом стало тщательное наблюдение и описание явлений природы, главной задачей - их классифицирование, а реальной перспективой - установление закономерностей их существования, смысла и значения для природы в целом.

Первый этап натуралистской биологии ознаменовался первыми классификациями животных и растений. Были предложены принципы их группирования в таксоны различных уровней. С именем К.Линнея связано введение бинарной (обозначение рода и вида) номенклатуры, почти в неизменном виде дошедшей до наших дней, а также принцип иерархического соподчинения таксонов и их наименования - классы, отряды, роды, виды, разновидности. Однако недостатком искусственной системы Линнея было то, что он не дал никаких указаний относительно критериев родства, чем и снизил достоинство этой системы.


Интересное на сайте:

Проблемы биологической продуктивности
Биологическая продуктивность, экологическое и общебиологическое понятие, обозначающее воспроизведение биомассы растений, микроорганизмов и животных, входящих в состав экосистемы; в более узком смысле - воспроизведение диких животных и р...

Современные концепции развития геосферных оболочек
Внутреннее строение и история геологического развития земли. Происхождение планет изучает космогония. Гипотезы происхождения: - небулярные (из тумана) - материя планет выброшена из недр Солнца ударом комет (Леклерк, Бюффон); из космиче...

Можжевельник китайский - Juniperus chinensis
В природе встречается в на юге Приморского края, в Северо-Восточном Китае, Корее, Японии. Двудомный кустарник иногда дерево до 20 м высотой, с восходящими и стелющимися побегами. Хвоя молодых побегов и нижних, старых ветвей игловидная, ...

Научные изыскания отражают вектор развития современного общества. Естественные науки теперь служат не эфемерным богам, а направлены на решение прикладных задач. Они связаны с покорением , изобретением новых источников энергии. Роль биологии в современном обществе очень велика. Сегодня мы узнаем, что изучает биология, рассмотрим ее путь становления, выдающихся ученых разных эпох.

Вконтакте

Основополагающее понятие

Биология – наука, изучающая разнообразие жизни на планете. Речь идет не только о высшей нервной деятельности человека, но видовых особенностях животных и растений. Смежные дисциплины изучают вирусы/микробы, озабочены озеленением космических объектов. Дальнейшее повествование переубедит вас, почему биологические знания нужны каждому.

Важно ! Пара греческих слов: «bios» и «logos» создают название целой дисциплине. Их перевод звучит как «наука о жизни». Думаю, вопрос «что изучает биология» больше не стоит перед читателем.

Актуальность знаний для человека

Почему так необходимо применение биологических знаний? Понимание законов природы, принципов жизнедеятельности организма открывает новые возможности для:

  • борьбы с эпидемиями, сезонными заболеваниями;
  • в пределах области, планеты;
  • представления разнообразия живых организмов, их строения, поведения;
  • применения биологических знаний на практике (так человек обзавелся крупным рогатым скотом, зерновыми культурами).
  • следования здоровому образу жизни.

Исторические этапы развития науки

XXI век диктует свое условия для естественных наук, поэтому роль биологии в современном обществе также претерпела изменения. Поэтапное развития сквозь призму веков к вашим услугам.

Античность

Первые достижения в биологии принадлежат Гиппократу, Аристотелю и Теофрасту. Выдающиеся деятели обнаружили первые закономерности, исследовали человеческое тело, уделили внимание животному миру. Остановимся подробнее на каждом из великих ученых.

Врачу Гиппократу принадлежат первые труды по строению человека, его историческому развитию. Он доказал, что на болезни влияет наследственность, условия окружающей среды. Современники величают его родоначальником медицины.

Философ Аристотель интересовался проблемами окружающего мира. Была сформулирована концепция «четырех царств»: растения, земной, мир воздуха и воды. Основоположник систематики, не каждому человеку под силу описать более 500 животных. Помимо простой систематизации, Аристотель размышлял над происхождением и биологическими исследованиями описываемых видов (живорождение акул, жевательный аппарат морских ежей).

Теофраст сфокусировался на изучении растительного мира. Его труды впервые обзавелись терминами: «плод», «сердцевина». Описал более 500 видов флоры, считается основателем ботаники. Возвысил значение биологии, в жизни человека наступили коренные перемены.

Средневековье

Временной промежуток характеризуется расцветом ислама, потому труды греческих мыслителей сохранились на арабском языке. Медицина пришла в упадок из-за царившего религиозного «помутнения», во многом из-за стремления человека познать жизнь. снова претерпела кардинальные изменения.

Ученый Аль-Джахиз высказал предположение о существовании пищевых цепей у животных, эволюционных процессах. Основоположник географической детерминации – направление, изучающее влияние природных условий на характер человека, народа, нации.

Авиценна написал книгу «Канон врачебных наук», ставшая путеводной звездой для европейских врачевателей до XVII века.

Развитие биологии в Средние века связано с расширением описаний флоры/фауны, культивированием новых теорий.

Эпоха Возрождения

XVI век ознаменовался повышенным интересом элиты к физической оболочке человека, развитию науки. Практиковалось вскрытие тел после смерти.

Художники стремились постичь прелесть человеческого тела (Леонардо да Винчи, Альбрехт Дюрер).

Медицина опиралась на целебные свойства трав, что усилило интерес к изучению флоры.

Значение биологии в жизни человека усилилось благодаря научным изысканиям.

В частности генной инженерии, молекулярной биологии.

XVII век

Каждому человеку стало известно о существовании второго круга . Это способствовало появлению учения об микроорганизмах, а в 1590 году изобретен первый микроскоп. Впервые человек увидел клетки растений.

Роль науки в современном обществе претерпела изменения после открытия кровяных телец, сперматозоидов, мельчайших живых организмов. Уильям Гарвей, препарируя трупы животных, доказал существование венозных клапанов, изоляцию сердечных желудочков.

Новое Время

Модернизация технической базы упростила изучение тайн человеческого тела. Развитие биологии в XIX веке окончательно утвердило палеонтологию как науку. Значительные открытия принадлежат Чарльзу Дарвину и его труду «Происхождение видов».

Новое Время стало основополагающим периодом, когда значение науки в жизни человека вышло на новый уровень.

XX век

Глобальные открытия припадают на первую половину столетия, сформулирована ная теория наследственности. Генетика – бурно развивающиеся направление.

Исследование витаминов, белков, жиров привело к формированию смежной дисциплины в науке. С ростом заинтересованности совершенствовалось техническое оснащение исследовательских лабораторий (появление электрофореза).

Генная инженерия приобрела сторонников в лице каждого просвещенного человека. Глобальное ее изучение создало новые лекарства, устойчивые сорта фуражных культур. Человечество забыло о таком понятии как «голод».

Применение знаний на практике

Благодаря открытиям удалось сделать жизнь человека комфортной:

  1. Появление устойчивых гибридов.
  2. Многие заболевания исчезли благодаря медицине (чума).
  3. Продолжительность жизни выросла.
  4. Ведение сельского хозяйства стало более технологичным.
  5. Высокие урожаи насытили растущее население Земли, роль биологии в современном обществе расширилась.
  6. Покорение космоса сблизилось с селекцией гибридных растений (высокоустойчивых).

Внимание! Микроорганизмы используют селекционеры, обогатительные фабрики, ученые. Роль биологии в практической деятельности людей с каждым годом становиться выше.

Наука и медицина

Изучение функционирования организма усилило роль биологии в медицине:

  • операционное вмешательство стало более последовательным и выверенным;
  • хирургия использует трансплантацию тканей и органов для спасения человеческой жизни;
  • расшифровка генома сделает медицину будущего персональной (на основе геномного паспорта);
  • постоянная мутация микроорганизмов и бактерий требует изобретения новых методов борьбы;
  • использование стволовых клеток уже сейчас делает возможным «выращивание» тканей и целых органов.

Приведенный список дает понять, что роль биологии в медицине неоспорима.

Комплексная биология

Рассматриваемая наука состоит из двух процессов: интеграции (постепенное сближение и «слияние» разных направлений), дифференциация (образование новых дисциплин из первоначальной науки). Вот почему современную биологию считают комплексной наукой.

Роль биологии в современном мире

Значение науки в обществе, биология

Вывод

Большинство научных достижений стало возможным благодаря симбиозу нескольких направлений. Дальнейшее изучение загадок человеческого организма откроет новые возможности для улучшения современной науки.

Мы стремимся покорить космос, колонизировать планету, но нам нужно выжить в тяжелых условиях. Селекция новых видов позволит в кратчайшие сроки озеленить любую звезду или планету. Вот почему биологию считают наукой будущего.